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Abstract

The endpoint estimates for the Kunze-Stein phenomenon associ-
ated with real rank one semisimple Lie groups and the Jacobi hyper-
group were respectively obtained by A. Ionescu and J. Liu. Recently,
in the case of the Jacobi hypergroup, an alternative proof using the
Abel transform was obtained by the first author. In this paper we
apply the same argument to the complex semisimple Lie groups and
prove a modified endpoint estimate for the Kunze-stein phenomenon
associated with the complex semisimple Lie groups.

1 Introduction

Let G be a noncompact connected semisimple Lie group of real rank one and
G = KAK the Cartan decomposition of (G. The endpoint estimate of the
Kunze-Stein phenomenon is given as follows:

1 * gllz@) < el fllzziollgllzie) (1)

for all functions f, g on G, where || - [[r.4(c) is the norm of the Lorentz space
LP9(@G) (see [4]). This estimate is also true for the Jacobi hypergroup (see
[6] and cf. [5]). However, when the real rank of G is greater than one, we
don’t know whether the above estimate is true or not. In this paper under
the assumption that G is complex, we obtain a modified estimate:

1f % Mingll 2 a) < el fllzzra)llgllzera) (2)

for all K-bi-invariant functions f,g on G, where LP4(A) is the subspace

of K-bi-invariant functions in L»4(G) and M,, is a Fourier multiplier on G
corresponding to m on a* and satisfying a good property. We call such Fourier
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multipliers as of type (v/A,o0) (see Definition 3.1) and we give a criterion
on m by which M, is of type (\/Z, 00). In §4 we give some examples of m
satisfying the criterion for G = Sp(4,C) and SL(3,C).

2 Preliminaries

Let G be a connected complex semisimple Lie group. Let G = KAN and
G = KAK be the Iwasawa and Cartan decompositions of G, where K, A and
N are maximal compact, vector and nilpotent subgroups of G respectively.
Let g and a be the Lie algebras of G and A respectively. Then A = expa.
Let a* be the dual space of a and ¥, the set of all positive roots of (g,a). We
put p(H) = > 5, a(H). Let W be the Weyl group of (G, A) and ay the
positive Weyl chamber of a. We put A, = expa,. Let dg,da,dk,dn,dH be
the invariant measures on G, A, K, N, a respectively, normalized as in [8], §1.
Especially, d(exp H) = dH and dg = e*°¢?dkdadn. We define for H € a,

D(eXpH) = Z detw - ewp(H) = H (ea(H) _ e—a(H))’

weW aEXy

and put A = D% Then A(exp H) = O(e*!)). We define for \ € a*,
r(A) = ]I MHa),

acXy

where H, is determined as an element in the root space of a by setting
a(H) = (H,H,) for all H € a. For K-bi-invariant functions f on G, it
follows that
| #arg = Co [ flexp H)Mexp Hydt,
G a
For a positive function w on A, we denote by LP(w), 1 < p < oo, the space
of K-bi-invariant functions of GG satisfying

/|f(eXpH)|pw(epo)dH < 0.

Similarly, the Lorentz space LP%(w) is defined by the space consisting of all
K-bi-invariant functions f on G such that f o exp belongs to the w o exp -
weighted L™ Lorentz space on a (cf. [3]).

We overview some basic facts on the spherical and Abel transforms on
G. We refer to [2], §14, [7], §4 and [8], §7 for the details. For A\ € a* the
spherical function ¢, on G is given by

m(p) ot w - WAH)
) weZWd t . (3)

T

D(exp H)px(exp H) =
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For K-bi-invariant functions f on G, the spherical transform ]? on a, and
the Abel transform Af on A, are respectively defined by

F) = [ s@yenta™)ds,
Af(expH) = ep(H)/Nf(eXpH -n)dn.

We often identify a K-bi-invariant function f on G and a function F on A,
with W-invariant functions on A which are denoted by the same symbols.
Then it is known that for A € a*,

N = (Af 0 exp) (M) = / Af(exp H)e MM dH, (4)

where ~ denotes the classical Fourier transform on a. Especially, it follows
that

A(fxg9) = Af © Ag, (5)

where * and ® are the convolutions on GG and A respectively.
Let m(0y) be the differential operator on a with constant coefficients
defined as follows: For a smooth function ¢ on a,

w(Om)(H) = ] (o ¢/ (H)),

agy

where ¢/(H) € a* is the differential at H of ¢. Then

-~ ~

m(=iA) f(A) = Com(p)W|(D - f o exp)(})

-~ ~

(see [8], (25)) and, since 7w(—iA) f(A\) = (7(—0u)Af o exp), it follows that

C

flexpH) = Diexp H)

m(=0u) Af(exp H), (6)

where C~1 = Cym(p)|W| (cf. [8], Theorem 6). Especially, noting (5), we see
that

C

frglexpH) = Diexp H)

m(—0)Af @ Ag(exp H). (7)

In the following we use the letter ¢ to denote different constants.
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3 A version of the endpoint estimate

We introduce a Fourier multiplier which will be used to modify the endpoint
estimate (1). Let m be a bounded W-invariant function on a. For f € L*(A)

the corresponding Fourier multiplier M,, is defined as ]\7m\f (A) = m(A) F(A).
Clearly, M,, is also a Fourier multiplier on L?(a).
Definition 3.1. M,, is of type (VA, 00) if M,, satisfies

Mo AS 0 exp) 11w < ell Fllneu ®)

for all f € LN(VA).
The following two lemmas will be used in the proof of the modified end-

point estimate (2).

Lemma 3.2. Let f be a smooth K-bi-invariant function on G and f €
LY(V/A). Then there exists a positive constant ¢ such that

|7 (=0m)Af oexp [|pi) < || fllpiva)- (9)
Proof. Since /A = D, this lemma is obvious from (6). O
Lemma 3.3. Let E(expH) = [[,ex, e H) = ertH) - For all functions f €
LY(E),
1l < ellfllzer e

Proof. Let 3% = {a; | 1 <i < n = dima} denote the set of positive simple
roots. Mapping H € a to (o;(H))i1<i<n € R™, we identify a with R™ and a,
with a domain R’} in R”. Let 6 = F oexp. Then it is enough to prove
that for functions F on R}, ||F||ris) < ¢f|F||z21(52). There exist d; > 0,
1 <i <n, for which 6(H) = [[,ex, e =TT, e®@i(H) " We may suppose
that F'is the characteristic function xg of a set S'in R’} and S is a rectangle
(a1,b1) x (ag,by) X -+ x (an,by,). Since the volume of {x | |xs(z)| > A} with
respect to 6% is given by V(S) = [ 6*(x)dx if 0 < XA < 1 and 0 otherwise, the
rearrangement function y§(¢) is 1 if 0 <t < V(S) and 0 otherwise. Then

. 1dt 1
sz = ¢ / GO = ar(s)
0

On the other hand, it follows that

n b; n

PO b PN

st =T [ etoarn < [0 - o
i=1 Y % i=1

:(ﬁ/bi eQdia"(H)dH>é =cV(9)2.
i=1"Y %

Therefore, the desired result follows. O

ol
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Our main theorem can be stated as follows:

Theorem 3.4. Let G be a connected complex semisimple Lie groups. Let M,
be a Fourier multiplier of type (v, 00). Then (2) holds for all f,g € L**(A).

Proof. Similarly as in the proof of [6], in order to show (2), it suffices from
the duality of Lorentz spaces to prove that

‘/f*Mmg(epo)h(epo)A(eXp H)dhﬁ
<c[fllzzrallglezaalbllzaa)y  (10)

for all h € L*'(A). Let R be a compact set of a containing the origin inside.
We note that the integral of the left hand is written as M,,(f x g x h)(e). If
one of f,g,h were supported on exp R, say f, it follows that

(M (f * g+ h)(e)] < |If * gl |Mmhl L2ay < [ fllzvayllgll 2yl Pl z2a)

< ([ e mat) 17 ol 1l
R

Since L?'(A) C L*(A), the desired estimate follows. Therefore, we may
suppose that f, g, h are all supported on the outside (exp R)¢ of exp R. It
follows from (7), (8) and Lmma 3.2 that
‘/f*Mmg(eXp H)h(exp H)A(exp H)dH
<c||m(=0u)Af @ My Ag(exp H)| 1o 1ol 11 (va)
<c||m(=0u)Af o exp || L1(a) | MimnAg o exp || oo @ | All 11 (v
<cl[fll 2 vmllgllprvm 12l i va)-

If a function a is supported on (exp R)€, then it follows Lemma 3.3 that

lallprva) < cllalloym) < cllallpzame) < cllallr2aa)
Therefore, the desired (10) follows. O

Now we shall give a criterion by which M,, is of type (VA,o0). We
recall that the spherical function ¢, (exp H) is, as a function of A, the Fourier
transform of a compactly supported L' function Ag(S) = A(S, H) on a:

D(exp H)pr(exp H) = /A(S, H)e*9ds

a
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(see [1]). Hence it follows from (4) that for all K-bi-invariant f € L*(G),
Af(expS) is given by

Af(expS) :/f(epo)D(epo)A(S,H)dH.

We apply M,,, to the first variable of A(S, H) and denote it by M,, 1 A(S, H).
If M,,1A(S, H) belongs to L'(a) as a function of S, then

m(A)D(exp H)py(exp H) = /MmylA(S, H)e?®ds
and thus
M, (Af oexp)(S) = /f(exp H)D(exp H)M,,, 1 A(S, H)dH.

Therefore, (8) follows if there exists ¢ > 0 such that || M, 1 A(:, H)||Le@) < c
for all H € a. We see the following.

Corollary 3.5. Let us suppose that

m(N)D(exp H)py(exp H) = /B(S’, H)er9ds, (11)

a

where B(S, H) € L'(a) as a function of S and B € L>(a*). Then M,, is of
type (V'A, 00) and thus, (2) holds for f,g € L**(A).

4 Examples
(I) The rank one cases: When dim A = 1, it is easy to see that for H € a,
in A\(H 7
D(exp H)qu(GXP H) = Cw — C/ €ZA(S)dS.
~H

Hence, for m(A\) = 1, B(S, H) is the characteristic function of [—H, H].
Therefore the identity operator is of type (\/ A, 00). The endpoint estimate
of the Kunze-Stein phenomenon (1) holds without modification.

(II) The case of Sp(4, C): We shall obtain a multiplier M,, of type (v/A, co).
a is given by a = {H(a,a2) = diag (a1, as, —ai, —az) | a1, as € C}, where
diag is a diagonal matrix. We define e; € a*, i = 1,2, by e;(H (a1, az2)) = a;.
Then ¥, = {2e1,2e5,61 + €9,e7 —e3}. Let & = e; — ey and 8 = 2e5. We
denote by s, the reflection on a* with respect to v € X,. Then the Weyl
group Wis given by W= {1, s, 5, $a58, $55as SaSpSas S55a58, (Sass)’}. We
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parametrize A € a* as A = A\ (2a + ) + XS = 2XA1e1 + 2X2e2. Then the
action of w € W on A is given as follows.

weW | wer | wesy | detw | SwA(H (a1, as))
I €1 €9 1 )\1(11 + )\2(12

Sq | €2 e1 -1 A1as + Asaq

Sp €1 —E€9 —1 )\1(11 — /\2@2
SaSp €9 —€1 1 )\1@2 — /\2@1
588 | —€2 €1 1 —)\16L2 + /\2@1
50585« | —€1 | € —1 —A1a1 + Aoas
585453 | —€2 | —€1 -1 —A1aa — Aoy
(5a85)* | —€1 | —€2 1| —X\ap — Aaao

We denote the partial sum of >, detw - e H) by

[(w17w27"‘7wl) = Z detwel’u})\(H)

Then it follows that

([ S, )\1+)\2)(a1+a2) sin()\l — )\2)(@1 - a2)
_95etM1—A2)(a1+az) sin(Ay 4+ A2)(ar — ag)
z()\l A2)(a1+az) SlIl(>\1 + )\2)((11 - a2)

—2je{aFAl@ra) gin (N, — \y)(ay — as).

I(sp, 5058

I(38Sa, SaSaSa

I(s354583, (SQSB)

)
)
)
)

Hence

Z det w - ™M) = 4(—sin(A\; + Ag) (a1 + ag) sin(A; — Ag) (a1 — ay)
weWw
+ sin()\1 — )\2)(@1 + CLQ) sin()\1 -+ )\2)(&1 — CLQ)).

Since A\ = 2)\161 +2)\262, W(Z)\) = 64/\1)\2()\1+/\2)(/\1 —)\2) and thU_S, it follows
from (3) that

1 1
D(exp H)pr(exp H) = 16 WY
% <_sin()\1 + )\2)(@1 + (12) Sill()\l — )\2)(@1 — CLQ)
/\1 + )\2 >\1 - )\2
+sin()\1 — )\2)(&1 + (12) Sin(>\1 + )\2)(&1 — &2))
Al — A2 A1+ Ao '
Now let

m(\) = sin? A\ sin® \,.
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Clearly, m is W-invariant and

« 2 A « 2 A
m(A)D(exp H)py(exp H) = con ALEN A

At A
" (_sin(/\l + Xo) (a1 + ag) sin(A; — X)) (a1 — az)
A+ Ao A1 — Ao
+sin()\1 — Xo)(a1 + ag) sin(A; + o) (a; — a2)>

A1 — Ao A1+ Ao '

We see that
sin? \; sin? Ay
At A

is the Fourier transform of u(x,y) = —%sgn x - sgn y times the characteristic

function of {(x,y) | |x| < 1,|y| < 1} and

sin()\1 =+ )\2)(@1 + ag) Sin()\l — )\2)(@1 — CLQ)
)\1 + )\2 )\1 - )\2

is the Fourier transform of v(x,y) = 1 times the characteristic function of a
compact set {(x,y) | |z +y| < |ar + asl, |z —y| < |ay — aq|}. Hence B(S, H)
in (11) is a constant multiple of

u®@v(S) +u® sgv(9).

We note that |Jul|z1@2) = 1 and |[v]|e@2) = 3 and thus, ||u ® v||fe@) <

ull L2 @) l|v]| L@y < 3. Similarly, [|u ® sgv|[re@2z)y < 3. Therefore, we see
that B(S, H) satisfies the condition of Corollary 3.5 and thus, M,, is a Fourier
multiplier of type (vVA, 00).

(IIT) The case of SL(3, C): We shall obtain a multiplier M,, of type (v/A, o0).
a is given by a = {H (a1, as) = diag (a1, a9, —(a; + a2)) | a1,a3 € C}. We
define e; € a*, 1 = 1,2, by e;(H (a1, a2)) = a; and e3(H (a1, as)) = —(a; + az).
Then X, = {e; —eg,e5 —e3,e1 —e3}. Let @« = e; —eg and = es — e3. We
denote by s, the reflection on a* with respect to v € X,. Then the Weyl
group W is given by W = {I, 54, 53, 5058, $85a, SaSpSa}. We parametrize
A€ atas A= \3(2a+ B) + Az (—a+ B) = 4\e; + 4X\zes. Then the action
of w € W on A is given as follows.

weW | we | wey | detw TwA(H (a1, a2))
I €1 €9 1 )\10,1 + /\2&2

Sa €9 €1 —1 )\1(12 + )\2@1

sg | el es —1 Aa; — Aa(ag + ag)
SaSp | €2 | e3 1 Aaz — Aa(ag + ag)
SgSa | €3 | e 1| =Ai(a1 + az) + Aaaq
SaSpSa | €3 €9 —1 | =Xi(a1 + az) + Asaq
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We see that
I(I, s,) = 2ie¥MatA)(artaz) gin 9(X; — \y)(ay — a)
I(sg, 8a85) = —2ieXM=22)(artaz) gip o) (a) — ay)

1(8850, 86535q) = 2ie2(72hartaz) iy 9N (q) — ay).

Hence
Z det w - e™H)
weW
= 4(ie2i()\1+)\2)(a1+a2) COS()\l — >\2)(a1 — CLQ) sin()\1 — /\2)(@1 — CLQ)
—eNtA@tar) ¢in 9\ (4 — ay) sin 3(A; — Ag)(ay + as) (12)

—je2imPuFA)(@taz) oo\ + \y)(ag — ag) sin(A — Ag)(ay — a))
= 4(2isin(A; — Ag)(ay — ag)e%()‘ﬁ&)(“ﬁ”) sin A\ (a; — ag) sin Ag(a — as)
—emtFA)(@14a2) 6in 9N (4 — ag) sin 3(A; — A2) (a1 + as)
+2sin(A; — Ag)(ay — ag)e "M @ta) gin 3) (a1 + ay)
X cos(A1 + Ag) (a1 — as)).
Here, to derive the first equality we used the double-angle formula to I(7, s,)
and added +2e¥(-2MFA2)(ar+a2) in 2\ (a; — ay) to I(sg, 5455) and I(sgs,,
Sa8554) Tespectively, and for the second equality we added Fie?M1FA2)(a1+a2)
cos(A1 + A2)(a; — ag) sin(A; — A\2)(a; — ag) to the first and the third terms in
(12) respectively.
Now let
m(\) = sin® Ay sin® Ay sin®(\; — \y).

Clearly, m is W-invariant. Since A = 4\je1 + 4 ges, m(IA) = —64iA 1 a(A —
A2) and thus, it follows from (3) that

m(A)D(exp H)¢x(exp H)
(. sin? \
= E Sln2 )\1 )\2 2 SIHQ()\l _ )\2)
" (2i81n(/\1 — Ao)(a1 — a2)e2z’()\1+/\2)(a1+a2)81n Ai(ar + ap) sin Ag(as — )

Al — Ao /\1

_ piOA) (a1 +az) S 21 (a1 — ag) sin 3(\; — A2) (a1 + as)

Al )\1 _ )\2

+2Sin()\1 - )\2)((11 - a2>6—i(/\1—2/\2)(a1+a2)81n 3)\1 (a1 —+ a2)

Al — Ao N

X cos(A1 + A2)(a; — ag)).



10 TAKESHI KAWAZOE AND JIANMING LIU

We see that
sin? \y
A2
is the value at 4\, of the one dimensional Fourier transform of —isgn y times
the characteristic function of {y | |y| < 1} and

sinc(A; — A2) (a1 F ag) sindA;(ay £ as)
AL — Ao At

is the Fourier transform of 4 times the characteristic function of a compact set
{(z,y) | ly| < |%(a1Fa2)], |z+y| < |4(a1£as)|}. As Fourier multipliers, other
terms correspond to translations of these characteristic functions. Hence
we can easily deduce that B(S, H) satisfies the condition of Corollary 3.5.
Therefore, M,, is a Fourier multiplier of type (VA 00).
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