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FUZZY FILTERS OF A BCK-ALGEBRA

Abstract. We study fuzzy filters of a BCK-algebra and characterize fuzzy s-prime
filters and fuzzy maximal filters of a BCK-algebra.

1. Introduction

The fundamental concept of fuzzy sets was introduced by L. A. Zadeh [8] in 1965. It
has been applied by many authors to study the fuzzification of some basic notions of a
BCK-algebra (see for instance, [2]–[4] and [6]–[7]).

In this work, we introduce the notion of a fuzzy BCK-filter with values in a distributive
lattice L. It generalizes the basic notion of a fuzzy BCK-filter with values in the unit interval
[0, 1] of real numbers, introduced and studied by Y. B. Jun et al. in [3]–[4]. In Section 2, we
review a few basic definitions from the theory of BCK-algebras and fuzzy set logic and set
up our notation for the development of this article. In Section 3, we define fuzzy s-prime
filters and fuzzy maximal filters of a BCK-algebra and give their characterizations. We
show that a fuzzy s-prime filter of a bounded commutative BCK-algebra X is determined
by a prime filter of X and a prime element of L, and vice-versa. In particular, for any filter
F of X, the characteristic function χF of F is a fuzzy s-prime filter of X if and only if F is
a prime filter of X and 0 is a prime element of L.

2. Preliminaries

A BCK-algebra is a system (X,≤, 0) together with a binary operation denoted by jux-
taposition such that the following axioms are satisfied for all x, y, and z in X:

(1) (xy)(xz) ≤ zy,
(2) x(xy) ≤ y,
(3) x ≤ x,
(4) 0 ≤ x,
(5) x ≤ y and y ≤ x imply x = y,
(6) x ≤ y if and only if xy = 0.

The following assertions are true for any x, y, and z in a BCK-algebra X:

(I) x0 = x,
(II) (xy)z = (xz)y,

(III) xy ≤ x,
(IV) (xz)(yz) ≤ xy,
(V) x ≤ y imply xz ≤ yz and zy ≤ zx.

A BCK-algebra X is said to be commutative if it satisfies the identity x ∧ y = y ∧ x
for all x and y in X, where x ∧ y = y(yx). If a BCK-algebra X has a special element 1
such that x ≤ 1 for all x in X, then 1 is called unit of X, and a BCK-algebra with unit
is said to be bounded. We denote 1x by x∗ and (x∗ ∧ y∗)∗ by x ∨ y for any x and y in a
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bounded BCK-algebra X. The following assertions are true for any x and y in a bounded
BCK-algebra X:

(1) 0∗ = 1 and 1∗ = 0,
(2) x ≤ y implies y∗ ≤ x∗,
(3) x∗y∗ ≤ yx,
(4) (x∗)∗ = x.

A nonempty subset F of a BCK-algebra is said to be a filter if (1) 1 ∈ F and (2)
(x∗y∗)∗ ∈ F and y ∈ F imply x ∈ F for all x and y in X. It is well-known that the
identity x∗y∗ = yx holds for all x and y in a bounded commutative BCK-algebra X. Hence
in a bounded commutative BCK-algebra X the condition (2) of the definition of a filter
coincides with the condition (2)

′
: (yx)∗ ∈ F and y ∈ F imply x ∈ F for all x and y in X.

A proper filter F of a bounded commutative BCK-algebra X is said to be a prime filter if
x ∨ y ∈ F implies either x ∈ F or y ∈ F , for all x and y in X. A proper filter F of X is
said to be a maximal filter if F ⊆ A ⊆ X implies either F = A or A = X, for any filter A
of X. If A is a nonempty subset of a bounded BCK-algebra X, then the set of all x ∈ X
satisfying (· · · ((x∗a∗1)a∗2) · · · a∗n−1)a∗n = 0 for some a1, a2, . . . , an ∈ A is the minimal filter
containing A [5]. It is called the filter generated by A and is denoted by 〈A〉. In particular,
if A = {a}, then we will denote 〈{a}〉 simply by 〈a〉. See [5] for more details on filter theory
of BCK-algebras.

In what follows, L will always denote, unless mentioned otherwise, a distributive lattice
with a least element 0 and a greatest element 1. If X is the universe of discourse, all fuzzy
subsets of X throughout this paper will be L-fuzzy subsets in the sense of Goguen [1], that
is, maps from X to L. If L, in particular, is the unit interval of real numbers [0, 1], then
L-fuzzy subsets are fuzzy subsets in the usual sense [8]. However, for the sake of simplicity,
we will write fuzzy subsets instead of L-fuzzy subsets. A nonempty fuzzy subset of X is a
fuzzy subset of X which is not a constant map which assumes the value 0 of L. For any two
fuzzy subsets λ and µ of X, the inequality λ ≤ µ means that λ(x) ≤ µ(x) for all x ∈ X. The
symbols λ∨µ and λ∧µ will mean the fuzzy subsets of X defined by (λ∨µ)(x) = λ(x)∨µ(x)
and (λ ∧ µ)(x) = λ(x) ∧ µ(x) for all x ∈ X.

3. Fuzzy BCK-filters

In the sequel, X will denote a bounded commutative BCK-algebra with unit 1, unless
mentioned otherwise.

Definition 1. A nonempty fuzzy subset µ of X is said to be a fuzzy filter if (a) µ(1) ≥ µ(x)
and (b) µ(x) ≥ µ(yx)∗ ∧ µ(y) for all x and y in X.

Remark 3.1. (1) If µ is a fuzzy filter of X and x ≤ y, then µ(x) ≤ µ(y). In fact, x ≤ y
implies xy = 0 which implies (xy)∗ = 0∗ = 1 and hence by part (a) of Definition 1 we get
µ(xy)∗ ≥ µ(x) which implies that µ(xy)∗ ∧ µ(x) = µ(x). Thus it follows from part (b) of
Definition 1 that µ(y) ≥ µ(xy)∗ ∧ µ(x) = µ(x).

(2) If F is a filter of X and α ≤ β are two elements of L, then the fuzzy subset µ of X
defined by

µ(x) =

{
β if x ∈ F
α otherwise

is a fuzzy filter of X. In fact, 1 ∈ F implies µ(1) = β and so the inequality µ(1) ≥ µ(x)
holds for all x in X. Now, if x ∈ F , then the inequality µ(x) ≥ µ(yx)∗ ∧ µ(y) is obvious.
If x 6∈ F , then either (yx)∗ 6∈ F or y 6∈ F , hence either µ(yx)∗ = α or µ(y) = α, and so
µ(yx)∗ ∧ µ(y) = α. Thus it follows that the inequality µ(x) ≥ µ(yx)∗ ∧ µ(y) holds for all x
and y in X.
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(3) If F is a nonempty subset of X, then F is a filter of X if and only if the characteristic
function χF of F is a fuzzy filter of X. In fact, it follows from part (2) above that χF is a
fuzzy filter of X whenever F is a filter of X. Conversely, assume that χF is a fuzzy filter
of X. Since F is nonempty, there exists an element x in F , and therefore χF (x) = 1. It
follows from part (1) above that χF (1) = 1, and so 1 ∈ F . Now, if (yx)∗ and y are in F ,
then the inequality χF (x) ≥ χF (yx)∗ ∧χF (y) = 1 implies that x is in F . Thus we have that
F is a filter of X.

(4) If µ is a fuzzy filter of X, then F = {x ∈ X : µ(x) = µ(1)} is a filter of X. In fact,
it is clear that 1 ∈ F . If (yx)∗ and y are in F , then µ(1) ≥ µ(x) ≥ µ(yx)∗ ∧ µ(y) = µ(1),
and so x ∈ F . Thus it follows that F is a filter of X.

Definition 2. A nonconstant fuzzy filter π of X is said to be a fuzzy prime filter of X if
π(x ∨ y) ≤ π(x) ∨ π(y) for all x and y in X.

Definition 3. A nonconstant fuzzy filter π of X is said to be a fuzzy s-prime filter of X if
µ1 ∧ µ2 ≤ π implies either µ1 ≤ π or µ2 ≤ π for any two fuzzy filters µ1 and µ2 of X.

We will show that every fuzzy s-prime filter is a prime filter (see Corollary 3.6 on page
(4)), however, the converse may not be true even in the particular case when L = [0, 1] (see,
for instance, [7]).

Definition 4. An element α 6=1 of L is said to be a prime element of L if α1 ∧ α2 ≤ α
implies either α1 ≤ α or α2 ≤ α for any two elements α1 and α2 of L.

Lemma 3.2. [5] A proper filter F of a bounded commutative BCK-algebra X is prime if
and only if A ∩B = F implies either A = F or B = F for any two filters A and B of X.

Theorem 3.3. (a) Let F be a prime filter of a bounded commutative BCK algebra X and
α a prime element of L. Then the fuzzy subset of X defined by

π(x) =

{
1 if x ∈ F
α otherwise

is a fuzzy s-prime filter of X.
(b) Conversely any fuzzy s-prime filter of X can be obtained as above.

Proof. (a) It is clear from part (2) of Remark 3.1 that π is a nonconstant fuzzy filter of X.
If there exist two fuzzy filters µ and ν of X such that µ 6≤ π and ν 6≤ π, then µ(x) 6≤ π(x)
and ν(y) 6≤ π(y) for some x and y in X. It follows that π(x) = α and π(y) = α, hence x 6∈ F
and y 6∈ F , and since F is a prime filter of X, we have that x∨ y 6∈ F , and so π(x∨ y) = α.
Because x ≤ x∨y and y ≤ x∨y, it follows from part (1) of Remark 3.1 that µ(x) ≤ µ(x∨y)
and ν(y) ≤ ν(x∨y), and hence µ(x)∧ν(y) ≤ µ(x∨y)∧ν(x∨y). Since α is a prime element
of L, we have that µ(x)∧ ν(y) 6≤ α, and so it follows that µ(x∨ y)∧ ν(x∨ y) 6≤ α = π(x∨ y)
which implies that (µ∧ν)(x∨y) 6≤ π(x∨y), and hence µ∧ν 6≤ π. Thus π is a fuzzy s-prime
filter of X.

(b) First, we show that π(1) = 1. For if, π(1) < 1, then as π is nonconstant, we have
that π(a) < π(1) for some a in X. It follows from parts (3) and (4) of Remark 3.1 that the
fuzzy subset µ of X defined by

µ(x) =

{
1 if π(x) = π(1)
0 otherwise

is a fuzzy filter of X. Define the fuzzy filter ν of X by ν(x) = π(1) for all x in X. Clearly,
µ ∧ ν ≤ π, but µ(1) = 1 > π(1) and ν(a) = π(1) > π(a) imply that µ 6≤ π and ν 6≤ π, a
contradiction. Hence π(1) = 1.
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Next, we show that the nonconstant fuzzy filter π assumes exactly two values by es-
tablishing that if a and b are two elements of X such that π(a) < 1 and π(b) < 1, then
π(a) = π(b). Indeed, define the fuzzy ideals µ and ν of X by

µ(x) =

{
1 if x ∈ 〈a〉
0 otherwise

and ν(x) = π(a) for all x in X. If x 6∈ 〈a〉, then (µ∧ν)(x) = 0 ≤ π(x). If x ∈ 〈a〉, then there
exists a positive integer n such (· · · ((x∗a∗)a∗) · · · )a∗︸ ︷︷ ︸

n

= 0. Hence (· · · ((x∗a∗)a∗) · · · )a∗︸ ︷︷ ︸
n−1

≤

a∗ which implies a ≤ ((· · · ((x∗a∗)a∗) · · · )a∗︸ ︷︷ ︸
n−1

)∗ and so by part (1) of Remark 3.1 we have

π(a) ≤ π(((· · · ((x∗a∗)a∗) · · · )a∗︸ ︷︷ ︸
n−1

)∗). So π(a) = π(a) ∧ π(((· · · ((x∗a∗)a∗) · · · )a∗︸ ︷︷ ︸
n−1

)∗) = π(a) ∧

π((a((· · · ((x∗a∗)a∗) · · · )a∗︸ ︷︷ ︸
n−2

)∗)∗), and since π is a fuzzy filter, therefore, it follows that π(a) ≤

π(((· · · ((x∗a∗)a∗) · · · )a∗︸ ︷︷ ︸
n−2

)∗). Continuing in this way we get π(a) ≤ π((x∗)∗) = π(x), and so

(µ ∧ ν)(x) = ν(x) = π(a) ≤ π(x). It follows that µ ∧ ν ≤ π. But µ(a) = 1 > π(a) implies
that µ 6≤ π, and so ν ≤ π since π is a fuzzy s-prime filter of X. Hence ν(b) ≤ π(b) which
implies that π(a) ≤ π(b). Similarly, one can show that π(b) ≤ π(a), and hence π(a) = π(b).
Thus it follows that the fuzzy s-prime filter π of X assumes exactly two values.

Let α ∈ L denote the value of π other than 1, and let F = {x ∈ X : π(x) = 1}. Since π
is a nonconstant fuzzy filter of X and π(1) = 1, it follows from part (4) of Remark 3.1 that
F is a proper filter of X. Observe that for any x in X we have

π(x) =

{
1 if x ∈ F
α otherwise

and so it is sufficient to show that F is a prime filter of X and α is a prime element of L.
Since π is a fuzzy s-prime filter of X, and a ≤ α if and only if λa ≤ π for any element a
of L and the constant map λa with value a, it follows that α is a prime element of L. If A
and B are two filters of F such that A ∩B = F , then χA ∧ χB = χA∩B = χF ≤ π. Since π
is a fuzzy s-prime filter of X, therefore, either χA ≤ π or χB ≤ π, and so A ⊆ F or B ⊆ F ,
but since F ⊆ A and F ⊆ B, it follows that either A = F or B = F . This completes the
proof. �

Corollary 3.4. Let F be a subset of X. Then the characteristic function χF of F is fuzzy
s-prime filter of X if and only if F is a prime filter of X and 0 is a prime element of L.

Corollary 3.5. Let π be a fuzzy subset of X, and let L be a chain. Then π is a fuzzy
s-prime filter of X if and only if there exist a prime filter F of X and an element α < 1
such that

π(x) =

{
1 if x ∈ F
α otherwise.

In particular, if L = [0, 1]. Then a fuzzy subset π of X is its fuzzy s-prime filter if and only
if there exist a prime filter F of X and an element α ∈ [0, 1) such that

π(x) =

{
1 if x ∈ F
α otherwise.

Corollary 3.6. Every fuzzy s-prime filter of X is a prime filter of X.
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Proof. Let π be a fuzzy s-prime filter of X. By Theorem 3.3, there exists a prime filter F
of X and a prime element α of L such that

π(x) =

{
1 if x ∈ F
α otherwise.

If x∨ y 6∈ F , then clearly π(x∨ y) ≤ π(x)∨π(y). If x∨ y ∈ F , then, since F is a prime filter
of X, we have that either x ∈ F or y ∈ F . Hence either π(x) = 1 or π(y) = 1 which implies
π(x) ∨ π(y) = 1, and so again π(x ∨ y) ≤ π(x) ∨ π(y). Thus π is a prime filter of X. �

Definition 5. A nonconstant fuzzy filter µ of X is said to be its fuzzy maximal filter if
µ ≤ ν implies either µ = ν or ν is a constant fuzzy filter of X, for any filter ν of X.

Definition 6. An element α 6=1 of L is said to be its dual atom if α ≤ β implies either
α = β or β = 1, for any element β of L.

Theorem 3.7. (a) Let F be a maximal filter of a bounded commutative BCK-algebra X
and α a dual atom of L. Then the fuzzy subset of X defined by

µ(x) =

{
1 if x ∈ F
α otherwise

is a fuzzy maximal filter of X.
(b) Conversely any fuzzy maximal filter of X can be obtained as above.

Proof. (a) It is clear from part (2) of Remark 3.1 that µ is a nonconstant fuzzy filter of X.
If ν is a nonconstant fuzzy filter of X such that µ ≤ ν, then F ⊆ {x ∈ X : ν(x) = 1} 6= X,
and hence F = {x ∈ X : ν(x) = 1} since F is a maximal filter of X. Clearly values of µ
and ν agree on F , and if x 6∈ F , then α = µ(x) ≤ ν(x) < 1, and so µ(x) = ν(x) since α if a
dual atom of L. Hence µ = ν. Thus it follows that µ is a fuzzy maximal filter of X.

(b) First we show that µ(1) = 1. For if, µ(1) < 1, then it follows from parts (2) and (4)
of Remark 3.1 that the fuzzy subset ν of X defined by

ν(x) =

{
1 if µ(x) = µ(1)
µ(1) otherwise

is its fuzzy filter. Clearly, µ ≤ ν and ν is nonconstant, so the maximality of µ implies that
µ = ν, and so µ(1) = 1, a contradiction. Hence µ(1) = 1.

Next, we show that the nonconstant fuzzy filter µ assumes exactly two values by es-
tablishing that if a and b are two elements of X such that µ(a) < 1 and µ(b) < 1, then
µ(a) = µ(b). Indeed, first observe that since L is a distributive lattice, therefore, the fuzzy
subset µ ∨ β of X defined by (µ ∨ β)(x) = µ(x) ∨ β for all x in X is its fuzzy filter. Now
(µ∨µ(a))(1) = µ(1)∨µ(a) = 1 and (µ∨µ(a))(a) = µ(a) imply that µ∨µ(a) is a nonconstant
fuzzy filter of X. Hence the inequality µ ≤ µ ∨ µ(a) and the maximality of µ imply that
µ = µ ∨ µ(a). It follows that µ(b) = (µ ∨ µ(a))(b) = µ(b) ∨ µ(a) and hence µ(a) ≤ µ(b).
Similarly, one can show that µ(b) ≤ µ(a), and hence µ(a) = µ(b). Thus it follows that the
fuzzy maximal filter µ assumes exactly two values.

Let α denote the value of µ other than 1, and let F = {x ∈ X : µ(x) = 1}. Since µ is a
nonconstant fuzzy filter of X and µ(1) = 1, it follows from part (4) of Remark 3.1 that F
is a proper filter of X. Observe that for any x in X we have

µ(x) =

{
1 if x ∈ F
α otherwise

and so it is sufficient to show that F is a maximal filter of X and α is a dual atom of L. If
β is an element of L such that α ≤ β < 1, then

ν(x) =

{
1 if x ∈ F
β otherwise
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is a nonconstant fuzzy filter of X and µ ≤ ν. Hence the maximality of µ implies that µ = ν,
therefore, α = β, and so it follows that α is a dual atom of L. If A is a filter of X such that
F ⊂ A ⊆ X, then

ω(x) =

{
1 if x ∈ A
α otherwise

is a fuzzy filter of X and µ < ω. Since µ is a fuzzy maximal filter of X, therefore, ω is
constant, and so A = X. This completes the proof. �

Corollary 3.8. If L = [0, 1], then X has no fuzzy maximal filters.

In Example 3.12 on page (6) a fuzzy s-prime filter of a bounded commutative BCK-
algebra is constructed with values in L = [0, 1]. It follows that a fuzzy s-prime filter may
not be fuzzy maximal filter even in the particular case when L = [0, 1]. However, we will
show that every fuzzy maximal filter of a bounded commutative BCK-algebra is also its
fuzzy s-prime filter (see Corollary 3.11 further below).

Corollary 3.9. Let a and b be two real numbers such that a < b, and let S be a subset
of (−∞, a) with a least element. If L = S ∪ {a, b}, then a fuzzy subset µ of X is its fuzzy
maximal filter if and only if there exists a maximal filter F of X such that

µ(x) =

{
1 if x ∈ F
a otherwise.

It is shown in [5] that for any filter F of a bounded commutative BCK-algebra X and
x ∈ X \ F , there exists a prime filter A of X such that F ⊆ A and x 6∈ A . Thus the
following result follows immediately.

Proposition 3.10. Every maximal filter of a bounded commutative BCK-algebra is also its
prime filter.

Since every dual atom of a distributive lattice is also its prime element, therefore, we
have the following result.

Corollary 3.11. Every fuzzy maximal filter of a bounded commutative BCK-algebra is also
its fuzzy s-prime filter.

Let us consider the following example to demonstrate a few immediate applications of
our results.

Example 3.12. Let X be the set {0, 1, 2, 3} with binary operation defined by the following
table.

0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 2 1 0

Then X is a bounded commutative BCK-algebra with unit 3 (cf. [7]). It is a routine matter
to verify that F = {1, 2, 3} is a filter of X. Clearly, the filter F is maximal, as well. Hence,
by Proposition 3.10, F is a prime filter of X.

If L = [0, 1], it follows from Corollary 3.5 that the characteristic function χF of F is a
fuzzy s-prime filter of X.

If L = {0, 0.5, 1}, it follows from Corollary 3.9 that the fuzzy subset µ of X, defined by
µ(0) = 0.5 and µ(x) = 1 otherwise, is a fuzzy maximal filter of X.

Now we remark that Corollary 3.8 suggests in order to initiate a study of fuzzy maximal
filters of a BCK-algebra it is important to generalize the traditional notion of a fuzzy filter
to one with its truth values in a distributive lattice.
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