FUZZY INTERIOR IDEALS IN HYPERSEMIGROUPS

NIOVI KEHAYOPULU

Received December 26, 2017

Abstract

We introduce the concept of interior ideal and the concept of fuzzy interior ideal in hypersemigroups and we prove, among others, that in regular also in intra-regular hypersemigroups the interior ideals and the fuzzy interior ideals coincide. We also prove that an hypergroupoid H is simple if and only if every fuzzy ideal of H is a constant function; and that an hypersemigroup H is simple if and only if every fuzzy interior ideal of H is a constant function, equivalently if, for every element a of H, we have $H = H * \{a\} * H$.

1 Introduction

This paper is based on our paper [5] and partly on [6]. We first introduce the concept of an interior ideal and the concept of a fuzzy interior ideal of an hypersemigroup and we prove that if H is an hypersemigroup and A an interior ideal of H, then the characteristic mapping f_A is a fuzzy interior ideal of H. "Conversely", if A is a nonempty subset of H and f_A a fuzzy interior ideal of H, then the set A is an interior ideal of H. Then we prove that any fuzzy ideal of an hypersemigroup H is a fuzzy interior ideal of H and in regular, also in intra-regular hypersemigroups the concepts of interior ideals and fuzzy interior ideals coincide. We also prove that in a regular and in an intra-regular hypersemigroup H the interior ideals are subsemigroups of H. Following Kuroki, we call an hypergroupoid H fuzzy simple if every fuzzy ideal of H is a constant function. We prove that an hypergroupoid is simple if and only if it is fuzzy simple, and an hypersemigroup H is simple if and only $H = H * \{a\} * H$ for every $a \in H$, equivalently, if every fuzzy interior ideal of H is a constant function. As a consequence, for an hypersemigroup H, the following are equivalent: (1) H is simple. (2) $H = H * \{a\} * H$ for every $a \in H$. (3) H is fuzzy simple. (4) every fuzzy interior ideal of H is a constant function.

⁰2010 Mathematics Subject Classification. Primary: 20M99, 08A72.

Key words and Phrases. Hypersemigroup, interior ideal, fuzzy interior ideal, right (left) ideal, ideal, fuzzy right (left) ideal, fuzzy ideal, regular, intra-regular, simple, fuzzy simple.

2 Prerequisites

For the sake of completeness, we will give some definitions already given in [2]. An *hypergroupoid* is a nonempty set H with an hyperoperation

 $\circ: H \times H \to \mathcal{P}^*(H) \mid (a,b) \to a \circ b$ on H and an operation

 $*: \mathcal{P}^*(H) \times \mathcal{P}^*(H) \to \mathcal{P}^*(H) \mid (A, B) \to A * B \text{ on } \mathcal{P}^*(H) \text{ (induced by the operation of } H) \text{ such that } A * B = \bigcup_{(a,b) \in A \times B} (a \circ b) \text{ for every } A, B \in \mathcal{P}^*(H)$

 $(\mathcal{P}^*(H) \text{ being the set of nonempty subsets of } H)$. As the operation "*" depends on the hyperoperation " \circ ", an hypergroupoid can be denoted by (H, \circ) (instead of $(H, \circ, *)$). If (H, \circ) is an hypergroupoid then, for every $x, y \in H$, we have $\{x\} * \{y\} = \bigcup_{a \in \{x\}, b \in \{y\}} (a \circ b) = x \circ y$. The following proposition, though clear,

plays an essential role in the theory of hypergroupoids.

Proposition 2.1. Let (H, \circ) be an hypergroupoid, $x \in H$ and $A, B \in \mathcal{P}^*(H)$. Then we have the following:

(1) If $x \in A * B$, then $x \in a \circ b$ for some $a \in A$, $b \in B$ and

(2) If $a \in A$ and $b \in B$, then $a \circ b \subseteq A * B$.

Proposition 2.2. If (H, \circ) is an hypergroupoid then, for every $A, B, C, D \in \mathcal{P}^*(H)$, we have

(1) $A \subseteq B \Rightarrow A * C \subseteq B * C$ and $C * A \subseteq C * B$, equivalently,

 $A \subseteq B \text{ and } C \subseteq D \Rightarrow A * C \subseteq B * D.$

(2) $H * A \subseteq H$ and $A * H \subseteq H$.

Definition 2.3. Let (H, \circ) be an hypergroupoid. A nonempty subset A of H is called a *left* (resp. *right*) *ideal* of H if $H * A \subseteq A$ (resp. $A * H \subseteq A$). If A is both a left and a right ideal of H, then it is called an *ideal* of H. A nonempty subset A of H is called a *subgroupoid* of H if $A * A \subseteq A$.

Clearly, every left (resp. right) ideal of H is a subgroupoid of H.

Definition 2.4. An hypergroupoid (H, \circ) is called *hypersemigroup* if

$$\{x\} * (y \circ z) = (x \circ y) * \{z\}$$

for every $x, y, z \in H$. Since $\{x\} * \{y\} = x \circ y$ for every $x, y \in H$, this is equivalent to saying that $\{x\} * (\{y\} * \{z\}) = (\{x\} * \{y\}) * \{z\}$ for every $x.y, z \in H$.

Proposition 2.5. ([1,2]; for its proof we refer to [4]) If (H, \circ) be an hypersemigroup, then $(\mathcal{P}^*(H), *)$ is a semigroup.

As a result, for any $A, B, C \in \mathcal{P}^*(H)$, we write A * (B * C) = (A * B) * C := A * B * C; and in an expression of the form $A_1 * A_2 * \dots * A_n$, where the A_i $(i = 1, 2, \dots, n)$ are elements of $\mathcal{P}^*(H)$ we can put parentheses in any place beginning with some A_i and ending in some A_j $(1 \le i, j \le n)$.

Following Zadeh, any mapping $f : H \to [0,1]$ of an hypergroupoid H into the closed interval [0,1] of real numbers is called a *fuzzy subset* of H (or a *fuzzy* set in H) and, for any nonempty subset A of H, the characteristic function f_A of A, is the fuzzy subset of H defined by

$$f_A: H \to \{0,1\} \mid x \to f_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

The concepts of fuzzy left ideals and fuzzy right ideals of semigroups due to Kuroki [6], are the following: A fuzzy subset f of a semigroup S is called a fuzzy left (resp. fuzzy right) ideal of S if, for every $x, y \in S$, we have $f(xy) \ge f(y)$ (resp. $f(xy) \ge f(x)$). It is called a fuzzy ideal of S if it is both a fuzzy left and a fuzzy right ideal of S. These concepts can be transferred, in a natural way, to an hypergroupoid as follows:

Definition 2.6. [3] Let (H, \circ) be an hypergroupoid. A fuzzy subset f of H is called a *fuzzy left ideal* of H if

$$f(x \circ y) \ge f(y)$$
 for all $x, y \in H$,

in the sense that if $x, y \in H$ and $u \in x \circ y$, then $f(u) \ge f(y)$. A fuzzy subset f of H is called a *fuzzy right ideal* of H if

$$f(x \circ y) \ge f(x)$$
 for all $x, y \in H$,

meaning that if $x, y \in H$ and $u \in x \circ y$, then $f(u) \ge f(x)$. A fuzzy subset f of H is called a *fuzzy ideal* of H it is both a fuzzy left ideal and a fuzzy right ideal of H. As one can easily see, a fuzzy subset f of H is a fuzzy ideal of H if and only $f(x \circ y) \ge \max\{f(x), f(y)\}$ for all $x, y \in H$, in the sense that $x, y \in H$ and $u \in x \circ y$ implies $f(u) \ge \max\{f(x), f(y)\}$.

3 Main results

Definition 3.1. Let H be an hypersemigroup. A nonempty subset A of H is called an *interior ideal* of H if

$$H * A * H \subseteq A.$$

By a subidempotent interior ideal of H we mean an interior ideal of H which is at the same time a subsemigroup of H.

The concept of fuzzy interior ideal of semigroups is also due to Kuroki [6], and it is the following: A fuzzy subset f of a semigroup S is called a fuzzy interior ideal of S if, for any $x, a, y \in S$, we have $f(xay) \ge f(a)$. This concept can be naturally transferred to an hypersemigroup as follows:

Definition 3.2. Let H be an hypersemigroup. A fuzzy subset f of H is called a *fuzzy interior ideal* of H if

$$f((x \circ a) * \{y\}) \ge f(a)$$
 for every $x, a, y \in H$,

in the sense that if $x, a, y \in H$ and $u \in (x \circ a) * \{y\}$, then $f(u) \ge f(a)$. For an hypersemigroup, we clearly have

$$(x \circ a) * \{y\} = \{x\} * (a \circ y) = \{x\} * \{a\} * \{y\}.$$

Proposition 3.3. Let H be an hypersemigroup. If A is an interior ideal of H, then the characteristic function f_A is a fuzzy interior ideal of H. "Conversely", if A is a nonempty subset of H such that f_A is a fuzzy interior ideal of H, then A is an interior ideal of H.

Proof. \Longrightarrow . Let $x, a, y \in H$. Then $f_A((x \circ a) * \{y\}) \ge f_A(a)$. In fact: Let $u \in (x \circ a) * \{y\}$. If $a \in A$, then $f_A(a) = 1$. Since A is an interior ideal of H, we have $H * A * H \subseteq A$. So we have $u \in \{x\} * \{a\} * \{y\} \subseteq H * A * H \subseteq A$. Then $u \in A$, and $f_A(u) = 1$. Thus we get $f_A(u) \ge f_A(a)$. Let now $a \notin A$. Then $f_A(a) = 0$. Since f_A is a fuzzy subset of H and $u \in H$, we have $f_A(u) \ge 0$. Thus we have $f_A(u) \ge f_A(a)$.

Proposition 3.4. Let H be an hypersemigroup. If f is a fuzzy ideal of H, then f is a fuzzy interior ideal of H.

Proof. Let $x, a, y \in H$. Then $f((x \circ a) * \{y\}) \ge f(a)$. In fact:

Let $u \in (x \circ a) * \{y\}$. By Proposition 2.1, there exists $v \in x \circ a$ such that $u \in v \circ y$. Since $v \in x \circ a$ and f is a fuzzy left ideal of H, we have $f(v) \ge f(a)$. Since $u \in v \circ y$ and f is a fuzzy right ideal of H, we have $f(u) \ge f(v)$. Then we have $f(u) \ge f(a)$, and the proof is complete.

Definition 3.5. (cf. also [3]) An hypersemigroup H is called *regular* if for every $a \in H$ there exists $x \in H$ such that $a \in \{a\} * (x \circ a)$.

Lemma 3.6. [3; Lemma 1.2] Let H be an hypersemigroup. The following are equivalent:

(1) H is regular.

(2) $a \in \{a\} * \{x\} * \{a\}$ for every $a \in H$.

(3) $A \subseteq A * H * A$ for every nonempty subset A of H.

Proposition 3.7. Let H be a regular hypersemigroup and A an interior ideal of H. Then A is a subsemigroup of H.

Proof. Since A is an interior ideal of H, we have $H * A * H \subseteq A$. Since H is regular, we have $A \subseteq A * H * A$. Then we have

$$A * A \subseteq (A * H * A) * A = (A * H) * A * A \subseteq H * A * H \subseteq A,$$

so A is a subsemigroup of H.

Proposition 3.8. Let H be a regular hypersemigroup and f a fuzzy interior ideal of H. Then f is a fuzzy ideal of H.

Proof. Let $a, b \in H$. Then $f(a \circ b) \ge f(a)$ and $f(a \circ b) \ge f(b)$. In fact: Let $u \in a \circ b$. Then $f(u) \ge f(a)$. Indeed: Since $a \in H$ and H is regular, there exists $x \in H$ such that $a \in \{a\} * \{x\} * \{a\}$. Then

$$a \circ b \subseteq \{a\} * \{x\} * \{a\} * \{b\} = (a \circ x) * (a \circ b),$$

from which $u \in v \circ w$ for some $v \in a \circ x$, $w \in a \circ b$. We have $u \in v \circ w \subseteq \{v\} * (a \circ b)$ and $f(\{v\} * (a \circ b)) \geq f(a)$, thus we have $f(u) \geq f(a)$, and f is a fuzzy right ideal of H. We also have $f(u) \geq f(b)$. Indeed: Since $b \in H$ and H is regular, there exists $y \in H$ such that $b \in \{b\} * \{y\} * \{b\}$. Then we have

$$u \in a \circ b \subseteq \{a\} * \{b\} * \{y\} * \{b\} = (a \circ b) * (y \circ b).$$

Then $u \in s \circ t$ for some $s \in a \circ b$, $t \in y \circ b$. Then we have

$$u \in s \circ t \subseteq (a \circ b) * \{t\} = \{a\} * (b \circ t)$$

Since $f({a} * (b \circ t)) \ge f(b)$, we obtain $f(u) \ge f(b)$, and f is a fuzzy left ideal of H. Therefore f is a fuzzy ideal of H.

From Propositions 3.4 and 3.8 we have the following

Theorem 3.9. In regular hypersemigroups the concepts of fuzzy ideals and fuzzy interior ideals coincide.

Definition 3.10. (cf. also [3]) An hypersemigroup H is called *intra-regular* if for every $a \in H$ there exist $x, y \in H$ such that $a \in (x \circ a) * (a \circ y)$.

Lemma 3.11. Let H be an hypersemigroup. The following are equivalent:

- (1) H is intra-regular.
- (2) $a \in H * \{a\} * \{a\} * H$ for every $a \in H$.
- (3) $A \subseteq H * A * A * H$ for every nonempty subset of H.

Proof. The implication $(1) \Rightarrow (2)$ and the equivalence $(2) \Leftrightarrow (3)$ are obvious. Let us prove the implication $(2) \Rightarrow (1)$. Let $a \in H$. By (2), we have $a \in (H * \{a\}) * (\{a\} * H)$. By Proposition 2.1, $a \in u \circ v$ for some $u \in H * \{a\}$, $v \in \{a\} * H$, $u \in x \circ a$ and $v \in a \circ y$ for some $x, y \in H$. Then we have $a \in u \circ v \subseteq (x \circ a) * (a \circ y)$, then $a \in (x \circ a) * (a \circ y)$, where $x, y \in H$ and so H is intra-regular.

Proposition 3.12. Let H be an intra-regular hypersemigroup and A an interior ideal of H. Then A is a subsemigroup of H.

Proof. Since A is an interior ideal of H, we have $H * A * H \subseteq A$. Since H is intra-regular, we have $A \subseteq H * A * A * H$. Then we have

$$\begin{array}{rcl} A*A & \subseteq & (H*A*A*H)*A = (H*A)*A*(H*A) \\ & \subseteq & H*A*H \subseteq A, \end{array}$$

so A is a subsemigroup of H.

By Propositions 3.7 and 3.12, we have the following

Corollary 3.13. In regular and in intra-regular hypersemigroups the interior ideals and the subidempotent interior ideals coincide.

Proposition 3.14. Let H be an intra-regular hypersemigroup and f is a fuzzy interior ideal of H. Then f is a fuzzy ideal of H.

Proof. Let $a, b \in H$ and $u \in a \circ b$. Since $a \in H$ and H is intra-regular, there exist $x, y \in H$ such that $a \in \{x\} * \{a\} * \{a\} * \{y\}$. Then

$$a \circ b \subseteq \{x\} * \{a\} * \{a\} * \{y\} * \{b\} = (x \circ a) * ((a \circ y) * \{b\}).$$

Then $u \in v \circ w$ for some $v \in x \circ a$, $w \in (a \circ y) * \{b\}$. We have

$$u \in v \circ w \subseteq (x \circ a) * \{w\}$$

and, since f is a fuzzy interior ideal of H, $f((x \circ a) * \{w\}) \ge f(a)$. Thus we get $f(u) \ge f(a)$, and f is a fuzzy right ideal of H. Since $b \in H$ and H is intra-regular, there exist $z, t \in H$ such that $b \in \{z\} * \{b\} * \{b\} * \{t\}$, then we have

$$a \circ b \subseteq \{a\} * \{z\} * \{b\} * \{b\} * \{t\} = \left((a \circ z) * \{b\}\right) * (b \circ t).$$

Then $u \in c \circ d$ for some $c \in (a \circ z) * \{b\}$, $d \in b \circ t$. Since $u \in c \circ d \subseteq \{c\} * (b \circ t)$ and $f(\{c\} * (b \circ t)) \geq f(b)$, we have $f(u) \geq f(b)$, and f is a fuzzy left ideal of H. \Box

By Propositions 3.4 and 3.14, we have the following theorem

Theorem 3.15. In intra-regular hypersemigroups the concepts of fuzzy ideals and fuzzy interior ideals coincide.

An ideal A of an hypergroupoid H is called *proper* if $A \neq H$.

Definition 3.16. An hypergroupoid H is called *simple* if does not contain proper ideals, that is, for every ideal A of H, we have A = H.

The concept of fuzzy simple semigroups due to Kuroki [6] can be naturally transferred to hypergroupoids as follows:

Definition 3.17. An hypergroupoid H is called *fuzzy simple* if every fuzzy ideal of H is a constant function, that is, for every fuzzy ideal f of H and every $a, b \in H$, we have f(a) = f(b).

Notation 3.18. Let *H* be an hypergroupoid and $a \in H$. We denote by I_a the subset of *H* defined as follows:

$$I_a = \{ b \in H \mid f(b) \ge f(a) \}.$$

Lemma 3.19. Let H be an hypergroupoid and f a fuzzy right (resp. fuzzy left) ideal of H. Then the set I_a is a right (resp. left) ideal of H for every $a \in H$.

6

Proof. Let $a \in H$ and f a fuzzy right ideal of H. The set I_a is a right ideal of H. Indeed: Since $a \in I_a$, the set I_a is a nonempty subset of H. Moreover, $I_a * H \subseteq I_a$. Indeed: Let $x \in I_a * H$. Then $x \in u \circ v$ for some $u \in I_a, v \in H$. Since $x \in u \circ v$ and f is a fuzzy right ideal of H, we have $f(x) \ge f(u)$. Since $u \in I_a$, we have $f(u) \ge f(a)$, thus we have $f(x) \ge f(a)$. Since $u \in I_a$, we have $u \in H$. Since $u, v \in H$, we have $u \circ v \subseteq H * H \subseteq H$, so $x \in H$. Since $x \in H$ and $f(x) \ge f(a)$, we have $x \in I_a$. Thus I_a is a right ideal of H. Similarly, if f is a fuzzy left ideal of H, then the set I_a is a left ideal of H for every $a \in H$. \Box

Corollary 3.20. If H is an hypergroupoid and f a fuzzy ideal of H, then the set I_a is an ideal of H for every $a \in H$.

Lemma 3.21. Let H be an hypergroupoid. If A a left (resp. right) ideal or an ideal of H, then the characteristic function f_A is a fuzzy left (resp. fuzzy right) ideal or a fuzzy ideal of H. "Conversely", if A is a nonempty subset of H and f_A a fuzzy left (resp. fuzzy right) ideal or a fuzzy ideal of H, then A is a left (resp. right) ideal or an ideal of H.

Proof. Let A be a left ideal of H, $x, y \in H$ and $u \in x \circ y$. Then $f_A(u) \ge f_A(y)$. Indeed: If $y \in A$, then $x \circ y \subseteq H * A \subseteq A$, then $u \in A$ and $f_A(u) = 1 \ge f_A(y)$. If $y \notin A$, then $f_A(y) = 0 \le f_A(u)$, so f_A is a fuzzy left ideal of H. Let now f_A be a fuzzy left ideal of H. Then $H * A \subseteq A$. Indeed: Let $u \in H * A$. Then $u \in x \circ y$ for some $x \in H$, $y \in A$. Since $u \in x \circ y$, we have $f_A(u) \ge f_A(y) = 1$. Then $f_A(u) = 1$, and $u \in A$. The "dual" (for right-fuzzy right ideals) can be proved in a similar way, this completes the proof. \Box

Theorem 3.22. An hypergroupoid H is simple if and only if it is fuzzy simple.

Proof. \Longrightarrow . Let f be a fuzzy ideal of H and $a, b \in H$. Since f is a fuzzy ideal of H and $a \in H$, by Corollary 3.20, the set I_a is an ideal of H. Since H is simple, we have $I_a = H$. Then $b \in I_a$, so $f(b) \ge f(a)$. By symmetry, we get $f(a) \ge f(b)$. Thus we have f(a) = f(b), and H is fuzzy simple.

 \Leftarrow . Let *H* be fuzzy simple and *I* an ideal of *H*. Then *I* = *H*. Indeed: Let $x \in H$. Since *I* is an ideal of *H*, by Lemma 3.21, the characteristic function f_I is a fuzzy ideal of *H*. Since *H* is fuzzy simple, f_I is a constant function, that is, $f_I(y) = f_I(z)$ for every $y, z \in H$. Take an element $a \in I$ ($I \neq \emptyset$). Then we have $f_I(x) = f_I(a) = 1$, so $x \in I$. Thus *H* is simple. \Box

Theorem 3.23. If H is an hypersemigroup, then the following are equivalent: (1) H is simple.

- (2) $H = H * \{a\} * H$ for every $a \in H$.
- (3) Every fuzzy interior ideal of H is a constant function.

Proof. (1) \Longrightarrow (2). Let $a \in H$. The set $H * \{a\} * H$ is an ideal of H. Indeed, it is a nonempty subset of H, and we have

 $H*(H*\{a\}*H) = (H*H)*\{a\}*H \subseteq H*\{a\}*H \text{ and }$

 $(H * \{a\} * H) * H = H * \{a\} * (H * H) \subseteq H * \{a\} * H.$

Since H is simple, we have $H * \{a\} * H = H$.

(2) \implies (3). Let f be a fuzzy interior ideal of H and $a, b \in H$. Then f(a) = f(b).

Indeed: Since $b \in H$, by hypothesis, we have $b \in (x \circ a) * \{y\}$ for some $x, y \in H$. Since f is a fuzzy interior ideal of H, we have $f(b) \ge f(a)$. By symmetry, we get $f(a) \ge f(b)$, so f(a) = f(b).

 $(3) \Longrightarrow (1)$. Let f is a fuzzy ideal of H. By Proposition 3.4, f is a fuzzy interior ideal of H. By hypothesis, f is a constant function. Thus H is fuzzy simple. Then, by Theorem 3.22, H is simple. \Box

Summarizing, in case of an hypersemigroup the following are equivalent: (1) H is simple; (2) $H = H * \{a\} * H$ for every $a \in H$; (3) H = H * A * H for every $A \in \mathcal{P}^*(H)$; (4) H is fuzzy simple; (5) every fuzzy interior ideal of H is a constant function. Clearly $H = H * \{a\} * H$ for every $a \in H$ is equivalent to H = H * A * H for every nonempty subset A of H.

With my best thanks to Prof. Klaus Denecke for his interest in my work and his prompt reply.

References

- N. Kehayopulu, On hypersemigroups, Pure Math. Appl. (PU.M.A.) 25, no. 2 (2015), 151–156.
- [2] N. Kehayopulu, Left regular and intra-regular ordered hypersemigroups in terms of semiprime and fuzzy semiprime subsets, Sci. Math. Jpn. 80, no 3 (2017), 295–305.
- [3] N. Kehayopulu, Hypersemigroups and fuzzy hypersemigroups, Eur. J. Pure Appl. Math. 10, no. 5 (2017), 929–945.
- [4] N. Kehayopulu, How we pass from semigroups to hypersemigroups, Lobachevskii J. Math. 39, no. 1 (2018), 121–128.
- [5] N. Kehayopulu, M. Tsingelis, Fuzzy interior ideals in ordered semigroups, Lobachevskii J. Math. 21 (2006), 65–71.
- [6] N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8, no. 1 (1982), 71–79.

Communicated by Klaus Denecke

University of Athens Department of Mathematics 15784 Panepistimiopolis, Greece email: nkehayop@math.uoa.gr