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Abstract. In this paper, we show norm inequalities related to the matrix geometric
mean of negative power for positive definite matrices: For positive definite matrices A
and B,
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for every unitarily invariant norm and −1 ≤ β ≤ − 1
2
, where the β-quasi geometric

mean A \β B is defined by A \β B = A
1
2 (A− 1

2 BA− 1
2 )βA

1
2 . For our purposes, we show

the Ando-Hiai log-majorization of negative power.

1 Introduction. Let Mn = Mn(C) be the algebra of n×n complex matrices and denote
the matrix absolute value of any A ∈ Mn by |A| = (A∗A)

1
2 . For A ∈ Mn, we write A ≥ 0

if A is positive semidefinite and A > 0 if A is positive definite, that is, A is positive and
invertible. For two Hermitian matrices A and B, we write A ≥ B if A − B ≥ 0, and
it is called the Löwner ordering. A norm |||·||| on Mn is said to be unitarily invariant if
|||UXV ||| = |||X||| for all X ∈ Mn and unitary U, V .

Let A and B be two positive definite matrices. The arithmetic-geometric mean inequality
says that

(1.1) A ]α B ≤ (1 − α)A + αB for all α ∈ [0, 1],

where the α-geometric mean A ]α B is defined by

A ]α B = A
1
2

(
A− 1

2 BA− 1
2

)α

A
1
2 for all α ∈ [0, 1],

also see [11]. As another matrix geometric mean, we recall that the chaotic geometric mean
A ♦α B is defined by

A ♦α B = e(1−α) log A+α log B for all α ∈ R,

also see [5, Section 3.5]. If A and B commute, then A ♦α B = A ]α B = A1−αBα for
α ∈ [0, 1]. In [4], Bhatia and Grover showed precise norm estimations of the arithmetic-
geometric mean inequality (1.1) as follows: For each α ∈ [0, 1] and any unitarily invariant
norm |||·|||

|||A ]α B||| ≤ |||A ♦α B||| ≤
∣∣∣∣∣∣B α

2 A1−αB
α
2
∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣∣∣∣∣12 (

A1−αBα + BαA1−α
)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣A1−αBα

∣∣∣∣∣∣ ≤ |||(1 − α)A + αB|||
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and

|||A ]α B||| ≤ |||A ♦α B|||

≤
∣∣∣∣∣∣∣∣∣∣∣∣(B

αp
2 A(1−α)pB

αp
2

) 1
p

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣((1 − α)Ap + αBp)
1
p

∣∣∣∣∣∣∣∣∣ for all p > 0.

For convenience in symbolic expression, we define A \β B for β ∈ [−1, 0) and positive
definite matrices A,B as follows:

(1.2) A \β B = A
1
2 (A− 1

2 BA− 1
2 )βA

1
2 for all β ∈ [−1, 0),

whose formula is the same as ]α. Though A \β B for β ∈ [−1, 0) are not matrix means
in the sense of Kubo-Ando theory [11], it is known in [7] that A \β B have matrix mean
like properties for any positive definite matrices A and B. Thus we call (1.2) the β-quasi
geometric mean for β ∈ [−1, 0). For more detail, see [7].

On the other hand, the following reverse arithmetic-geometric mean inequality holds:

(1 − β)A + βB ≤ A \β B for all β ∈ [−1, 0),

also see [8]. Though we have no relation among A \β B, A ♦β B and A1−βBβ for β ∈ [−1, 0)
under the Löwner ordering, it follows from a proof similar to Bhatia-Grover’s one in [4] that
for each β ∈ R and any unitarily invariant norm |||·|||

(1.3) |||A ♦β B||| ≤
∣∣∣∣∣∣∣∣∣B β

2 A1−βB
β
2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣∣∣∣12 (
A1−βBβ + BβA1−β

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣A1−βBβ
∣∣∣∣∣∣ .

Also, by the Lie-Trotter formula limt→0

(
e

t
2 BetAe

t
2 B

) 1
t

= eA+B and the Araki-Cordes

inequality |||BtAtBt||| ≤ |||(BAB)t||| for all t ∈ [0, 1], also see [3, Exercise IX.1.5,Theorem
IX.2.10], it follows that for each β ∈ [−1, 0)

(1.4) |||A ♦β B||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣(B

βq
2 A(1−β)qB

βq
2

) 1
q

∣∣∣∣∣∣∣∣∣∣∣∣
holds for all q > 0 and

∣∣∣∣∣∣∣∣∣∣∣∣(B
βq
2 A(1−β)qB

βq
2

) 1
q

∣∣∣∣∣∣∣∣∣∣∣∣ decreases to |||A ♦β B||| as q ↓ 0. It is natural

to ask what is the estimate of the β-quasi geometric mean in the norm inequalities (1.3)
and (1.4) for β ∈ [−1, 0).

In this paper, we show norm inequalities related to the β-quasi geometric mean of
negative power, the chaotic geometric mean A ♦β B and A1−βBβ for positive definite
matrices A, B. Moreover, we show precise norm estimations of the reverse arithmetic-
geometric mean inequality under the assumption A ≥ B. For our purposes, we need the
Ando-Hiai log-majorization of negative power.

2 Preliminaries. In this section, we have some preliminary results on the log majoriza-
tion of matrices. For Hermitian matrices H,K the weak majorization H ≺w K means
that

k∑
i=1

λi(H) ≤
k∑

i=1

λi(K) for k = 1, 2, . . . , n,

where λ1(H) ≥ · · · ≥ λn(H) and λ1(K) ≥ · · · ≥ λn(K) are the eigenvalues of H and K
respectively. Further, the majorization H ≺ K means that H ≺w K and the equality holds
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for k = n in the above, i.e., TrH = TrK. For A,B ≥ 0 let us write A ≺w(log) B and refer
to the weak log majorization if

k∏
i=1

λi(A) ≤
k∏

i=1

λi(B) for k = 1, 2, . . . , n.

Further the log majorization A ≺(log) B means that A ≺w(log) B and the equality holds for
k = n in the above, i.e.,

n∏
i=1

λi(A) =
n∏

i=1

λi(B) i.e., det A = det B.

Note that when A, B > 0 the log majorization A ≺(log) B is equivalent to log A ≺ log B. It
is known that for positive semidefinite A,B ≥ 0,

A ≺w(log) B =⇒ A ≺w B =⇒ |||A||| ≤ |||B|||

for any unitarily invariant norm. See [1, 12] for theory of majorization for matrices.
For each matrix X and k = 1, 2, . . . , n, let Ck(X) denote the k-fold antisymmetric tensor

power of X. See [12] for details. Then (1)-(3) below are basic facts, (4) is easily seen from
(2) and (3), and (5) follows from the Binet-Cauchy theorem.

Lemma 2.1. (1) Ck(X∗) = Ck(X)∗.

(2) Ck(XY ) = Ck(X)Ck(Y ) for every pair of matrices X,Y .

(3) Ck(X−1) = Ck(X)−1 for nonsingular X.

(4) Ck(Ap) = Ck(A)p for every positive definite A > 0 and all p ∈ R \ {0}.

(5) For every A > 0,
∏k

i=1 λi(A) = λ1(Ck(A)) for k = 1, 2, . . . , n and consequently, for
A,B > 0, λ1(Ck(A)) ≤ λ1(Ck(B)) for all k = 1, . . . , n if and only if A ≺w(log) B.

3 Ando-Hiai Log-Majorization of negative power. For 0 ≤ α ≤ 1, the matrix α-
geometric mean is the matrix mean corresponding to the matrix monotone function tα. Note
that A ]α B = B ]1−α A and if AB = BA then A ]α B = A1−αBα, and (A,B) 7→ A ]α B
is jointly monotone, also see [5, Lemma 3.2].

On the other hand, the β-quasi geometric mean for β ∈ [−1, 0) has the following prop-
erties in [7]; for any positive definite matrices A,B and C

(i) consistency with scalars: If A and B commute, then A \β B = A1−βBβ .

(ii) homogeneity: (αA) \β (αB) = α(A\β B) for all α > 0.

(iii) right reverse monotonicity: B ≤ C implies A \β B ≥ A \β C.

We recall the log-majorization theorem due to Ando-Hiai [2]: For each α ∈ [0, 1]

Ar ]α Br ≺(log) (A ]α B)r for r ≥ 1,

or equivalently
(Ap ]α Bp)

1
p ≺(log) (Aq ]α Bq)

1
q for 0 < q < p.

To show the main theorem related to the β-quasi geometric mean for β ∈ [−1, 0), we need
the following Ando-Hiai log-majorization of negative power β ∈ [−1, 0):
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Theorem 3.1. For every positive definite matrices A, B > 0 and β ∈ [−1, 0),

(3.1) Ar \β Br ≺(log) (A \β B)r for all 0 < r ≤ 1

or equivalently

(3.2) (A \β B)r ≺(log) (Ar \β Br) for all r ≥ 1,

(3.3) (Aq \β Bq)
1
q ≺(log) (Ap \β Bp)

1
p for all 0 < q ≤ p.

Proof. The equivalence of (3.1)-(3.3) is immediate. It is easy to see by Lemma 2.1 that for
k = 1, . . . , n

Ck(Ar \β Br) = Ck(A)r \β Ck(B)r

and
Ck((A \β B)r) = (Ck(A) \β Ck(B))r.

Also,
det(Ar \β Br) = (det A)r(1−β)(detB)rβ = det(A \β B)r.

Hence, in order to prove (3.1), it suffices to show that

(3.4) λ1(Ar \β Br) ≤ λ1(A \β B)r for all 0 < r ≤ 1.

For this purpose we may prove that A \β B ≤ I implies Ar \β Br ≤ I, because both sides
of (3.4) have the same order of homogeneity for A, B, so that we can multiply A, B by a
positive constant.

First let us assume 1
2 ≤ r ≤ 1 and write r = 1 − ε with 0 ≤ ε ≤ 1

2 . Let C = A
1
2 B−1A

1
2 .

Then B−1 = A− 1
2 CA− 1

2 and A \β B = A
1
2 C−βA

1
2 . If A \β B ≤ I, then C−β ≤ A−1 so

that A ≤ Cβ and Aε ≤ Cβε for 0 ≤ ε ≤ 1
2 by Löwner-Heinz inequality. Since −β ∈ (0, 1]

and 1 − ε ∈ [12 , 1], we now get

Ar \β Br = A
1−ε
2 (A

ε−1
2 B1−εA

ε−1
2 )βA

1−ε
2

= A
1−ε
2 (A

1−ε
2 (B−1)1−εA

1−ε
2 )−βA

1−ε
2

= A
1−ε
2 (A

1−ε
2 (A− 1

2 CA− 1
2 )1−εA

1−ε
2 )−βA

1−ε
2

= A
1−ε
2 (A− ε

2 [A ]1−ε C]A− ε
2 )−βA

1−ε
2

= A
1
2−ε[Aε ]−β (A ]1−ε C)]A

1
2−ε

≤ A
1
2−ε[Cβε ]−β (Cβ ]1−ε C)]A

1
2−ε,

using the joint monotonicity of matrix geometric means. Since a direct computation yields

Cβε ]−β (Cβ ]1−ε C) = Cβ(2ε−1)

and by Löwner-Heinz inequality and 0 ≤ 1 − 2ε ≤ 1, C−α ≤ A−1 implies C−β(1−2ε) ≤
A−(1−2ε) and thus we get

Ar \β Br ≤ A
1
2−εCβ(2ε−1)A

1
2−ε ≤ A

1
2−εA−1+2εA

1
2−ε = I.

Therefore (3.4) is proved in the case of 1
2 ≤ r ≤ 1.
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When 0 < r < 1
2 , writing r = 2−k(1 − ε) with k ∈ N and 0 ≤ ε ≤ 1

2 , and repeating the
argument above we have

λ1(Ar \β Br) ≤ λ1(A2−(k−1)(1−ε) \β B2−(k−1)(1−ε))
1
2

...

≤ λ1(A1−ε \β B1−ε)2
−k

≤ λ1(A \β B)r

and so the proof is complete.

By Theorem 3.1, we have the following results:

Theorem 3.2. Let A and B be positive definite matrices and |||·||| any unitarily invariant
norm, and β ∈ [−1, 0). If f is a continuous non-decreasing function on [0,∞) such that
f(0) ≥ 0 and f(et) is convex, then

|||f(Ar \β Br)||| ≤ |||f((A \β B)r)||| for all 0 < r ≤ 1.

In particular,
|||Ar \β Br||| ≤ |||(A \β B)r||| for all 0 < r ≤ 1

or equivalently
|||(A \β B)r||| ≤ |||(Ar \β Br)||| for all r ≥ 1,∣∣∣∣∣∣∣∣∣(Aq \β Bq)

1
q

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣(Ap \β Bp)
1
p

∣∣∣∣∣∣∣∣∣ for all 0 < q ≤ p.

Proof. By [9, Proposition 4.4.13], if A ≺w(log) B for positive definite matrices A and B
and f is a continuous non-decreasing function on [0,∞) such that f(0) ≥ 0 and f(et) is
convex, then f(A) ≺w f(B) and so |||f(A)||| ≤ |||f(B)|||. Hence Theorem 3.2 follows from
Theorem 3.1.

Corollary 3.3. For every positive definite matrices A,B > 0 and β ∈ [−1, 0),

A \β B ≤ I implies Ar \β Br ≤ I for all 0 < r ≤ 1.

4 Norm inequalities for quasi geometric mean. In this section, we show the main
norm inequalities related to the quasi geometric mean for positive definite matrices. By [5,
Lemma 5.5], we have the following quasi-geometric mean version of the Lie-Trotter formula:
If A and B are positive definite matrices, then for each β ∈ [−1, 0)

(4.1) A ♦β B = lim
p→0

(Ap \β Bp)
1
p

and so for each β ∈ [−1, 0)
∣∣∣∣∣∣∣∣∣(Ap \β Bp)

1
p

∣∣∣∣∣∣∣∣∣ decreases to |||A ♦β B||| as p ↓ 0. Hence we have
the following norm inequality for the quasi geometric mean of negative power:

Theorem 4.1. Let A and B be positive definite matrices. Then for every unitarily invariant
norm

|||A ♦β B||| ≤ |||A \β B||| for all β ∈ [−1, 0).
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Proof. By Theorem 3.2, it follows that∣∣∣∣∣∣∣∣∣(Aq \β Bq)
1
q

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣(Ap \β Bp)
1
p

∣∣∣∣∣∣∣∣∣ for all 0 < q < p

and as q → 0 and p = 1 we have the desired inequality by (4.1).

Theorem 4.2. Let A and B be positive definite matrices. Then for every unitarily invariant
norm

(4.2) |||A \β B||| ≤
∣∣∣∣∣∣A1−βBβ

∣∣∣∣∣∣ for all β ∈ [−1,−1
2 ].

Proof. For the matrix norm ||·||, by the Araki-Cordes inequality ||BtAtBt|| ≤ ||(BAB)t|| for
all t ∈ [0, 1], we have for −1 ≤ β ≤ − 1

2

||A \β B|| =
∣∣∣∣∣∣A 1

2 (A− 1
2 BA− 1

2 )βA
1
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣A 1
2 (A

1
2 B−1A

1
2 )−βA

1
2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣A− 1
2β A

1
2 B−1A

1
2 A− 1

2β

∣∣∣∣∣∣−β

by 1
2 ≤ −β ≤ 1

=
∣∣∣∣∣∣A β−1

2β B−1A
β−1
2β

∣∣∣∣∣∣−β

≤
∣∣∣∣A1−βB2βA1−β

∣∣∣∣ 1
2 for 1

2 ≤ − 1
2β ≤ 1

=
∣∣∣∣∣∣(A1−βB2βA1−β)

1
2

∣∣∣∣∣∣
and this implies

λ1(A \β B) ≤ λ1((A1−βB2βA1−β)
1
2 ) = λ1(|BβA1−β |).

Replacing A and B by (5) of Lemma 2.1, we obtain

k∏
i=1

λi(A \β B) ≤
k∏

i=1

λi(|BβA1−β |) for k = 1, . . . , n.

Hence we have the weak log majorization A \β B ≺w(log)

∣∣BβA1−β
∣∣ and this implies

|||A \β B||| ≤
∣∣∣∣∣∣∣∣BβA1−β

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣BβA1−β

∣∣∣∣∣∣ =
∣∣∣∣∣∣A1−βBβ

∣∣∣∣∣∣
for every unitarily invariant norm and so we have the desired inequality (4.2).

Remark 4.3. In Theorem 4.2, the inequality |||A \β B||| ≤
∣∣∣∣∣∣A1−βBβ

∣∣∣∣∣∣ does not always hold

for −1/2 < β < 0. In fact, if we put β = −1
3 , A =

(
2 1
1 2

)
and B =

(
2 1
1 1

)
, then we have

the matrix norm
∣∣∣∣∣∣A \− 1

3
B

∣∣∣∣∣∣ = 3.385 and
∣∣∣∣∣∣A 4

3 B− 1
3

∣∣∣∣∣∣ = 3.375, and so ||A \β B|| >
∣∣∣∣A1−βBβ

∣∣∣∣.
Theorem 4.4. Let A and B be positive definite matrices. Then for every unitarily invariant
norm

(4.3) |||A ♦β B||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣(B

βq
2 A(1−β)qB

βq
2

) 1
q

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ |||A \β B||| for 0 < q ≤ 1
2 and β ∈ [−1, 0)

and

(4.4) |||A \β B||| ≤
∣∣∣∣∣∣A1−βBβ

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣∣∣∣(B
βp
2 A(1−β)pB

βp
2

) 1
p

∣∣∣∣∣∣∣∣∣∣∣∣ for p ≥ 2 and β ∈ [−1,− 1
2 ].
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Proof. Since the first inequality in (4.3) follows from the Lie-Trotter formula (4.1), we show
the second inequality in (4.3). By Theorem 3.2, we have

∣∣∣∣∣∣∣∣∣(Ar \β Br)
1
r

∣∣∣∣∣∣∣∣∣ ≤ |||A \β B||| for all

0 < r ≤ 1. For the matrix norm ||·||, by the Araki-Cordes inequality ||(BAB)t|| ≤ ||BtAtBt||
for all t ≥ 1, we have for 0 < r ≤ 1

||A \β B|| ≥ ||Ar \β Br||
1
r

= ||Br \1−β Ar||
1
r

=
∣∣∣∣B r

2 (B− r
2 ArB− r

2 )1−βB
r
2
∣∣∣∣ 1

r

≥
∣∣∣∣∣∣B βr

2(1−β) ArB
βr

2(1−β)

∣∣∣∣∣∣ 1−β
r

by 0 < 1
1−β < 1

≥
∣∣∣∣∣∣B βr

4 A
(1−β)r

2 B
βr
4

∣∣∣∣∣∣ 2
r

by 1
2 < 1−β

2 ≤ 1.

If we put q = r
2 , then we have

∣∣∣∣∣∣∣∣(B
βq
2 A(1−β)qB

βq
2

) 1
q

∣∣∣∣∣∣∣∣ ≤ ||A \β B|| for 0 < q ≤ 1
2 and this

implies

λ1(
(
B

βq
2 A(1−β)qB

βq
2

) 1
q

) ≤ λ1(A \β B).

Replacing A and B by (5) of Lemma 2.1, we obtain

k∏
i=1

λ1(
(
B

βq
2 A(1−β)qB

βq
2

) 1
q

) ≤
k∏

i=1

λ1(A \β B) for k = 1, . . . , n,

which gives the second inequality in (4.3).
Next, for s ≥ 1, it follows from Theorem 3.2 that |||A \β B||| ≤

∣∣∣∣∣∣∣∣∣(As \β Bs)
1
s

∣∣∣∣∣∣∣∣∣. For the
matrix norm ||·||, we have

||A \β B|| ≤ ||As \β Bs||
1
s

=
∣∣∣∣A s

2 (A
s
2 B−sA

s
2 )−βA

s
2
∣∣∣∣ 1

s

≤
∣∣∣∣∣∣A−(1−β)s

2β B−sA
−(1−β)s

2β

∣∣∣∣∣∣− β
s

by 1
2 ≤ −β ≤ 1

≤
∣∣∣∣∣∣A(1−β)sB2βsA(1−β)s

∣∣∣∣∣∣ 1
2s

by 1
2 ≤ − 1

2β ≤ 1.

If we put p = 2s, then we have

||A \β B|| ≤
∣∣∣∣∣∣A (1−β)p

2 BβpA
(1−β)p

2

∣∣∣∣∣∣ 1
p

= spr(A
(1−β)p

2 BβpA
(1−β)p

2 )
1
p

= spr(B
βp
2 A(1−β)pB

βp
2 )

1
p

=
∣∣∣∣∣∣B βp

2 A(1−β)pB
βp
2

∣∣∣∣∣∣ 1
p

=
∣∣∣∣∣∣∣∣(B

βp
2 A(1−β)pB

βp
2

) 1
p

∣∣∣∣∣∣∣∣
for p ≥ 2, where spr(X) is the spectral radius of X. By the argument similar to above, we
have the inequality (4.4).
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Let A and B be positive definite matrices in Mn and β ∈ [−1, 0). Since there is the case
that (1−β)A+βB is not positive semidefinite, we have no relation between |||(1 − β)A + βB|||
and |||A \β B||| though (1 − β)A + βB ≤ A \β B. Suppose that A ≥ B. Then (1 − β)Ap +
βBp is positive definite for all p ∈ (0, 1]. In particular 0 < (1 − β)A + βB ≤ A \β B
and so |||(1 − β)A + βB||| ≤ |||A \β B||| for every unitarily invariant norm. Thus under the
assumption A ≥ B, we consider the refinement of this norm inequality. For this, we need
the following result due to J. I. Fujii [6]: A real valued continuous function f on an interval
J is matrix concave if and only if

(4.5) f((1 − β)H + βK) ≤ (1 − β)f(H) + βf(K)

for all Hermitian matrices H and K with σ(H), σ(K) and σ((1 − β)H + βK) ⊂ J and
β ∈ [−1, 0).

Let 0 < q < p ≤ 1. Then the function f(t) = t
q
p on [0,∞) is matrix concave and by

(4.5)

(4.6) ((1 − β)Ap + βBp)
q
p ≤ (1 − β)Aq + βBq.

Note that (1 − β)Ap + βBp > 0 for all p ∈ (0, 1] since A ≥ B. This implies that

λi ((1 − β)Ap + βBp)
q
p ≤ λi ((1 − β)Aq + βBq) for all i = 1, . . . , n.

Taking q-th roots of both sides, we obtain

λi ((1 − β)Ap + βBp)
1
p ≤ λi ((1 − β)Aq + βBq)

1
q for all i = 1, . . . , n

and so
∣∣∣∣∣∣∣∣∣((1 − β)Ap + βBp)

1
p

∣∣∣∣∣∣∣∣∣ is a decreasing function of p.
On the other hand, taking the logarithm of both sides in (4.6) and by (4.5), we obtain

log ((1 − β)Ap + βBp)
1
p ≤ 1

q
log ((1 − β)Aq + βBq)

≤ (1 − β) log A + β log B

and this implies

λi

(
log((1 − β)Ap + βBp)

1
p

)
≤ λi ((1 − β) log A + β log B) for all i = 1, . . . , n.

Taking the exponent of both sides, we obtain

λi ((1 − β)Ap + βBp)
1
p ≤ λi

(
e(1−β) log A+β log B

)
for all i = 1, . . . , n

and so ∣∣∣∣∣∣∣∣∣((1 − β)Ap + βBp)
1
p

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣e(1−β) log A+β log B
∣∣∣∣∣∣∣∣∣

for all p ∈ (0, 1]. Summing up, we obtain the following result:

Theorem 4.5. Let A and B be positive definite matrices in Mn such that A ≥ B and
β ∈ [−1, 0). Then for every unitarily invariant norm

|||(1 − β)A + βB||| ≤
∣∣∣∣∣∣∣∣∣((1 − β)Ap + βBp)

1
p

∣∣∣∣∣∣∣∣∣ ≤ |||A ♦β B||| ≤ |||A \β B|||

for all p ∈ (0, 1].
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Finally, as an application, we show a refinement of the generalized Golden-Thompson
inequality in terms of the quasi geometric means. Let H and K be Hermitian matrices.
The Golden-Thompson trace inequality is

Tr[eH+K ] ≤ Tr[eHeK ].

Hiai-Petz [10] proved the complemented Golden-Thompson inequality:∣∣∣∣∣∣eH ]α eK
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣e(1−α)H+αK

∣∣∣∣∣∣∣∣∣ for all α ∈ [0, 1]

for every unitarily invariant norm. By Theorem 4.1 and Theorem 4.2, we have a refinement
of the Golden-Thompson inequality in terms of the quasi geometric means:∣∣∣∣∣∣∣∣∣e(1−β)H+βK

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣eH \β eK
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣e(1−β)HeβK

∣∣∣∣∣∣∣∣∣
for all β ∈ [−1,− 1

2 ] and so

Tr[eH+K ] ≤ Tr[e
1

1−β H \β e
1
β K ] ≤ Tr[eHeK ].

In particular, if we put α = 1
2 and β = −1

2 , then we have

Tr[e2H ] 1
2

e2K ] ≤ Tr[eH+K ] ≤ Tr[e
2
3 H \− 1

2
e−2K ] ≤ Tr[eHeK ].
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