NORM INEQUALITIES RELATED TO THE MATRIX GEOMETRIC MEAN OF NEGATIVE POWER

Mohsen Kian* and Yuki Seo**

Received February 12, 2018; revised March 27, 2018

Abstract

In this paper, we show norm inequalities related to the matrix geometric mean of negative power for positive definite matrices: For positive definite matrices A and B, $$
\left\|e^{(1-\beta) \log A+\beta \log B}\right\| \leq \| A \text { Ł }_{\beta} B\|\leq\| A^{1-\beta} B^{\beta} \|
$$ for every unitarily invariant norm and $-1 \leq \beta \leq-\frac{1}{2}$, where the β-quasi geometric mean $A \natural_{\beta} B$ is defined by $A \natural_{\beta} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\beta} A^{\frac{1}{2}}$. For our purposes, we show the Ando-Hiai log-majorization of negative power.

1 Introduction. Let $\mathbb{M}_{n}=\mathbb{M}_{n}(\mathbb{C})$ be the algebra of $n \times n$ complex matrices and denote the matrix absolute value of any $A \in \mathbb{M}_{n}$ by $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$. For $A \in \mathbb{M}_{n}$, we write $A \geq 0$ if A is positive semidefinite and $A>0$ if A is positive definite, that is, A is positive and invertible. For two Hermitian matrices A and B, we write $A \geq B$ if $A-B \geq 0$, and it is called the Löwner ordering. A norm $\|\cdot\| \|$ on \mathbb{M}_{n} is said to be unitarily invariant if $\|U X V\|=\|X\|$ for all $X \in \mathbb{M}_{n}$ and unitary U, V.

Let A and B be two positive definite matrices. The arithmetic-geometric mean inequality says that

$$
\begin{equation*}
A \sharp_{\alpha} B \leq(1-\alpha) A+\alpha B \quad \text { for all } \alpha \in[0,1] \text {, } \tag{1.1}
\end{equation*}
$$

where the α-geometric mean $A \not \sharp_{\alpha} B$ is defined by

$$
A \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \quad \text { for all } \alpha \in[0,1] \text {, }
$$

also see [11]. As another matrix geometric mean, we recall that the chaotic geometric mean $A \diamond_{\alpha} B$ is defined by

$$
A \diamond_{\alpha} B=e^{(1-\alpha) \log A+\alpha \log B} \quad \text { for all } \alpha \in \mathbb{R}
$$

also see [5, Section 3.5]. If A and B commute, then $A \diamond_{\alpha} B=A \not \sharp_{\alpha} B=A^{1-\alpha} B^{\alpha}$ for $\alpha \in[0,1]$. In [4], Bhatia and Grover showed precise norm estimations of the arithmeticgeometric mean inequality (1.1) as follows: For each $\alpha \in[0,1]$ and any unitarily invariant norm $|\mid \cdot \|$

$$
\begin{aligned}
\left\|A \sharp_{\alpha} B\right\| & \leq\left\|A \diamond_{\alpha} B\right\| \leq\left\|B^{\frac{\alpha}{2}} A^{1-\alpha} B^{\frac{\alpha}{2}}\right\| \\
& \leq\left\|\frac{1}{2}\left(A^{1-\alpha} B^{\alpha}+B^{\alpha} A^{1-\alpha}\right)\right\| \leq\left\|A^{1-\alpha} B^{\alpha}\right\| \leq\|(1-\alpha) A+\alpha B\|
\end{aligned}
$$

[^0]and
\[

$$
\begin{aligned}
\left\|A \sharp_{\alpha} B\right\| & \leq\left\|A \diamond_{\alpha} B\right\| \\
& \leq\left\|\left(B^{\frac{\alpha p}{2}} A^{(1-\alpha) p} B^{\frac{\alpha p}{2}}\right)^{\frac{1}{p}}\right\| \leq\left\|\left((1-\alpha) A^{p}+\alpha B^{p}\right)^{\frac{1}{p}}\right\| \quad \text { for all } p>0 .
\end{aligned}
$$
\]

For convenience in symbolic expression, we define $A \natural_{\beta} B$ for $\beta \in[-1,0)$ and positive definite matrices A, B as follows:

$$
\begin{equation*}
A \natural_{\beta} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\beta} A^{\frac{1}{2}} \quad \text { for all } \beta \in[-1,0), \tag{1.2}
\end{equation*}
$$

whose formula is the same as \sharp_{α}. Though $A \natural_{\beta} B$ for $\beta \in[-1,0)$ are not matrix means in the sense of Kubo-Ando theory [11], it is known in [7] that $A \natural_{\beta} B$ have matrix mean like properties for any positive definite matrices A and B. Thus we call (1.2) the β-quasi geometric mean for $\beta \in[-1,0)$. For more detail, see [7].

On the other hand, the following reverse arithmetic-geometric mean inequality holds:

$$
(1-\beta) A+\beta B \leq A দ_{\beta} B \quad \text { for all } \beta \in[-1,0),
$$

also see [8]. Though we have no relation among $A \natural_{\beta} B, A \diamond_{\beta} B$ and $A^{1-\beta} B^{\beta}$ for $\beta \in[-1,0)$ under the Löwner ordering, it follows from a proof similar to Bhatia-Grover's one in [4] that for each $\beta \in \mathbb{R}$ and any unitarily invariant norm $\|\cdot\|$

$$
\begin{equation*}
\left\|A \diamond_{\beta} B\right\| \leq\left\|B^{\frac{\beta}{2}} A^{1-\beta} B^{\frac{\beta}{2}}\right\| \leq\left\|\frac{1}{2}\left(A^{1-\beta} B^{\beta}+B^{\beta} A^{1-\beta}\right)\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\| \tag{1.3}
\end{equation*}
$$

Also, by the Lie-Trotter formula $\lim _{t \rightarrow 0}\left(e^{\frac{t}{2} B} e^{t A} e^{\frac{t}{2} B}\right)^{\frac{1}{t}}=e^{A+B}$ and the Araki-Cordes inequality $\left\|B^{t} A^{t} B^{t}\right\| \leq\left\|(B A B)^{t}\right\|$ for all $t \in[0,1]$, also see [3, Exercise IX.1.5, Theorem IX.2.10], it follows that for each $\beta \in[-1,0)$

$$
\begin{equation*}
\left\|A \diamond_{\beta} B\right\| \leq\left\|\left(B^{\frac{\beta q}{2}} A^{(1-\beta) q} B^{\frac{\beta q}{2}}\right)^{\frac{1}{q}}\right\| \tag{1.4}
\end{equation*}
$$

holds for all $q>0$ and $\left\|\left\|\left(B^{\frac{\beta q}{2}} A^{(1-\beta) q} B^{\frac{\beta q}{2}}\right)^{\frac{1}{q}}\right\|\right.$ decreases to $\| A \diamond_{\beta} B \|$ as $q \downarrow 0$. It is natural to ask what is the estimate of the β-quasi geometric mean in the norm inequalities (1.3) and (1.4) for $\beta \in[-1,0)$.

In this paper, we show norm inequalities related to the β-quasi geometric mean of negative power, the chaotic geometric mean $A \diamond_{\beta} B$ and $A^{1-\beta} B^{\beta}$ for positive definite matrices A, B. Moreover, we show precise norm estimations of the reverse arithmeticgeometric mean inequality under the assumption $A \geq B$. For our purposes, we need the Ando-Hiai log-majorization of negative power.

2 Preliminaries. In this section, we have some preliminary results on the \log majorization of matrices. For Hermitian matrices H, K the weak majorization $H \prec_{w} K$ means that

$$
\sum_{i=1}^{k} \lambda_{i}(H) \leq \sum_{i=1}^{k} \lambda_{i}(K) \quad \text { for } k=1,2, \ldots, n
$$

where $\lambda_{1}(H) \geq \cdots \geq \lambda_{n}(H)$ and $\lambda_{1}(K) \geq \cdots \geq \lambda_{n}(K)$ are the eigenvalues of H and K respectively. Further, the majorization $H \prec K$ means that $H \prec_{w} K$ and the equality holds
for $k=n$ in the above, i.e., $\operatorname{Tr} H=\operatorname{Tr} K$. For $A, B \geq 0$ let us write $A \prec_{w(\log)} B$ and refer to the weak \log majorization if

$$
\prod_{i=1}^{k} \lambda_{i}(A) \leq \prod_{i=1}^{k} \lambda_{i}(B) \quad \text { for } k=1,2, \ldots, n
$$

Further the \log majorization $A \prec_{(\log)} B$ means that $A \prec_{w(\log)} B$ and the equality holds for $k=n$ in the above, i.e.,

$$
\prod_{i=1}^{n} \lambda_{i}(A)=\prod_{i=1}^{n} \lambda_{i}(B) \quad \text { i.e., } \quad \operatorname{det} A=\operatorname{det} B
$$

Note that when $A, B>0$ the \log majorization $A \prec_{(\log)} B$ is equivalent to $\log A \prec \log B$. It is known that for positive semidefinite $A, B \geq 0$,

$$
A \prec_{w(\log)} B \Longrightarrow A \prec_{w} B \Longrightarrow\|A\| \leq\|B\|
$$

for any unitarily invariant norm. See $[1,12]$ for theory of majorization for matrices.
For each matrix X and $k=1,2, \ldots, n$, let $C_{k}(X)$ denote the k-fold antisymmetric tensor power of X. See [12] for details. Then (1)-(3) below are basic facts, (4) is easily seen from (2) and (3), and (5) follows from the Binet-Cauchy theorem.

Lemma 2.1. (1) $C_{k}\left(X^{*}\right)=C_{k}(X)^{*}$.
(2) $C_{k}(X Y)=C_{k}(X) C_{k}(Y)$ for every pair of matrices X, Y.
(3) $C_{k}\left(X^{-1}\right)=C_{k}(X)^{-1}$ for nonsingular X.
(4) $C_{k}\left(A^{p}\right)=C_{k}(A)^{p}$ for every positive definite $A>0$ and all $p \in \mathbb{R} \backslash\{0\}$.
(5) For every $A>0, \prod_{i=1}^{k} \lambda_{i}(A)=\lambda_{1}\left(C_{k}(A)\right)$ for $k=1,2, \ldots, n$ and consequently, for $A, B>0, \lambda_{1}\left(C_{k}(A)\right) \leq \lambda_{1}\left(C_{k}(B)\right)$ for all $k=1, \ldots, n$ if and only if $A \prec_{w(\log)} B$.

3 Ando-Hiai Log-Majorization of negative power. For $0 \leq \alpha \leq 1$, the matrix α geometric mean is the matrix mean corresponding to the matrix monotone function t^{α}. Note that $A \sharp_{\alpha} B=B \sharp_{1-\alpha} A$ and if $A B=B A$ then $A \sharp_{\alpha} B=A^{1-\alpha} B^{\alpha}$, and $(A, B) \mapsto A \not \sharp_{\alpha} B$ is jointly monotone, also see [5, Lemma 3.2].

On the other hand, the β-quasi geometric mean for $\beta \in[-1,0)$ has the following properties in [7]; for any positive definite matrices A, B and C
(i) consistency with scalars: If A and B commute, then $A দ_{\beta} B=A^{1-\beta} B^{\beta}$.
(ii) homogeneity: $(\alpha A) \natural_{\beta}(\alpha B)=\alpha\left(A \natural_{\beta} B\right)$ for all $\alpha>0$.
(iii) right reverse monotonicity: $B \leq C$ implies $A \natural_{\beta} B \geq A \natural_{\beta} C$.

We recall the log-majorization theorem due to Ando-Hiai [2]: For each $\alpha \in[0,1]$

$$
A^{r} \sharp_{\alpha} B^{r} \prec_{(\log)}\left(A \not \sharp_{\alpha} B\right)^{r} \quad \text { for } r \geq 1 \text {, }
$$

or equivalently

$$
\left(A^{p} \sharp_{\alpha} B^{p}\right)^{\frac{1}{p}} \prec_{(\log)}\left(A^{q} \sharp_{\alpha} B^{q}\right)^{\frac{1}{q}} \quad \text { for } 0<q<p .
$$

To show the main theorem related to the β-quasi geometric mean for $\beta \in[-1,0)$, we need the following Ando-Hiai log-majorization of negative power $\beta \in[-1,0)$:

Theorem 3.1. For every positive definite matrices $A, B>0$ and $\beta \in[-1,0)$,

$$
\begin{equation*}
A^{r} দ_{\beta} B^{r} \prec_{(\log)}\left(A \natural_{\beta} B\right)^{r} \quad \text { for all } 0<r \leq 1 \tag{3.1}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
\left(A দ_{\beta} B\right)^{r} \prec_{(\log)}\left(A^{r} দ_{\beta} B^{r}\right) & \text { for all } r \geq 1, \tag{3.2}\\
\left(A^{q} দ_{\beta} B^{q}\right)^{\frac{1}{q}} \prec_{(\log)}\left(A^{p} দ_{\beta} B^{p}\right)^{\frac{1}{p}} & \text { for all } 0<q \leq p . \tag{3.3}
\end{align*}
$$

Proof. The equivalence of (3.1)-(3.3) is immediate. It is easy to see by Lemma 2.1 that for $k=1, \ldots, n$

$$
C_{k}\left(A^{r} \mathfrak{\natural}_{\beta} B^{r}\right)=C_{k}(A)^{r} \natural_{\beta} C_{k}(B)^{r}
$$

and

$$
C_{k}\left(\left(A \natural_{\beta} B\right)^{r}\right)=\left(C_{k}(A) \bigsqcup_{\beta} C_{k}(B)\right)^{r} .
$$

Also,

$$
\operatorname{det}\left(A^{r} দ_{\beta} B^{r}\right)=(\operatorname{det} A)^{r(1-\beta)}(\operatorname{det} B)^{r \beta}=\operatorname{det}\left(A \natural_{\beta} B\right)^{r} .
$$

Hence, in order to prove (3.1), it suffices to show that

$$
\begin{equation*}
\lambda_{1}\left(A^{r} \natural_{\beta} B^{r}\right) \leq \lambda_{1}\left(A \natural_{\beta} B\right)^{r} \quad \text { for all } 0<r \leq 1 \tag{3.4}
\end{equation*}
$$

For this purpose we may prove that $A \natural_{\beta} B \leq I$ implies $A^{r} দ_{\beta} B^{r} \leq I$, because both sides of (3.4) have the same order of homogeneity for A, B, so that we can multiply A, B by a positive constant.

First let us assume $\frac{1}{2} \leq r \leq 1$ and write $r=1-\varepsilon$ with $0 \leq \varepsilon \leq \frac{1}{2}$. Let $C=A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}$. Then $B^{-1}=A^{-\frac{1}{2}} C A^{-\frac{1}{2}}$ and $A \natural_{\beta} B=A^{\frac{1}{2}} C^{-\beta} A^{\frac{1}{2}}$. If $A \natural_{\beta} B \leq I$, then $C^{-\beta} \leq A^{-1}$ so that $A \leq C^{\beta}$ and $A^{\varepsilon} \leq C^{\beta \varepsilon}$ for $0 \leq \varepsilon \leq \frac{1}{2}$ by Löwner-Heinz inequality. Since $-\beta \in(0,1]$ and $1-\varepsilon \in\left[\frac{1}{2}, 1\right]$, we now get

$$
\begin{aligned}
A^{r} \natural_{\beta} B^{r} & =A^{\frac{1-\varepsilon}{2}}\left(A^{\frac{\varepsilon-1}{2}} B^{1-\varepsilon} A^{\frac{\varepsilon-1}{2}}\right)^{\beta} A^{\frac{1-\varepsilon}{2}} \\
& =A^{\frac{1-\varepsilon}{2}}\left(A^{\frac{1-\varepsilon}{2}}\left(B^{-1}\right)^{1-\varepsilon} A^{\frac{1-\varepsilon}{2}}\right)^{-\beta} A^{\frac{1-\varepsilon}{2}} \\
& =A^{\frac{1-\varepsilon}{2}}\left(A^{\frac{1-\varepsilon}{2}}\left(A^{-\frac{1}{2}} C A^{-\frac{1}{2}}\right)^{1-\varepsilon} A^{\frac{1-\varepsilon}{2}}\right)^{-\beta} A^{\frac{1-\varepsilon}{2}} \\
& =A^{\frac{1-\varepsilon}{2}}\left(A^{-\frac{\varepsilon}{2}}\left[A \sharp_{1-\varepsilon} C\right] A^{-\frac{\varepsilon}{2}}\right)^{-\beta} A^{\frac{1-\varepsilon}{2}} \\
& =A^{\frac{1}{2}-\varepsilon}\left[A^{\varepsilon} \sharp-\beta\left(A \not \sharp_{1-\varepsilon} C\right)\right] A^{\frac{1}{2}-\varepsilon} \\
& \leq A^{\frac{1}{2}-\varepsilon}\left[C^{\beta \varepsilon} \sharp_{-\beta}\left(C^{\beta} \sharp_{1-\varepsilon} C\right)\right] A^{\frac{1}{2}-\varepsilon},
\end{aligned}
$$

using the joint monotonicity of matrix geometric means. Since a direct computation yields

$$
C^{\beta \varepsilon} \sharp_{-\beta}\left(C^{\beta} \sharp_{1-\varepsilon} C\right)=C^{\beta(2 \varepsilon-1)}
$$

and by Löwner-Heinz inequality and $0 \leq 1-2 \varepsilon \leq 1, C^{-\alpha} \leq A^{-1}$ implies $C^{-\beta(1-2 \varepsilon)} \leq$ $A^{-(1-2 \varepsilon)}$ and thus we get

$$
A^{r} দ_{\beta} B^{r} \leq A^{\frac{1}{2}-\varepsilon} C^{\beta(2 \varepsilon-1)} A^{\frac{1}{2}-\varepsilon} \leq A^{\frac{1}{2}-\varepsilon} A^{-1+2 \varepsilon} A^{\frac{1}{2}-\varepsilon}=I .
$$

Therefore (3.4) is proved in the case of $\frac{1}{2} \leq r \leq 1$.

When $0<r<\frac{1}{2}$, writing $r=2^{-k}(1-\varepsilon)$ with $k \in \mathbb{N}$ and $0 \leq \varepsilon \leq \frac{1}{2}$, and repeating the argument above we have

$$
\begin{aligned}
\lambda_{1}\left(A^{r} \vdash_{\beta} B^{r}\right) & \leq \lambda_{1}\left(A^{2^{-(k-1)}(1-\varepsilon)} \natural_{\beta} B^{2^{-(k-1)}(1-\varepsilon)}\right)^{\frac{1}{2}} \\
& \vdots \\
& \leq \lambda_{1}\left(A^{1-\varepsilon} দ_{\beta} B^{1-\varepsilon}\right)^{2^{-k}} \\
& \leq \lambda_{1}\left(A \natural_{\beta} B\right)^{r}
\end{aligned}
$$

and so the proof is complete.
By Theorem 3.1, we have the following results:
Theorem 3.2. Let A and B be positive definite matrices and $\|\cdot\| \|$ any unitarily invariant norm, and $\beta \in[-1,0)$. If f is a continuous non-decreasing function on $[0, \infty)$ such that $f(0) \geq 0$ and $f\left(e^{t}\right)$ is convex, then

$$
\| f\left(A^{r} \text { Ł }_{\beta} B^{r}\right)\|\leq\| f\left(\left(A \text { Ł }_{\beta} B\right)^{r}\right) \| \quad \text { for all } 0<r \leq 1 .
$$

In particular,

$$
\left\|A^{r} দ_{\beta} B^{r}\right\| \leq\left\|\left(A \natural_{\beta} B\right)^{r}\right\| \quad \text { for all } 0<r \leq 1
$$

or equivalently

$$
\begin{array}{cc}
\|\left(A\left\llcorner_{\beta} B\right)^{r}\|\leq\|\left(A^{r} দ_{\beta} B^{r}\right) \|\right. & \text { for all } r \geq 1, \\
\left\|\left(A^{q} দ_{\beta} B^{q}\right)^{\frac{1}{q}}\right\|\|\leq\|\left(A^{p} দ_{\beta} B^{p}\right)^{\frac{1}{p}} \| & \text { for all } 0<q \leq p .
\end{array}
$$

Proof. By [9, Proposition 4.4.13], if $A \prec_{w(\log)} B$ for positive definite matrices A and B and f is a continuous non-decreasing function on $[0, \infty)$ such that $f(0) \geq 0$ and $f\left(e^{t}\right)$ is convex, then $f(A) \prec_{w} f(B)$ and so $\|f(A)\| \leq\|f(B)\|$. Hence Theorem 3.2 follows from Theorem 3.1.

Corollary 3.3. For every positive definite matrices $A, B>0$ and $\beta \in[-1,0)$,

$$
A দ_{\beta} B \leq I \quad \text { implies } \quad A^{r} দ_{\beta} B^{r} \leq I \quad \text { for all } 0<r \leq 1 \text {. }
$$

4 Norm inequalities for quasi geometric mean. In this section, we show the main norm inequalities related to the quasi geometric mean for positive definite matrices. By [5, Lemma 5.5], we have the following quasi-geometric mean version of the Lie-Trotter formula: If A and B are positive definite matrices, then for each $\beta \in[-1,0)$

$$
\begin{equation*}
A \diamond_{\beta} B=\lim _{p \rightarrow 0}\left(A^{p} দ_{\beta} B^{p}\right)^{\frac{1}{p}} \tag{4.1}
\end{equation*}
$$

and so for each $\beta \in[-1,0)\left\|\left(A^{p} দ_{\beta} B^{p}\right)^{\frac{1}{p}}\right\|$ decreases to $\left\|A \diamond_{\beta} B\right\|$ as $p \downarrow 0$. Hence we have the following norm inequality for the quasi geometric mean of negative power:

Theorem 4.1. Let A and B be positive definite matrices. Then for every unitarily invariant norm

$$
\left\|A \diamond_{\beta} B\right\| \leq\left\|A দ_{\beta} B\right\| \quad \text { for all } \beta \in[-1,0) \text {. }
$$

Proof. By Theorem 3.2, it follows that

$$
\left\|\left(A^{q} \natural_{\beta} B^{q}\right)^{\frac{1}{q}}\right\| \leq\left\|\left(A^{p} দ_{\beta} B^{p}\right)^{\frac{1}{p}}\right\| \quad \text { for all } 0<q<p
$$

and as $q \rightarrow 0$ and $p=1$ we have the desired inequality by (4.1).

Theorem 4.2. Let A and B be positive definite matrices. Then for every unitarily invariant norm

$$
\begin{equation*}
\left\|A \natural_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\| \quad \text { for all } \beta \in\left[-1,-\frac{1}{2}\right] . \tag{4.2}
\end{equation*}
$$

Proof. For the matrix norm $\|\cdot\|$, by the Araki-Cordes inequality $\left\|B^{t} A^{t} B^{t}\right\| \leq\left\|(B A B)^{t}\right\|$ for all $t \in[0,1]$, we have for $-1 \leq \beta \leq-\frac{1}{2}$

$$
\begin{aligned}
\left\|A \natural_{\beta} B\right\| & =\left\|A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\beta} A^{\frac{1}{2}}\right\| \\
& =\left\|A^{\frac{1}{2}}\left(A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}\right)^{-\beta} A^{\frac{1}{2}}\right\| \\
& \leq\left\|A^{-\frac{1}{2 \beta}} A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}} A^{-\frac{1}{2 \beta}}\right\|^{-\beta} \quad \text { by } \frac{1}{2} \leq-\beta \leq 1 \\
& =\left\|A^{\frac{\beta-1}{2 \beta}} B^{-1} A^{\frac{\beta-1}{2 \beta}}\right\|^{-\beta} \\
& \leq\left\|A^{1-\beta} B^{2 \beta} A^{1-\beta}\right\|^{\frac{1}{2}} \quad \text { for } \frac{1}{2} \leq-\frac{1}{2 \beta} \leq 1 \\
& =\left\|\left(A^{1-\beta} B^{2 \beta} A^{1-\beta}\right)^{\frac{1}{2}}\right\|
\end{aligned}
$$

and this implies

$$
\lambda_{1}\left(A দ_{\beta} B\right) \leq \lambda_{1}\left(\left(A^{1-\beta} B^{2 \beta} A^{1-\beta}\right)^{\frac{1}{2}}\right)=\lambda_{1}\left(\left|B^{\beta} A^{1-\beta}\right|\right)
$$

Replacing A and B by (5) of Lemma 2.1, we obtain

$$
\prod_{i=1}^{k} \lambda_{i}\left(A \natural_{\beta} B\right) \leq \prod_{i=1}^{k} \lambda_{i}\left(\left|B^{\beta} A^{1-\beta}\right|\right) \quad \text { for } k=1, \ldots, n .
$$

Hence we have the weak \log majorization $A \natural_{\beta} B \prec_{w(\log)}\left|B^{\beta} A^{1-\beta}\right|$ and this implies

$$
\left\|A \mathfrak{h}_{\beta} B\right\| \leq\| \| B^{\beta} A^{1-\beta} \mid\| \|=\left\|B^{\beta} A^{1-\beta}\right\|\|=\| A^{1-\beta} B^{\beta} \|
$$

for every unitarily invariant norm and so we have the desired inequality (4.2).
Remark 4.3. In Theorem 4.2, the inequality $\left\|A \natural_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\|$ does not always hold for $-1 / 2<\beta<0$. In fact, if we put $\beta=-\frac{1}{3}, A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, then we have the matrix norm $\left\|A \natural_{-\frac{1}{3}} B\right\|=3.385$ and $\left\|A^{\frac{4}{3}} B^{-\frac{1}{3}}\right\|=3.375$, and so $\left\|A \natural_{\beta} B\right\|>\left\|A^{1-\beta} B^{\beta}\right\|$.
Theorem 4.4. Let A and B be positive definite matrices. Then for every unitarily invariant norm
(4.3) $\left\|A \diamond_{\beta} B\right\| \leq\left\|\left(B^{\frac{\beta q}{2}} A^{(1-\beta) q} B^{\frac{\beta q}{2}}\right)^{\frac{1}{q}}\right\| \leq\left\|A \natural_{\beta} B\right\| \quad$ for $0<q \leq \frac{1}{2}$ and $\beta \in[-1,0)$
and
(4.4) $\quad\left\|A \natural_{\beta} B\right\| \leq\left\|A^{1-\beta} B^{\beta}\right\| \leq \leq\left\|\left(B^{\frac{\beta p}{2}} A^{(1-\beta) p} B^{\frac{\beta p}{2}}\right)^{\frac{1}{p}}\right\| \quad$ for $p \geq 2$ and $\beta \in\left[-1,-\frac{1}{2}\right]$.

Proof. Since the first inequality in (4.3) follows from the Lie-Trotter formula (4.1), we show the second inequality in (4.3). By Theorem 3.2, we have $\left\|\left(A^{r} \natural_{\beta} B^{r}\right)^{\frac{1}{r}}\right\| \leq\left\|A \bigsqcup_{\beta} B\right\|$ for all $0<r \leq 1$. For the matrix norm $\|\cdot\|$, by the Araki-Cordes inequality $\left\|(B A B)^{t}\right\| \leq\left\|B^{t} A^{t} B^{t}\right\|$ for all $t \geq 1$, we have for $0<r \leq 1$

$$
\begin{aligned}
\left\|A \mathfrak{\natural}_{\beta} B\right\| & \geq\left\|A^{r} \mathfrak{\natural}_{\beta} B^{r}\right\|^{\frac{1}{r}} \\
& =\left\|B^{r} দ_{1-\beta} A^{r}\right\|^{\frac{1}{r}} \\
& =\left\|B^{\frac{r}{2}}\left(B^{-\frac{r}{2}} A^{r} B^{-\frac{r}{2}}\right)^{1-\beta} B^{\frac{r}{2}}\right\|^{\frac{1}{r}} \\
& \geq\left\|B^{\frac{\beta r}{2(1-\beta)}} A^{r} B^{\frac{\beta r}{2(1-\beta)}}\right\|^{\frac{1-\beta}{r}} \quad \text { by } 0<\frac{1}{1-\beta}<1 \\
& \geq\left\|B^{\frac{\beta r}{4}} A^{\frac{(1-\beta) r}{2}} B^{\frac{\beta r}{4}}\right\|^{\frac{2}{r}} \quad \text { by } \frac{1}{2}<\frac{1-\beta}{2} \leq 1 .
\end{aligned}
$$

If we put $q=\frac{r}{2}$, then we have $\left\|\left(B^{\frac{\beta q}{2}} A^{(1-\beta) q} B^{\frac{\beta q}{2}}\right)^{\frac{1}{q}}\right\| \leq\left\|A দ_{\beta} B\right\|$ for $0<q \leq \frac{1}{2}$ and this implies

$$
\lambda_{1}\left(\left(B^{\frac{\beta q}{2}} A^{(1-\beta) q} B^{\frac{\beta q}{2}}\right)^{\frac{1}{q}}\right) \leq \lambda_{1}\left(A দ_{\beta} B\right)
$$

Replacing A and B by (5) of Lemma 2.1, we obtain

$$
\prod_{i=1}^{k} \lambda_{1}\left(\left(B^{\frac{\beta q}{2}} A^{(1-\beta) q} B^{\frac{\beta q}{2}}\right)^{\frac{1}{q}}\right) \leq \prod_{i=1}^{k} \lambda_{1}\left(A \natural_{\beta} B\right) \quad \text { for } k=1, \ldots, n,
$$

which gives the second inequality in (4.3).
Next, for $s \geq 1$, it follows from Theorem 3.2 that $\left\|A \natural_{\beta} B\right\| \leq\left\|\left(A^{s} \natural_{\beta} B^{s}\right)^{\frac{1}{s}}\right\|$. For the matrix norm $\|\cdot\|$, we have

$$
\begin{array}{rll}
\left\|A দ_{\beta} B\right\| & \leq\left\|A^{s} দ_{\beta} B^{s}\right\|^{\frac{1}{s}} \\
& =\left\|A^{\frac{s}{2}}\left(A^{\frac{s}{2}} B^{-s} A^{\frac{s}{2}}\right)^{-\beta} A^{\frac{s}{2}}\right\|^{\frac{1}{s}} \\
& \leq\left\|A^{\frac{-(1-\beta) s}{2 \beta}} B^{-s} A^{\frac{-(1-\beta) s}{2 \beta}}\right\|^{-\frac{\beta}{s}} & \text { by } \frac{1}{2} \leq-\beta \leq 1 \\
& \leq\left\|A^{(1-\beta) s} B^{2 \beta s} A^{(1-\beta) s}\right\|^{\frac{1}{2 s}} \quad \text { by } \frac{1}{2} \leq-\frac{1}{2 \beta} \leq 1 .
\end{array}
$$

If we put $p=2 s$, then we have

$$
\begin{aligned}
\left\|A \natural_{\beta} B\right\| & \leq\left\|A^{\frac{(1-\beta) p}{2}} B^{\beta p} A^{\frac{(1-\beta) p}{2}}\right\|^{\frac{1}{p}} \\
& =\operatorname{spr}\left(A^{\frac{(1-\beta) p}{2}} B^{\beta p} A^{\frac{(1-\beta) p}{2}}\right)^{\frac{1}{p}} \\
& =\operatorname{spr}\left(B^{\frac{\beta p}{2}} A^{(1-\beta) p} B^{\frac{\beta p}{2}}\right)^{\frac{1}{p}} \\
& =\left\|B^{\frac{\beta p}{2}} A^{(1-\beta) p} B^{\frac{\beta p}{2}}\right\|^{\frac{1}{p}} \\
& =\left\|\left(B^{\frac{\beta p}{2}} A^{(1-\beta) p} B^{\frac{\beta p}{2}}\right)^{\frac{1}{p}}\right\|
\end{aligned}
$$

for $p \geq 2$, where $\operatorname{spr}(X)$ is the spectral radius of X. By the argument similar to above, we have the inequality (4.4).

Let A and B be positive definite matrices in \mathbb{M}_{n} and $\beta \in[-1,0)$. Since there is the case that $(1-\beta) A+\beta B$ is not positive semidefinite, we have no relation between $\|(1-\beta) A+\beta B\|$ and $\left\|A \natural_{\beta} B\right\|$ though $(1-\beta) A+\beta B \leq A \natural_{\beta} B$. Suppose that $A \geq B$. Then $(1-\beta) A^{p}+$ βB^{p} is positive definite for all $p \in(0,1]$. In particular $0<(1-\beta) A+\beta B \leq A \natural_{\beta} B$ and so $\|(1-\beta) A+\beta B\| \leq\left\|A \natural_{\beta} B\right\|$ for every unitarily invariant norm. Thus under the assumption $A \geq B$, we consider the refinement of this norm inequality. For this, we need the following result due to J. I. Fujii [6]: A real valued continuous function f on an interval J is matrix concave if and only if

$$
\begin{equation*}
f((1-\beta) H+\beta K) \leq(1-\beta) f(H)+\beta f(K) \tag{4.5}
\end{equation*}
$$

for all Hermitian matrices H and K with $\sigma(H), \sigma(K)$ and $\sigma((1-\beta) H+\beta K) \subset J$ and $\beta \in[-1,0)$.

Let $0<q<p \leq 1$. Then the function $f(t)=t^{\frac{q}{p}}$ on $[0, \infty)$ is matrix concave and by (4.5)

$$
\begin{equation*}
\left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{q}{p}} \leq(1-\beta) A^{q}+\beta B^{q} . \tag{4.6}
\end{equation*}
$$

Note that $(1-\beta) A^{p}+\beta B^{p}>0$ for all $p \in(0,1]$ since $A \geq B$. This implies that

$$
\lambda_{i}\left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{q}{p}} \leq \lambda_{i}\left((1-\beta) A^{q}+\beta B^{q}\right) \quad \text { for all } i=1, \ldots, n .
$$

Taking q-th roots of both sides, we obtain

$$
\lambda_{i}\left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{1}{p}} \leq \lambda_{i}\left((1-\beta) A^{q}+\beta B^{q}\right)^{\frac{1}{q}} \quad \text { for all } i=1, \ldots, n
$$

and so $\left\|\left\|\left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{1}{p}}\right\|\right.$ is a decreasing function of p.
On the other hand, taking the logarithm of both sides in (4.6) and by (4.5), we obtain

$$
\begin{aligned}
\log \left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{1}{p}} & \leq \frac{1}{q} \log \left((1-\beta) A^{q}+\beta B^{q}\right) \\
& \leq(1-\beta) \log A+\beta \log B
\end{aligned}
$$

and this implies

$$
\lambda_{i}\left(\log \left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{1}{p}}\right) \leq \lambda_{i}((1-\beta) \log A+\beta \log B) \quad \text { for all } i=1, \ldots, n
$$

Taking the exponent of both sides, we obtain

$$
\lambda_{i}\left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{1}{p}} \leq \lambda_{i}\left(e^{(1-\beta) \log A+\beta \log B}\right) \quad \text { for all } i=1, \ldots, n
$$

and so

$$
\left\|\left\|\left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{1}{p}}\right\| \leq\right\| e^{(1-\beta) \log A+\beta \log B} \|
$$

for all $p \in(0,1]$. Summing up, we obtain the following result:
Theorem 4.5. Let A and B be positive definite matrices in \mathbb{M}_{n} such that $A \geq B$ and $\beta \in[-1,0)$. Then for every unitarily invariant norm

$$
\|(1-\beta) A+\beta B\| \leq\left\|\left((1-\beta) A^{p}+\beta B^{p}\right)^{\frac{1}{p}}\right\| \leq\left\|A \diamond_{\beta} B\right\| \leq\left\|A দ_{\beta} B\right\|
$$

for all $p \in(0,1]$.

Finally, as an application, we show a refinement of the generalized Golden-Thompson inequality in terms of the quasi geometric means. Let H and K be Hermitian matrices. The Golden-Thompson trace inequality is

$$
\operatorname{Tr}\left[e^{H+K}\right] \leq \operatorname{Tr}\left[e^{H} e^{K}\right]
$$

Hiai-Petz [10] proved the complemented Golden-Thompson inequality:

$$
\left\|e^{H} \not \sharp_{\alpha} e^{K}\right\| \leq \leq\left\|e^{(1-\alpha) H+\alpha K}\right\| \| \quad \text { for all } \alpha \in[0,1]
$$

for every unitarily invariant norm. By Theorem 4.1 and Theorem 4.2, we have a refinement of the Golden-Thompson inequality in terms of the quasi geometric means:

$$
\left\|e^{(1-\beta) H+\beta K}\right\| \leq\left\|e^{H} \mathfrak{q}_{\beta} e^{K}\right\| \leq\left\|e^{(1-\beta) H} e^{\beta K}\right\|
$$

for all $\beta \in\left[-1,-\frac{1}{2}\right]$ and so

$$
\operatorname{Tr}\left[e^{H+K}\right] \leq \operatorname{Tr}\left[e^{\frac{1}{1-\beta} H} \natural_{\beta} e^{\frac{1}{\beta} K}\right] \leq \operatorname{Tr}\left[e^{H} e^{K}\right] .
$$

In particular, if we put $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$, then we have

$$
\operatorname{Tr}\left[e^{2 H} \sharp_{\frac{1}{2}} e^{2 K}\right] \leq \operatorname{Tr}\left[e^{H+K}\right] \leq \operatorname{Tr}\left[e^{\frac{2}{3} H} \natural_{-\frac{1}{2}} e^{-2 K}\right] \leq \operatorname{Tr}\left[e^{H} e^{K}\right] .
$$

Acknowledgement. The second author is partially supported by JSPS KAKENHI Grant Number JP 16K05253.

References

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl., 118 (1989), 163-248.
[2] T. Ando and F. Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197,198 (1994), 113-131.
[3] R. Bhatia, Matrix Anaysis, Springer, New York, 1997.
[4] R. Bhatia and P. Grover, Norm inequalities related to the matrix geometric mean, Linear Algebra Appl., 437 (2012), 726-733.
[5] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent Developments of Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 4, Element, Zagreb, 2012.
[6] J. I. Fujii, An external version of the Jensen operator inequality, Sci. Math. Japon., 73, No.2\&3 (2011), 125-128.
[7] J.I. Fujii and Y. Seo, Tsallis relative operator entropy with negative paramaeters, Adv. Oper. Theory, 1 (2016), No.2, 219-236.
[8] T. Furuta, Invitation to linear operators, Taylor\&Francis, London, 2001.
[9] F. Hiai, Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization, Inter. Information Sci., 16, No. 2 (2010), 139-248.
[10] F. Hiai and D. Petz, The Golden-Thompson trace inequality is complemented, Linear Algebra Appl., 181 (1993), 153-185.
[11] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
[12] A.W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, Mathematics in Science and Engineering, Vol. 143, Academic Press, 1979.

Communicated by Masatoshi Fujii

* Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P. O. Box 1339, Bojnord 94531, Iran

E-mail address: kian@member.ams.org
** Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
E-mail address : yukis@cc.osaka-kyoiku.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 15A45; Secondary 47A64.
 Key words and phrases. Ando-Hiai inequality, matrix geometric mean, unitarily invariant norm, positive definite matrix.

