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ABSTRACT. In this paper, we show norm inequalities related to the matrix geometric
mean of negative power for positive definite matrices: For positive definite matrices A
and B,

Jeo-nmssssms < vass s < s

for every unitarily invariant norm and —1 < § < f%, where the (-quasi geometric

mean A iz B is defined by A g B = Az (Af%BAfé)BA%. For our purposes, we show
the Ando-Hiai log-majorization of negative power.

1 Introduction. Let M,, = M, (C) be the algebra of n x n complex matrices and denote
the matrix absolute value of any A € M, by |A| = (A*A)2. For A € M,,, we write A >0
if A is positive semidefinite and A > 0 if A is positive definite, that is, A is positive and
invertible. For two Hermitian matrices A and B, we write A > B if A — B > 0, and
it is called the Lowner ordering. A norm |-|| on M, is said to be unitarily invariant if
IUXV| = || X]|| for all X € M,, and unitary U, V.

Let A and B be two positive definite matrices. The arithmetic-geometric mean inequality
says that

(1.1) Aty B<(1—a)A+aB for all « € [0, 1],
where the a-geometric mean A f, B is defined by
At, B= A3 (A‘%BA‘%)QA% for all a € [0, 1],

also see [11]. As another matrix geometric mean, we recall that the chaotic geometric mean
A $, B is defined by
A Oy B=ell-®logAtaloe B 51 g]] o € R,

also see [5, Section 3.5]. If A and B commute, then A {, B = A §, B = A'7“B* for
«a € [0,1]. In [4], Bhatia and Grover showed precise norm estimations of the arithmetic-
geometric mean inequality (1.1) as follows: For each « € [0, 1] and any unitarily invariant
norm |

IA ta Bl < A Ga Bl < ||BEABE||

1 l—-a pa a pl—a
SH‘Q(A B* 4+ B*A'"%)
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and
IA g Bll < |A Ca B

1
< m (B%AU—WB%) "Il < m((l — )AP + aBP)7

for all p > 0.

For convenience in symbolic expression, we define A g B for § € [—1,0) and positive
definite matrices A, B as follows:

(1.2) Aty B=A3(A"2BA 2)PA% forall B € [-1,0),

whose formula is the same as #,. Though A g B for 3 € [-1,0) are not matrix means
in the sense of Kubo-Ando theory [11], it is known in [7] that A g B have matrix mean
like properties for any positive definite matrices A and B. Thus we call (1.2) the §-quasi
geometric mean for § € [—1,0). For more detail, see [7].

On the other hand, the following reverse arithmetic-geometric mean inequality holds:

(1-BA+BB< Aty B forall Be[-1,0),

also see [8]. Though we have no relation among A i3 B, A {5 B and A*~? B for 3 € [-1,0)
under the Lowner ordering, it follows from a proof similar to Bhatia-Grover’s one in [4] that
for each § € R and any unitarily invariant norm ||-||

8 _ 8
(13) 140 Bl <||BFA* 75"

1 -6ps . ps -8 1-6 o
< ||z e ) < ).

1
Also, by the Lie-Trotter formula lim; . (e%BetAe%B> " = eAtB and the Araki-Cordes

inequality |B*A'B'|| < |[(BAB)!|| for all ¢t € [0,1], also see [3, Exercise IX.1.5, Theorem
IX.2.10], it follows that for each 8 € [—1,0)

Ba (1 Ba\ 3
(1.49) 140, B < | (5¥40-715%)

1

(a0’

to ask what is the estimate of the 3-quasi geometric mean in the norm inequalities (1.3)
and (1.4) for g € [-1,0).

In this paper, we show norm inequalities related to the [-quasi geometric mean of
negative power, the chaotic geometric mean A {5 B and A'~PBP for positive definite
matrices A, B. Moreover, we show precise norm estimations of the reverse arithmetic-
geometric mean inequality under the assumption A > B. For our purposes, we need the
Ando-Hiai log-majorization of negative power.

holds for all ¢ > 0 and decreases to ||A Op Bl as ¢ | 0. It is natural

2 Preliminaries. In this section, we have some preliminary results on the log majoriza-
tion of matrices. For Hermitian matrices H, K the weak majorization H <, K means

that
k

k
SONH) <D N(E) fork=1,2,...,m,

i=1

i=1
where \{(H) > -+ > A\, (H) and A\ (K) > -+ > X\, (K) are the eigenvalues of H and K
respectively. Further, the majorization H < K means that H <,, K and the equality holds



NORM INEQUALITIES RELATED TO THE MATRIX GEOMETRIC MEAN OF NEGATIVE POWER 3

for k = n in the above, i.e., TrH = TrK. For A, B > 0 let us write A <,,(10g) B and refer
to the weak log majorization if

k k
H/\i(A)SH)‘i(B) for k=1,2,...,n.
i=1

=1

Further the log majorization A <(jog) B means that A <, (10g) B and the equality holds for
k = n in the above, i.e.,

[[2A) =]]X(B) ie, detA=detB.

Note that when A, B > 0 the log majorization A <(j,g) B is equivalent to log A < log B. It
is known that for positive semidefinite A, B > 0,

A <uog) B= A <w B=>||A]| < ||B]

for any unitarily invariant norm. See [1, 12] for theory of majorization for matrices.

For each matrix X and k = 1,2,...,n, let Cx(X) denote the k-fold antisymmetric tensor
power of X. See [12] for details. Then (1)-(3) below are basic facts, (4) is easily seen from
(2) and (3), and (5) follows from the Binet-Cauchy theorem.

Lemma 2.1. (1) Cp(X™*) = Cr(X)*.

(2) Cr(XY) = Cr(X)Cr(Y) for every pair of matrices X,Y .

(3) Cr(X~Y) = Cp(X)~t for nonsingular X.
(4) Cr(AP) = Cy(A)P for every positive definite A > 0 and all p € R\ {0}.
(5)

5) For every A > 0, Hle Ai(A) = M (Cr(A)) for k =1,2,...,n and consequently, for
A, B >0, M (Cr(A)) < M (C(B)) for all k =1,...,n if and only if A <y 10g) B-

3 Ando-Hiai Log-Majorization of negative power. For 0 < a < 1, the matrix a-
geometric mean is the matrix mean corresponding to the matrix monotone function t*. Note
that A, B =B #;_o A and if AB = BA then A §, B = A'"“B% and (4,B) — A f, B
is jointly monotone, also see [5, Lemma 3.2].

On the other hand, the (-quasi geometric mean for 5 € [—1,0) has the following prop-
erties in [7]; for any positive definite matrices A, B and C

(i) consistency with scalars: If A and B commute, then A fig B = A'=#BF.
(ii) homogeneity: (aAd) bg (aB) = a(Afz B) for all a > 0.
(iii) right reverse monotonicity: B < C implies A fjg B> Atz C.
We recall the log-majorization theorem due to Ando-Hiai [2]: For each « € [0, 1]
A" fa B" <(10g) (A ta B)" for r > 1,

or equivalently
(AP fa BP)? <(iog) (AT o BY)w  for 0 <q<p.

To show the main theorem related to the -quasi geometric mean for § € [—1,0), we need
the following Ando-Hiai log-majorization of negative power 8 € [—1,0):
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Theorem 3.1. For every positive definite matrices A, B > 0 and € [—1,0),
(3.1) A" 4z B” = (10g) (Atg B)" forall0<r <1
or equivalently

(32) (A hg B)T <(10g) (AT hﬁ BT) for all r Z 1,

(3.3) (A% 15 BY)7 <(0g) (AP g BP)?  for all0 < q < p.

Proof. The equivalence of (3.1)-(3.3) is immediate. It is easy to see by Lemma 2.1 that for
k=1,....n
Cr(A" s B") = Ci(A)" 1 Cr(B)"

and
Cr((A g B)") = (Ck(A) 15 Ck(B))".

Also,
det(A" tig B") = (det A)"=#)(det B)™P = det(A tig B)".

Hence, in order to prove (3.1), it suffices to show that
(3.4) M(A" g B") < M(A g B)" forall 0 <r <1.

For this purpose we may prove that A g B < I implies A" g B" < I, because both sides
of (3.4) have the same order of homogeneity for A, B, so that we can multiply A, B by a
positive constant.

First let us assume % <r<landwriter=1—cwith0<e< % Let C = A2 B~ 1A3.
Then B~' = A~2CA 2 and Ay B= A2CPA2. If Aty B <1, then CF < A' s0
that A < CP and A= < CPefor 0 < e < % by Lowner-Heinz inequality. Since —f € (0, 1]
and 1 —¢ € [%,1], we now get

A" 4y B = A7 (A7 B A% )B
T (B)EATE) A
T(ATECATE) AT )P
ATS[A G, OJATE)PAE
At g (At O)AT

1

O b (CF e O)]AZTE,

2

A
AT (4
A?(
A
Az
Az

2

—E

M\»—A

w\»—-

IN

using the joint monotonicity of matrix geometric means. Since a direct computation yields
ol t_g (C’ﬁ f1_. C) = B(2e-1)

and by Lowner-Heinz inequality and 0 < 1 —2¢ < 1, 0~ < A~ implies C—A#(1-2) <
A~(1=29) and thus we get

A" hﬁ B < A%—acﬁ(%—l)A < Af_EA 1+25A——5 _

Therefore (3.4) is proved in the case of % <r<l.
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When 0 < r < %, writing r = 27%(1 —¢) with k € Nand 0 < ¢ < %, and repeating the
argument above we have

M(AT 15 BT) < M (A2 V079 gy g2t 00y

< )\1(A1_€ s BI_E)Tk
<M(Atfg B)
and so the proof is complete. O
By Theorem 3.1, we have the following results:

Theorem 3.2. Let A and B be positive definite matrices and ||| any unitarily invariant
norm, and B € [—1,0). If f is a continuous non-decreasing function on [0,00) such that
f(0) >0 and f(e) is convex, then

If (A" tg B < |If((A 8g B)")l for all0 <r < 1.

In particular,
1A™ s B" < lI(A s B)"l ~ forall0<r<1

or equivalently

I(A s B)l <I(A"4g BN forallr >1,

H‘(Aq 45 Bq)% for all 0 < g <p.

< [ 50 2

Proof. By [9, Proposition 4.4.13], if A <,,10g) B for positive definite matrices A and B
and f is a continuous non-decreasing function on [0,00) such that f(0) > 0 and f(e') is
convex, then f(A) <, f(B) and so ||f(A)| < | f(B)|. Hence Theorem 3.2 follows from
Theorem 3.1. 0

Corollary 3.3. For every positive definite matrices A, B > 0 and 3 € [—1,0),

Atg B<I implies A" g B" <I forall0<r <1

4 Norm inequalities for quasi geometric mean. In this section, we show the main
norm inequalities related to the quasi geometric mean for positive definite matrices. By [5,
Lemma 5.5], we have the following quasi-geometric mean version of the Lie-Trotter formula:
If A and B are positive definite matrices, then for each 3 € [—1,0)

(4.1) A Op B = lim (A 1 Br)»
p*)

and so for each § € [-1,0) ’H(A” s B”)%
the following norm inequality for the quasi geometric mean of negative power:

decreases to ||A $s B as p | 0. Hence we have

Theorem 4.1. Let A and B be positive definite matrices. Then for every unitarily invariant
norm

A s Bl <[lAts Bl forall 5 € [~1,0).
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Proof. By Theorem 3.2, it follows that

iz 502

15 BY)7

and as ¢ — 0 and p = 1 we have the desired inequality by (4.1). O

forall0<g<p

Theorem 4.2. Let A and B be positive definite matrices. Then for every unitarily invariant
norm

(4.2) |4 85 B| < ||A*"B?|| for all B € [-1,—3].

Proof. For the matrix norm |-|, by the Araki-Cordes inequality |B*A*B*| < |(BAB)!| for
all t € [0,1], we have for -1 <3< —1

S

|Atg B| = |Az(A"2BA %)

= |A2(A2B'42)F

1 1 1 1 76
<||[A"26A2B 1Az A %

-8B

by

N|—=
IA
|
sy
IA
—_

B—1 B—1
=||A"F B™1A7

<[AFBPAAE for b <L <1

= ||(AP B APz

and this implies
M(A i B) < M((A7PB2PATP)7) = A (|1BP A7),
Replacing A and B by (5) of Lemma 2.1, we obtain

k
H (Abg B H (|BPAYP)) fork=1,...,n
i=1

S

Hence we have the weak log majorization A iz B <y (10g) |B?A'~"| and this implies
1485 Bl < [||B7A7] = [| B2A™2]| = [|A™7 B7|
for every unitarily invariant norm and so we have the desired inequality (4.2). O

Remark 4.3. In Theorem 4.2, the inequality [|A s B| < ||A*~#B? m does not always hold

for —1/2 < 3 <0. Infact,ifweputﬂz—é,Az(? ; and B = ? i),thenwehave

the matrix norm HA Y BH =3.385and |A3 B3 |A s B| > ||A*=FBP|.

Theorem 4.4. Let A and B be positive definite matrices. Then for every unitarily invariant
norm

Bq %
(4.3) |A $p B| < H‘ AU=Pap7 ) <||Ats Bl for0<q< % and 8 € [-1,0)

and

@) 14 Bl <[la 5 < ||(5¥ a0 5E) | forp>2 wmape 1o
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Proof. Since the first inequality in (4.3) follows from the Lie-Trotter formula (4.1), we show
the second inequality in (4.3). By Theorem 3.2, we have W(AT i3 BT)% B|| for all

0 < r < 1. For the matrix norm ||, by the Araki-Cordes inequality |(BAB)!| < |B*A'B?|
for all t > 1, we have for 0 < r <1

1
|Ats Bl > [A" 45 B"|"
=[B" s A"|"

7

=|B*(B~3A"B~%)""PB3

1-8
> HBﬁA*BﬁH Tobyo< <l

2
T

a-gr 5)7“

> |BF At by 3 <58 <1,

< |Ats B| for 0 < g < % and this

1
If we put ¢ = %, then we have (B%A(l_ﬂ)qB%> !

implies
1
Al((B”“A (1- BMB%) ") < M(A s B).
Replacing A and B by (5) of Lemma 2.1, we obtain

1

k k
Hxl( Fp0-5 ) H (Ats B) fork=1,....n
=1 =1

which gives the second inequality in (4.3).
Next, for s > 1, it follows from Theorem 3.2 that |A g B < H‘(AS s BS)%‘H. For the

matrix norm |-|, we have

|Ats Bl <A 4 B*|

= ||A§(A%B*SA§)*

(1 ﬁ)b

= ] BT ATE by 3<-A<1
_ _ 35
< HA(l B)s g2Bs 4(1-P)s byl<-L<1
If we put p = 2s, then we have
1415 Bl < |4 e s
_ spr(A< 2ﬁ)pBBpA(172ﬁ)p)%
= spr(BF A-PrBFY;
oot

“ BPA(l ﬁpBﬂp)%

for p > 2, where spr(X) is the spectral radius of X. By the argument similar to above, we
have the inequality (4.4) O
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Let A and B be positive definite matrices in M,, and 8 € [—1,0). Since there is the case
that (1—3) A+ 3B is not positive semidefinite, we have no relation between ||(1 — 8)A + 8B
and ||A g B|| though (1 — 3)A+ 5B < A g B. Suppose that A > B. Then (1 — 3)AP +
BBP? is positive definite for all p € (0,1]. In particular 0 < (1 — 5)A+ 8B < Atg B
and so ||(1 — B)A+ BB| < ||A tg B for every unitarily invariant norm. Thus under the
assumption A > B, we consider the refinement of this norm inequality. For this, we need
the following result due to J. I. Fujii [6]: A real valued continuous function f on an interval
J is matrix concave if and only if

(4.5) f(1=P)H + BK) < (1 - 8)f(H) + Bf(K)

for all Hermitian matrices H and K with o(H),o(K) and o((1 — 8)H + K) C J and
B8 €[-1,0).

Let 0 < ¢ < p < 1. Then the function f(¢) = t» on [0,00) is matrix concave and by
(4.5)

(4.6) ((1— B)AP + BBP)# < (1 — B)AY + 3BY.
Note that (1 — 8)AP + 8B? > 0 for all p € (0,1] since A > B. This implies that
X (1= B)AP + BBP)% < \; ((1— B)AY+ BBY) foralli=1,... n.

Taking ¢-th roots of both sides, we obtain

=
Q=

A (1= PB)AP + 8BP)?» < \; ((1 — B)A? 4+ 5BY) foralli=1,...,n

and so m((l — B)AP + ﬂBP)% H’ is a decreasing function of p.
On the other hand, taking the logarithm of both sides in (4.6) and by (4.5), we obtain
1 1
log (1 - B)A? + BB")7 < 610g (1-p)A*+3B7)
<(1-p)logA+ BlogB

and this implies
A (log((l —B)AP + ﬂBP)%) <Ni((1—B)log A+ BlogB) foralli=1,...,n.
Taking the exponent of both sides, we obtain
A (1 B)AP + BBP)» < ), (eﬂ—ﬂ) 1°gA+51°gB) foralli=1,...,n

and so
(@ -par+pB)2

< me(l—ﬁ) logA+ﬁlogBm

for all p € (0,1]. Summing up, we obtain the following result:

Theorem 4.5. Let A and B be positive definite matrices in M,, such that A > B and
8 € [—1,0). Then for every unitarily invariant norm

10— /A+ 58] < [|((1-8)4» + 5Br)?

<A $s Bl <A ts Bl

for all p € (0,1].
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Finally, as an application, we show a refinement of the generalized Golden-Thompson
inequality in terms of the quasi geometric means. Let H and K be Hermitian matrices.
The Golden-Thompson trace inequality is

Tr[ef K] < Tr[ef eX).
Hiai-Petz [10] proved the complemented Golden-Thompson inequality:

lle™ ta || < [l K] for ana e [o,1]

for every unitarily invariant norm. By Theorem 4.1 and Theorem 4.2, we have a refinement
of the Golden-Thompson inequality in terms of the quasi geometric means:

H’e(l—ﬁ)HJrﬂKW < |”eH » eK||| < ”’e(l—ﬁ)HeﬂK”‘

for all 8 € [~1,—1] and so
Tr[efT5] < Tr[eﬁH i3 e%K] < Tr[efeX].

In particular, if we put a = % and 0 = —%, then we have

Tr[e*H i1 K] < Tr[ef K] < Tr[e%H 11 e 2K < Tr[efeX].
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