
Abstract. In this paper, we consider the relation existing between the solutions of the
following differential inclusions: (I) ẋ ∈ Γ(t, x), x(0) = 0 and (II) ẋ ∈ ext Γ(t, x), x(0) = 0
defined on a reflexive separable Banach space. In particular, we establish the sufficient
conditions which guarantee the set of solutions of (II) is dense in the set of solutions of
(I) with respect to the (weak) uniformly continuous topology.

Let (X, ∥ · ∥) be a real reflexive separable Banach space and T be a positive real number.
Let Γ : [0, T ] × X ↠ X be a correspondence (=multi-valued function). We consider a
relation existing between the sets of solutions of the following differential inclusions:

(I) ẋ ∈ Γ(t, x), x(0) = 0, and
(II) ẋ ∈ ext Γ(t, x), x(0) = 0,

where extA stands for the weak-closure of the extreme points of A. By a solution of (I) and
(II), we mean an absolutely continuous function x : [0, T ] → X that satisfies ẋ ∈ Γ(t, x(t))
a.e. in t ∈ [0, T ] and x(0) = 0 in the case of (I) and ẋ ∈ ext Γ(t, x(t)) a.e. in t ∈ [0, T ]
and x(0) = 0 in the case of (II). We denote by R and R∗ the set solutions of (I) and
(II) respectively. Tateishi [5, 6] established the existence of solutions of the differential
inclusions (I) under the following assumptions:

(i) Γ is nonempty and weakly compact-valued, i.e., Γ(t, x) is nonempty and weakly com-
pact for each (t, x) ∈ [0, T ]× X,

(ii) for each fixed t ∈ [0, T ], the correspondence t↠ Γ(t, x) is continuous with respect to
the weak topology for X,

(iii) for each fixed x ∈ X, the correspondence t↠ Γ(t, x) is measurable, and
(iv) there exists M > 0 such that sup{∥y∥ | y ∈ Γ(t, x), t ∈ [0, T ], x ∈ X} ≤M .

Furthermore, Tateishi [6, 7] examined the relations existing between the solutions set of
(I) and (III): ẋ ∈ co Γ(t, x), x(0) = 0. The aim of this paper is to establish the relation
between the sets of solutions (I) and (II). Bressan [1, 2] established the existence of solutions
of both of the problems and obtained the closure result R = R∗ in the case that X is a
finite dimensional space. In this paper, we generalize his theorem to infinite dimensional
spaces.
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1. Preliminaries

In this section, we offer some notations and lemmata used in this paper.
Let (X, ∥·∥) be a reflexive separable Banach space with X∗ its dual. We denote by Xw the

space X endowed with the weak topology. Let S = {x ∈ X | ∥x∥ ≤ max(MT,M)} where
M and T are constants which appear in the Introduction section. The set S endowed with
the relative topology of Xw is denoted by Sw. The following proposition is from Larman
and Rogers [4, Theorem 2].

Proposition 1. Let E be a Hausdorff locally convex topological vector space. Let X be a
metrizable compact subset of E. Let V be the linear subspace generated by the set coX.
Then it is possible to introduce a norm on V so that the relative topologies of coX, as a
subset of E, and as a subset of the normed space V , coincide.

Xw is a Hausdorff locally convex topological vector space and Sw is a metrizable and
compact subset of Xw. Furthermore, the linear subspace generated by Sw is the whole
space X. Hence, we can, by the above proposition, introduce a norm ∥ · ∥w on Xw so
that the topology on Sw and the relative topology as a subset of the normed vector space
(X, ∥ · ∥w) coincide.

We denote by h the Hausdorff distance on Sw induced by ∥ · ∥w, that is, h(A,A′) =
max{supx∈A′ d(x,A), supx∈A d(x,A

′)} for any closed subsets A,A′ of Sw, where d(x,A) =
inf{∥x− y∥w | y ∈ A}. For A ⊂ S and α > 0, we set B[A,α] = {x ∈ S | d(x,A) < α}. We
denote by µ, the Lebesgue measure defined on the interval [0, T ].

Lemma 1. Let (X, ∥·∥) be a normed linear space and Γ : X ↠ X be convex, compact-valued
and continuous. Then the map ext Γ : X ↠ X is lower hemi-continuous.

Proof. Let x0, y0 ∈ X with y0 ∈ ext Γ(x0) and {xn} be a sequence which converges to x0. We
must show that for some subsequence xn′ of xn and some yn′ ∈ ext Γ(xn′), we have yn′ → y0.
Since Γ is continuous, there exists a sequence yn ∈ Γ(xn) such that yn → y0. Since Γ is
compact and convex-valued, the Krein-Milman theorem implies that Γ(xn) = co ext Γ(xn).
Hence, for each n ∈ N, there exists αi

n ≥ 0,
∑

i α
i
n = 1 (i ∈ N), where only finitely many αi

n

are not equal to zero, and zin ∈ ext Γ(xn) such that ∥yn −
∑

i α
i
nz

i
n∥ ≤ 1/n. Let yin ∈ Γ(x0)

be such that ∥zin − yin∥ ≤ h(Γ(xn),Γ(x0)), where h is the Hausdorff metric defined by
∥ · ∥. Since Γ(x0) is compact, there exist, for each fixed i, converging subsequences yin′

to yi0 and αi
n′ to αi

0. Then
∑

i α
i
0y

i
0 = y0 and since y0 is an extreme point of Γ(x0), we

have each yi0 is equal to y0 for all i with αi
0 > 0. Let i∗ be such that αi∗

0 > 0. Then
lim supn′ ∥zi∗n′ − y0∥ ≤ lim supn′ ∥zi∗n′ − yi

∗
n′∥ + lim supn′ ∥yi∗n′ − y0∥ = 0. Hence yn′ also

converges to y0 and this completes the proof. □
Lemma 2. Let F : [0, T ] × Xw ↠ Xw be lower hemi-continuous and V ⊂ Xw be open.

Then the correspondence H : [0, T ] × Xw ↠ Xw defined by H(t, x) = F (t, x) ∩ V is lower
hemi-continuous, where A stands for the closure with respect to the weak topology of X.

Proof. Let K be a weakly closed subset of X. Then we have the following implications:

H(t, x) ⊂ K ⇔ F (t, x) ∩ V ⊂ K ⇔ F (t, x) ⊂ K ∪ V c.
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Since K ∪ V c is weakly closed and F is lower hemi-continuous, the set {(t, x) | H(t, x) ⊂
K} = {(t, x) | F (t, x) ⊂ K ∪ V c} is closed in [0, T ] × Xw. It follows that H is lower
hemi-continuous. □
Lemma 3. Let I0 ⊂ [0, T ] be a measurable set with µ(I0) = σ and let M and ϵ be given
positive real numbers. Then the solution ψ : [0, T ] → R of the differential equation

(1) ψ̇(t) = ψ(t) + 2MχI0(t) + 4ϵ, ψ(0) = 0

is positive, monotonically increasing and satisfies the following inequality:

ψ(T ) ≤ 2MσeT + 4ϵ(eT − 1).

Proof. It is easy to verify that the solution ψ is positive and monotonically increasing. By
calculating the solution ψ of (1) directly, we obtain

ψ(T ) = 2M ·
∫ T

0
χI0(s)e

(T−s)ds+ 4ϵ

∫ T

0
e(T−s)ds ≤ 2MσeT + 4ϵ(eT − 1).

□

2. Main Theorem

Theorem 1. Let Γ : [0, T ]× X ↠ X be a correspondence which satisfies the conditions:

(i) Γ is convex and weakly compact-valued, that is Γ(t, x) is convex and weakly compact
for each (t, x) ∈ [0, T ]× X,

(ii) Γ is continuous, where X is endowed with the weak topology.
(iii) h(Γ(t, x),Γ(t, y)) ≤ ∥x− y∥w, and
(iv) there exists M > 0 such that sup{∥y∥ | y ∈ Γ(t, x), t ∈ [0, T ], x ∈ X} ≤M .

Then R = R∗, that is the set of solutions of (II) is dense in the set of solutions of (I) with
respect to the (weak) uniform convergence topology.

Proof. Step 1. Let v be a solution of (I) and let ϵ be a positive real number. Then there
exists, an open subset I0 of [0, T ] with µ(I0) < ϵ such that, for all t ∈ I1 = [0, T ] ∩ Ic0, v̇(t)
exists and lies in Γ(t, v(t)), and the restriction v̇ |I1 of v̇ to I1 is continuous. We may also
assume that [0, τ0] ⊂ I0 for some τ0 > 0.

Step 2. Let M be the set of {u, τ} of an absolutely continuous mapping u and a
positive constant 0 ≤ τ ≤ T such that u is defined on the closed interval [0, τ ] and satisfies
u̇ ∈ ext Γ(t, u(t)) a.e. in t ∈ [0, τ ], u(0) = 0,

(2) ∥u(τ)− v(τ)∥w ≤ ψ(τ), and

(3) ∥u(t)− v(t)∥w ≤ ψ(t) + 2Mϵ for all t ∈ [0, τ ],

where ψ is a solution of (1).
Step 3. Since [0, τ0] ⊂ I0, the pair {u, τ0} for every solution u of (II) satisfies the above

properties, thus the set M is nonempty. Let us define a partial ordering ≾M on M by
(u1, τ1) ≾M (u2, τ2) ⇔ τ1 ≤ τ2 and u2 is an extension of u1. Then Zorn’s lemma implies
that there exists a maximal element (u∗, τ∗) of M.



Step 4. Since ϵ > 0 is arbitrary, the equations (2) and (3) imply that the solution u∗ of
(II) can be arbitrarily near to the solution v with respect to the (weak) uniform convergence
topology on [0, τ∗]. In the following two steps, we show that τ∗ obtained in Step 3 equals
T . In this step, we consider the case τ∗ ∈ I0. Then, since I0 is open, there exists a positive
number δ such that [τ∗, τ∗ + δ] ⊂ I0. Then, we have an absolutely continuous function
w : [τ∗, τ∗+ δ] → X satisfying ẇ(t) ∈ ext Γ(t, w(t)) for t ∈ [τ∗, τ∗+ δ], w(τ∗) = u∗(τ∗). Let
us define w∗ : [0, τ∗ + δ] → X by

w∗(t) =

{
u∗(t) for t ∈ [0, τ∗]
w(t) for t ∈ [τ∗, τ∗ + δ].

Then, for t ∈ [τ∗, τ∗ + δ], we obtain the estimation:

∥w∗(t)− v(t)∥w

≤ ∥w∗(τ∗)− v(τ∗)∥w +

∫ t

τ∗
∥ẇ∗(s)− v̇(s)∥wds

≤ ∥w∗(τ∗)− v(τ∗)∥w +

∫ t

τ∗
2MχI0(s)ds

≤ ψ(τ∗) +

∫ t

τ∗
ψ̇(s)ds = ψ(t),

where the first inequality is an immediate consequence of the fundamental theorem of
calculus, and the second follows from assumption (iv) and the third from (2) and the
definition of ψ. Thus w∗ belongs to M, which contradicts the maximality of u∗.

Step 5. In this step, we consider the case τ∗ ∈ I1. By assumption (iii) and (2), we
have y∗ ∈ Γ(τ∗, u∗(τ∗)) such that ∥y∗ − v̇(τ∗)∥w ≤ ψ(τ∗). Since v̇∗ |I1 is continuous by
assumption and ext Γ : I1 × Xw ↠ Xw is lower hemi-continuous by Lemma 1, we have a
positive constant 0 < δ ≤ ϵ such that ∥v̇∗(t)− v̇∗(τ)∥w < ϵ for t ∈ I1 ∩ [τ∗, τ∗ + δ], and

(4) ext Γ(τ∗, u∗(τ∗)) ⊂ B[ext Γ(t, x), ϵ] for t ∈ [τ∗, τ∗ + δ] and x ∈ B[u∗(τ∗),Mδ].

By the Krein-Milman theorem, we have: y∗ ∈ Γ(τ∗, u∗(τ∗)) = co ext Γ(τ∗, u∗(τ∗)),
where co stands for the closed convex hull of A. Thus we obtain, for any ϵ > 0, finite
points y1, y2, . . . , ym in ext Γ(τ∗, u∗(τ∗)) and nonnegative real numbers λ1, λ2, . . . , λm with∑m

i=1 λi = 1 such that ∥y∗ −
∑

i λiyi∥w < ϵ. Then we obtain, by Lyapunov’s convexity
theorem, a set of m measurable partition J0, J1, . . . , Jm such that t < s for t ∈ Ji, s ∈ Jj
with i < j,∪iJi = I1 ∩ [τ∗, τ∗ + δ], and µ(Ji) = λiµ(I1 ∩ [τ∗, τ∗ + δ]). For t ∈ [τ∗, τ∗ + δ],
we set

H(t, x) =

{
ext Γ(t, x) if t ∈ I0
ext Γ(t, x) ∩B[yi, ϵ] if t ∈ Ji.

Then by (4), yi ∈ ext Γ(τ∗, u∗(τ∗)) ⊂ B[ext Γ(t, x), ϵ] for i = 1, 2, . . . ,m, t ∈ [τ∗, τ∗ + δ],
and x ∈ B[u∗(τ∗),Mδ]. It follows that ext Γ(t, x) ∩B[yi, ϵ] ̸= ∅ and hence, H(t, x) ̸= ∅ for
such pair (t, x). In view of Lemma 2, the restriction of H to each of the product spaces
I0 × B[u∗(τ),Mδ] and Ji × B[u∗(τ),Mδ] is lower hemi-continuous. Thus H is almost
lower hemi-continuous and we have an absolutely continuous function uδ : [τ∗, τ∗ + δ] →
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X satisfying the following conditions: uδ(τ
∗) = u∗(τ∗), and u̇δ(t) ∈ H(t, uδ(t)) a.e. in

[τ∗, τ∗ + δ] (see, e.g., Deimling [3,Theorem 9.3]). Let us define w∗ : [0, τ∗ + δ] → X by

w∗(t) =

{
u∗(t) for t ∈ [0, τ∗]
uδ(t) for t ∈ [τ∗, τ∗ + δ].

Then, w∗ can be seen to be an element of M as follows. First, we verify that w∗ satisfies
the condition (2) for τ = τ∗+ δ. Setting I∗0 = I0∩ [τ∗, τ∗+ δ], I∗1 = I1∩ [τ∗, τ∗+ δ], we have

∥w∗(τ∗ + δ)− v(τ∗ + δ)∥w

≤ ∥w∗(τ∗)− v(τ∗)∥w + ∥
∫ τ∗+δ

τ∗
[u̇δ(t)− v̇(t)]dt∥w

≤ ψ(τ∗) +

∫
I∗0

∥u̇δ(t)− v̇(t)∥wdt+ ∥
m∑
i=1

∫
Ji

u̇δ(t)dt−
∫
I∗1

v̇(t)dt∥w

≤ ψ(τ∗) + 2Mµ(I∗0 ) +
m∑
i=1

∫
Ji

∥u̇δ(t)− yi∥wdt+ µ(I∗1 )∥
m∑
i=1

λiyi − y∗∥w

+ δ∥y∗ − v̇(τ∗)∥w + ϵµ(I∗1 )

≤ ψ(τ∗) + 2Mµ(I∗0 ) + 4ϵµ(I∗1 ) + δ∥y∗ − v̇(τ∗)∥w

≤ ψ(τ∗) +

∫ τ∗+δ

τ∗
(2MχI0(t) + 4ϵt)dt+ δψ(τ∗) ≤ ψ(τ∗ + δ),

where the first inequality is a consequence of the fundamental theorem of calculus. In the
second inequality, the interval [τ∗, τ∗ + δ] splits into I∗0 and I∗1 . The third inequality uses
the relation µ(Ji) = λiµ(I

∗
1 ).

Let us now turn to the condition (3): for each t with τ∗ ≤ t ≤ τ∗ + δ, we have

∥w∗(t)− v(t)∥w

≤ ∥w∗(τ∗)− v(τ∗)∥w + 2M(t− τ)

≤ ψ(τ∗) + 2Mϵ

≤ ψ(t) + 2Mϵ.

Step 6. Since w∗ belongs to M, u∗ is not a maximal element of M, which is a contra-
diction. Thus we conclude that u∗ is defined on the whole interval [0, T ].

Step 7. We have shown, in the above various steps, that, for each solution v of differ-
ential inclusion (II) and each ϵ > 0, there exists a solution u∗ of the differential inclusion
(I) such that ∥u∗(t)− v(t)∥w ≤ ψ(t) + 2Mϵ for all t ∈ [0, T ] and hence

sup
t∈[0,T ]

∥u∗(t)− v(t)∥w

≤ ψ(t) + 2Mϵ

≤ ϵ(2MeT + 4(eT − 1) + 2M).

Since ϵ > 0 is arbitrary, this completes the proof of Theorem 1.
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