O-UNION AND O-DECOMPOSITION ON HYPER K-ALGEBRAS

Soodabeh Madadi-Dargahi Mohammad Ali Nasr-Azadani

Received January 29, 2018; revised July 15, 2018

ABSTRACT. In this paper, we define a O-union of two hyper K-algebras and O-decomposition of a hyper K-algebra. In general, the O-union of two hyper K-algebra is not a hyper K-algebra. But, if a hyper K-algebra $(H, \circ, 0)$, be the O-union of two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, we investigate which properties of $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ is transferred to $(H, \circ, 0)$ and conversely. Also we show that a hyper K-algebra $(H, \circ, 0)$ where $x \in x \circ y$ can be decomposed into a positive implicative hyper BCK-algebra and a hyper K-algebra.

1. INTRODUCTION

The concept of BCK-algebra that is a generalization of set difference and propositional calculi was established by Imai and Iséki [3] in 1966. In Ref. [4], Jun et al. applied the hyper structures BCK-algebra. In 1934, Marty [5] introduced for the first time the hyper structure theory in the 8th congress of Scandinavian Mathematicians. In Ref. [2], Borzooei et al. introduced the generalization of BCK-algebra and hyper BCK-algebra, called hyper K-algebra. They studied properties of hyper K-algebra. In this article, the aim is to define the O-union and O-decomposition on hyper K-algebras. Section 2, concerns definitions and theorems that are needed in the sequel. Section 3, we give O-union's definition of two hyper K-algebras and O-decomposition of a hyper K-algebra into two hyper K-algebras and finally in Section 4, we study transferable properties on O-Union (decomposition) hyper K-algebras.

2. Preliminaries

In this section we give some definitions and theorems that are needed in the sequel.

Definition 2.1. [2] Let H be a set containing 0 and the function $\circ : H \times H \to P^*(H)(:= P(H) \setminus \emptyset)$ is called a hyper operation on H. Then $(H, \circ, 0)$ is called a hyper K-algebra (hyper BCK-algebra) if it satisfies HK1-HK5 (BHK1-BHK4).

 $\begin{array}{ll} \mathrm{H}K1:(x\circ z)\circ(y\circ z)< x\circ y, & \mathrm{B}HK1:(x\circ z)\circ(y\circ z)\ll x\circ y, \\ \mathrm{H}K2:(x\circ y)\circ z=(x\circ z)\circ y, & \mathrm{B}HK2:(x\circ y)\circ z=(x\circ z)\circ y, \\ \mathrm{H}K3:x< x, & \mathrm{B}HK3:x\circ H\ll x, \\ \mathrm{H}K4:x< y, y< x\Rightarrow x=y, & \mathrm{B}HK4: x\ll y, y\ll x\Rightarrow x=y. \\ \mathrm{H}K5:0< x. & \end{array}$

for all $x, y, z \in H$, where $x < y(x \ll y) \Leftrightarrow 0 \in x \circ y$. For any $A, B \subseteq H, A < B$ if there exist $a \in A$ and $b \in B$ such that a < b. Moreover, $A \ll B$ if for all $a \in A$ there exist $b \in B$ such that $a \ll b$. A hyper K-algebra $(H, \circ, 0)$ is bounded if there exist an element $e \in H$ such that x < e for all $x \in H$.

¹⁹⁹¹ Mathematics Subject Classification. 54A05, 06F35.

Key words and phrases. O-union, Hyper K-algebra, Hyper K-ideal, Positive implicative hyper K-ideal, Implicative hyper K-ideal.

Definition 2.2. [2] Let S be a nonempty set of a hyper K-algebra $(H, \circ, 0)$ containing 0. If S is a hyper K-algebra with respect to the hyper operation \circ on H, we say that S is a hyper K-subalgebra of H.

Theorem 2.3. [2] Let S be a nonempty set of a hyper K-algebra $(H, \circ, 0)$. Then S is a hyper K-subalgebra of H iff $x \circ y \subseteq S$ for all $x, y \in S$.

Theorem 2.4. [7] Let H be a set containing 0, $P_0(H) := \{A \subseteq H : 0 \in A\}$ and $S = \{f | f : H \to P_0(H) \text{ is a function}\}$. Then $\circ_f : H \times H \to P^*(H)$ where

$$x \circ_f y := \begin{cases} f(x), & ifx = y, \\ \{x\}, & ifx \neq y. \end{cases}$$

is a hyperoperation. Moreover, the following statements are equivalent:

- (1) $(H, o_f, 0)$ is a hyper K-algebra,
- (2) $f(x) o_f y = f(x)$ for all $y \neq x, y \in H$,

(3) $x \neq y$ and $y \in f(x)$ imply $y \in f(y)$ and $f(y) \subseteq f(x)$.

This hyper K-algebra is called a quasi union hyper K-algebra.

Theorem 2.5. [7] Let $(H, \circ, 0)$ be a quasi union hyper K-algebra. Then the following statements are equivalent:

- (1) H is a positive implicative hyper K-algebra,
- (2) $f(x) = \{0\}$ or $f(x) = \{0, x\}$ for all $x \in H$,
- (3) H is a hyper BCK-algebra.

Definition 2.6. [2, 9] Let I be a subset of a hyper K-algebra containing 0. Then I is said to be a hyper K-ideal (weak hyper K-ideal) of H if $x \circ y < I$ ($x \circ y \subseteq I$) and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Notation: Let A and I be nonempty subsets of a hyper K-algebra H. We set $AR_1I := A \subseteq I$, $AR_2I := A \cap I \neq \emptyset$, and $AR_3I := A < I$.

Definition 2.7. [1] A nonempty subset of a hyper K-algebra H such that $0 \in I$, for all $x, y, z \in H$, and $i, j, k \in \{1, 2, 3\}$ is said to be

- (1) implicative hyper K-ideal of H if $((x \circ z) \circ (y \circ x)) < I, z \in I \Rightarrow x \in I$,
- (2) positive implicative hyper K-ideal of type (i, j, k) if $(x \circ y) \circ zR_iI$ and $y \circ zR_jI$ imply that $x \circ zR_kI$,
- (3) commutative hyper K-ideal of type (i, j) if $(x \circ y) \circ zR_iI$, $z \in I$ imply that $x \circ (y \circ (y \circ x))R_jI$.

Theorem 2.8. [1] Let I be a hyper K-ideal of hyper K-algebra H. Then I is an implicative hyper K-ideal iff $x \circ (y \circ x) < I$ implies that $x \in I$, for any $x, y \in H$.

3. O-UNION AND O-DECOMPOSITION ON THE HYPER K-ALGEBRAS

In this section, at first we define O-union of two hyper K-algebras and O-decomposition of a hyper K-algebra into two hyper K-algebras, and then we study transferable properties on O-Union (decomposition) hyper K-algebras.

Definition 3.1. Let $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ are two hyper K-algebras and $\circ := \circ_1 \cup \circ_2$ i.e. $x \circ y = (x \circ_1 y) \cup (x \circ_2 y)$. If $(H, \circ, 0)$ be a hyper K-algebra then we say $(H, \circ, 0)$ is O-union of two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. Moreover, a hyper K-algebra $(H, \circ, 0)$ is called O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ if $\circ = \circ_1 \cup \circ_2$, for all $x, y \in H$. If \circ be different from \circ_1 and \circ_2 , we say that $(H, \circ, 0)$ is a proper O-decomposition.

Example 3.2. The hyper K-algebra $(H, \circ, 0)$

0	0	1	2
0	{0}	$\{0,1,2\}$	$\{0,1,2\}$
1	$\{1\}$	$\{0,1,2\}$	$\{0,1,2\}$
2	$\{2\}$	$\{1,2\}$	$\{0,1,2\}$

can be O-decomposed into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ as follows:

\circ_1	0	1	2	\circ_2	0	1	2
0	{0}	$\{0,1,2\}$	$\{0,1,2\}$	0	{0}	$\{0,1,2\}$	$\{0,1,2\}$
1	{1}	$\{0,2\}$	$\{0,1,2\}$	1	{1}	$\{0,1,2\}$	$\{0,2\}$
2	$\{2\}$	$\{2\}$	$\{0,1,2\}$	2	$\{2\}$	$\{1,2\}$	$\{0,1,2\}$

The O-decomposition of a hyper K-algebra $(H, \circ, 0)$ is not unique, since the hyper K-algebra $(H, \circ, 0)$ in example 3.2 is O-decomposed as follows:

\circ_3	0	1	2	\circ_4	0	1	2
0	{0}	$\{0,1\}$	{ 0,1}	0	{0}	$\{0,1,2\}$	$\{0,1,2\}$
1	{1}	$\{0,1\}$	$\{0\}$	1	$\{1\}$	$\{0,1,2\}$	$\{1,2\}$
2	{2}	$\{2\}$	$\{0,1\}$	2	$\{2\}$	$\{1,2\}$	$\{0,2\}$

The following example shows that a hyper K-algebra $(H, \circ, 0)$ can not be O-decomposed into two proper hyper K-algebras.

Example 3.3.

0	0	1	2	\circ_1	0	1	2	\circ_2	0	1	2
0	{0}	{0}	{0}	0	{0}	{0}	{0}	 0	{0}	{0}	{0}
1	$\{1\}$	$\{0,\!1\}$	$\{1\}$	1	{1}	$\{0\}$	$\{1\}$	1	{1}	$\{0,\!1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	2	$ \{2\}$	$\{2\}$	$\{0\}$	2	$\{2\}$	$\{2\}$	$\{0\}$

The following example shows that O-union of two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ is not a hyper K-algebra.

Example 3.4. Let $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ are hyper K-algebras as follows. Then $(H, \circ, 0)$, the O-union of them is not hyper K-algebra, because 1 < 2, 2 < 1 but $1 \neq 2$.

\circ_1	0	1	2	\circ_2	0	1	2	0	0	1	2
0	{0}	$\{0\}$	{0}	0	{0}	$\{0\}$	$\{0\}$	0	{0}	$\{0\}$	{0}
1	{1}	$\{0\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{0\}$	1	{1}	$\{0,1\}$	$\{0,1\}$
2	$\{2\}$	$\{0,1\}$	$\{0,1,2\}$	2	$\{2\}$	$\{2\}$	$\{0,2\}$	2	$\{2\}$	$\{0,1,2\}$	$\{0,\!1,\!2\}$

Theorem 3.5. Any O-union of two quasi union hyper K-algebras is a quasi union hyper K-algebra.

Proof. Suppose $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ are two quasi union hyper K-algebras, therefore there are two functions $f, g: H \to P_0(H)$ and $\circ: H \times H \to P^*(H)$ such that

$$x \circ_f y := \begin{cases} (f \cup g)(x) &, ifx = y; \\ \{x\} &, ifx \neq y. \end{cases}$$

It is clear that \circ is a hyperopration, we show that H is a quasi union hyper K-algebra. Let $y \in (f \cup g)(x) = (x \circ_1 x) \cup (x \circ_2 x)$ for any $x, y \in H$. So $y \in x \circ_1 x$ or $y \in x \circ_2 x$. Since

 $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ are two quasi union hyper K-algebras, we get $y \in y \circ_1 y \subseteq x \circ_1 x$ or $y \in y \circ_2 y \subseteq x \circ_2 x$. Therefore $y \in (f \cup g)(y) \subseteq (f \cup g)(x)$, and the proof is completed. \Box

Theorem 3.6. Let $(H, \circ, 0)$ be a hyper K-algebra such that $x \in x \circ y$ for all $x, y \in H$. Then H is O-decomposition into a positive implicative hyper BCK-algebra $(H, \circ_1, 0)$ and a hyper K-algebra $(H, \circ_2, 0)$.

Proof. Let $(H, \circ, 0)$ be a hyper K-algebra, since $x \in x \circ y$ we can define $\circ_1 : H \times H \to H$ as follows:

$$x \circ_1 y := \begin{cases} \{x\} &, if x \neq y; \\ \{0\} &, if x = y. \end{cases}$$

It is clear that $(H, \circ_1, 0)$ is a quasi union hyper K-algebra. By Theorem 2.5(1) and (2), $(H, \circ_1, 0)$ is a positive implicative hyper BCK-algebra. So $(H, \circ, 0)$ is written as O-decomposition into a hyper BCK-algebra $(H, \circ_1, 0)$ and at least a hyper K-algebra $(H, \circ_2, 0)$ where $\circ_2 = \circ$.

Example 3.7. The hyper K-algebra $(H, \circ, 0)$ with following cayley table is O-decomposition into a hyper BCK-algebra $(H, \circ_1, 0)$ and a proper hyper K-algebra $(H, \circ_2, 0)$.

0	0	1	2	\circ_1	0	1	2	\circ_2	0	1	2
0	{0}	$\{0\}$	{0}	0	{0}	{0}	{0}	0	{0}	$\{0\}$	$\{0\}$
1	{1}	$\{0,1\}$	$\{0,1\}$	1	{1}	$\{0\}$	$\{1\}$	1	$\{1\}$	$\{0,1\}$	$\{0\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$	2	$\{2\}$	$\{2\}$	$\{0\}$	2	$\{2\}$	$\{2\}$	$\{0,2\}$

The following example shows that the condition $x \in x \circ y$ in the theorem 3.6 is necessary.

Example 3.8. By the following cayley table, $(H, \circ, 0)$ is a hyper K-algebra,

0	0	1	2	3
0	{0}	$\{0\}$	$\{0\}$	{0}
1	$\{1\}$	$\{0,1\}$	$\{1,3\}$	$\{2\}$
2	$\{2\}$	$\{0,2\}$	$\{0,2\}$	$\{2\}$
3	{3}	{3}	{3}	{0}

If $\circ = \circ_1 \cup \circ_2$ then there are 36 hyper oprations on H for \circ_1 as follows:

\circ_1	0	1	2	3
0	{0}	$\{0\}$	$\{0\}$	$\{0\}$
1	{1}	$\{0\} \text{ or } \{0,1\}$	$\{1\} \text{ or } \{3\} \text{ or } \{1,3\}$	$\{2\}$
2	{2}	$\{0\}$ or $\{2\}$ or $\{0,2\}$	$\{0\}$ or $\{0,2\}$	$\{2\}$
3	{3}	$\{3\}$	$\{3\}$	$\{0\}$

by checking all these cases, we see that $(H, \circ_1, 0)$ is not a hyper BCK-algebra. So $(H, \circ, 0)$ is not written as O-decomposition into a BCK-algebra and a hyper K-algebra.

4. TRANSFERABLE PROPERTIES

In this section we study transferable properties on O-Union (decomposition) hyper Kalgebras.

Theorem 4.1. Let $(H, \circ, 0)$ be O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. Then S is subalgebra of $(H, \circ, 0)$ if and only if S is subalgebra of $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$.

Proof. It is clear.

Theorem 4.2. Let $(H, \circ, 0)$ be O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. Then I is a weak hyper K-ideal of $(H, \circ, 0)$ if and only if I is a weak hyper K-ideal of $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$.

Proof. Suppose I be a weak hyper K-ideal of $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$, $x \circ y \subseteq I$ and $y \in I$. Then $x \circ_1 y \subseteq I$ and $x \circ_2 y \subseteq I$ for all $x, y \in H$. Since I is a weak hyper K-ideal of $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$ then $x \in I$.

Conversely, suppose I be a weak hyper K-ideal of $(H, \circ, 0)$ and $x \circ_1 y \subseteq I$ or $x \circ_2 y \subseteq I$ and $y \in I$. If $x \circ_i y \notin I$ for some $i \in \{1, 2\}$, then I is a weak hyper K-ideal of $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$, otherwise $x \circ_i y \subseteq I$ for any $i \in \{1, 2\}$ and we have $x \circ y = x \circ_1 y \cup x \circ_2 y \subseteq I$, therefore $x \in I$.

Theorem 4.3. Let $(H, \circ, 0)$ is O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. Then

- (1) If e be a upper bound of $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, then e is a upper bound of H.
- (2) If I be a hyper K-ideal of $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, then I is a hyper K-ideal of H.
- (3) If I be an implicative hyper K-ideal of $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, then I is an implicative hyper K-ideal of H.

Proof. (1): By hypothesis we have $0 \in x \circ_1 e$ and $0 \in x \circ_2 e$ for all $x \in H$. So $0 \in x \circ e$ and e is a upper bound of H.

(2): Let $x \circ y < I$ and $y \in I$, so $x \circ_1 y < I$ or $x \circ_2 y < I$, since I is hyper K-ideal of $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ we get $x \in I$.

(3): Let $x \circ (y \circ x) < I$, so $x \circ_1 (y \circ_1 x) < I$ or $x \circ_2 (y \circ_2 x) < I$, by assumption we have $x \in I$.

The following example shows that the converse of theorem 4.3(1) is not true in general.

Example 4.4. Let $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ are hyper K-algebras as follows and $(H, \circ, 0)$ be O-union of them. Then the two hyper K-algebras are not bounded but 1 is a upper bound of $(H, \circ, 0)$.

\circ_1	0	1	-	2	3	\circ_2	0	1	2	3
0	{0}	$\{0\}$	{()}	{0}	0	{0}	$\{0\}$	$\{0\}$	$\{0\}$
1	{1}	$\{0,1\}$	{	1}	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{0\}$	{0	,2}	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,\!2\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{0,\}$	1,3	$\{0,1,3\}$	3	{3}	$\{0,1,2\}$	$\{0,1,3\}$	$\{0,1,2,3\}$
			0	0	1		2	3		
			0	{0}	{0}		{0}	{0}		
			1	{1}	$\{0,1\}$	-	$\{1\}$	$\{1\}$		
			2	$\{2\}$	$\{0,2\}$	{	$0,2\}$	$\{2\}$		
			3	{3}	$\{0,1,2,3\}$	{0	$,1,3\}$	$\{0,1,2,3\}$		

The following example shows that, in the theorem 4.3 (2) and (3) we can not use "or" instead of "and".

Example 4.5. Let $(H, \circ, 0)$, $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ be as follows. Then $I = \{0, 1\}$ is a hyper K-ideal of $(H, \circ_1, 0)$, but I is not a hyper K-ideal of $(H, \circ_2, 0)$ and $(H, \circ, 0)$. Also I is an implicative hyper K-ideal of $(H, \circ_1, 0)$ and it is not implicative hyper K-ideal of $(H, \circ_2, 0)$ and $(H, \circ, 0)$. Because $2 \circ_2 (2 \circ_2 2) < I$ but $2 \notin I$.

\circ_1	0	1	2	\circ_2	0	1	2	0	0	1	2
0	{0}	{0}	{0}	0	{0}	{0}	{0}	0	{0}	{0}	{0}
1	{1}	$\{0,1\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$	1	{1}	$\{0,1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	2	$\{2\}$	$\{0\}$	$\{0,2\}$	2	$\{2\}$	$\{0,2\}$	$\{0,2\}$

Theorem 4.6. Let $(H, \circ, 0)$ be O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. Then

- (1) If I be a hyper K-ideal of $(H, \circ, 0)$, then I is a hyper K-ideal of $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$.
- (2) If I be an implicative hyper K-ideal of $(H, \circ, 0)$, then I is an implicative hyper K-ideal of $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$.
- (3) If I be a positive implicative hyper K-ideal of type (i, j, k) in $(H, \circ, 0)$, where $i, j, k \in \{1, 2, 3\}$. Then I is a positive implicative hyper K-ideal of the same type in $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$.

Proof. (1): Suppose $x \circ_1 y < I$ or $x \circ_2 y < I$ and $y \in I$ for all $x, y \in H$, then $x \circ y < I$. Since I is hyper K-ideal of H, we have $x \in I$, i.e. I is a hyper K-ideal of $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$. (2): Suppose $x \circ_1 (y \circ_1 x) < I$ for all $x, y \in H$, then $x \circ (y \circ x) < I$. Since I is an implicative hyper K-ideal of H, by Theorem 2.8, $x \in I$ and I is an implicative hyper K-ideal of $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$.

(3): It is sufficient to prove for type (1, 1, 1), the proof for other types is similar. If $(x \circ_i y) \circ_i z \nsubseteq I$ or $y \circ_i z \nsubseteq I$ for some $i \in \{1, 2\}$, then I is positive implicative hyper K-ideal of type (1, 1, 1) in $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$. Otherwise if $(x \circ_1 y) \circ_1 z \subseteq I$, $(x \circ_2 y) \circ_2 z \subseteq I$, $y \circ_1 z \subseteq I$ and $y \circ_2 z \subseteq I$, then $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$. Since I is a positive implicative hyper K-ideal of type K-ideal of type (1, 1, 1) in (H, \circ, o) , then $x \circ z \subseteq I$ and we get $x \circ_1 z \subseteq I$ and $x \circ_2 z \subseteq I$. Therefore in general I is positive implicative hyper K-ideal of type (1, 1, 1) in (H, \circ_1, o) or (H, \circ_2, o) and the proof is completed. \Box

The following example shows that the converse of theorem 4.6(3) is not true in general.

Example 4.7. Consider the following hyper K-algebras $(H, \circ, 0)$, $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. Then $(H, \circ, 0)$ is O-decomposition into $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, and $I = \{0, 1\}$ is positive implicative hyper K-ideal of type (2, 1, 2) in $(H, \circ_1, 0)$, but I is not positive implicative hyper K-ideal of type (2, 1, 2) in $(H, \circ_2, 0)$, since $(2 \circ_2 1) \circ_2 0 \cap I \neq \emptyset$ and $1 \circ_2 0 \subseteq I$ but $2 \circ_2 0 \cap I = \emptyset$. Hence I is not positive implicative hyper K-ideal of type (2, 1, 2) in H.

0	0	1	2	\circ_1	0	1	2		\circ_2	0	1	2
0	{0}	$\{0,1,2\}$	$\{0,1,2\}$	0	{0}	{0}	$\{0\}$	_	0	{0}	$\{0,1,2\}$	$\{0,1,2\}$
1	{1}	$\{0,2\}$	$\{1,2\}$	1	{1}	$\{0\}$	$\{1\}$		1	{1}	$\{0,2\}$	$\{1,2\}$
2	$\{2\}$	$\{0,1,2\}$	$\{0,1,2\}$	2	$\{2\}$	$\{2\}$	$\{0,2\}$		2	$\{2\}$	$\{0,\!1\}$	$\{0,\!1,\!2\}$

Theorem 4.8. Let $(H, \circ, 0)$ be O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. If I be a positive implicative hyper K-ideal of types (1, 1, 2) and (1, 1, 3) in $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$. Then I is a positive implicative hyper K-ideal of the same type in H.

Proof. Let I is a positive implicative hyper K-ideal of type (1, 1, 2) in $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$, $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$, then $(x \circ_1 y) \circ_1 z \subseteq I$, $(x \circ_2 y) \circ_2 z \subseteq I$, $y \circ_1 z \subseteq I$ and $y \circ_2 z \subseteq I$. By hypothesis we get that $x \circ_1 z \cap I \neq \emptyset$ or $x \circ_2 z \cap I \neq \emptyset$, hence $x \circ z \cap I \neq \emptyset$ and I is a positive implicative hyper K-ideal of type (1, 1, 2) in $(H, \circ, 0)$. The proof for type (1, 1, 3) is similar.

Theorem 4.9. Let $(H, \circ, 0)$ be O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. If I be a positive implicative hyper K-ideal of type (1, 1, 1), (1, j, k) or (i, 1, k)

where $i, j \in \{1, 2, 3\}$ and $k \neq 1$ in $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. Then I is a positive implicative hyper K-ideal of the same type in H.

Proof. Let *I* is a positive implicative hyper K-ideal of type (1, 1, 1) in $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, $(x \circ y) \circ z \subseteq I$ and $y \circ z \subseteq I$, so $(x \circ_1 y) \circ_1 z \subseteq I$, $(x \circ_2 y) \circ_2 z \subseteq I$, $y \circ_1 z \subseteq I$ and $y \circ_2 z \subseteq I$. Since *I* is a positive implicative hyper K-ideal of type (1, 1, 1) in $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, we have $x \circ_1 z \subseteq I$ and $x \circ_2 z \subseteq I$, so $x \circ z \subseteq I$. The proof for the others is similar. \Box

Theorem 4.9 is not true for other cases, the following example shows this for type (2, 2, 3).

Example 4.10. The hyper K-algebra $(H, \circ, 0)$ is O-decomposition into $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ as follows and $I = \{0, 1\}$ is a positive implicative of type (2, 2, 3) in $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, but I is not a positive implicative of type (2, 2, 3) in H. Since $(2 \circ 3) \circ 1 \cap I \neq \emptyset$, $3 \circ 1 \cap I \neq \emptyset$ and $2 \circ 1 \neq I$.

			• C) 1	2	3			
			0 {0	$\{0\}$	{0}	{0	}		
			$1 \{1$	$\{0,1\}$	$\{1\}$	{1	}		
			$2 \{2$	$\{2\} = \{2\}$	$\{0,2\}$	$\{0,1$	$,2\}$		
			$3 \{3$	$\{0,3\}$	$\{3\}$	$\{0,$	3}		
\circ_1	0	1	2	3	\circ_2	0	1	2	3
0	{0}	{0}	{0}	{0}	0	{0}	{0}	{0}	{0}
1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$	1	$\{1\}$	$\{0,\!1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$	$\{2\}$	2	$\{2\}$	$\{2\}$	$\{0,2\}$	$\{0,1\}$
3	{3}	$\{0\}$	$\{3\}$	$\{0,3\}$	3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,3\}$

Theorem 4.11. Let $(H, \circ, 0)$ be O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ and the nonempty subset I of H be a commutative hyper K-ideal of type $(i, j); i, j \in \{1, 2, 3\}$ in H. Then I is a commutative hyper K-ideal of type (i, j) in $(H, \circ_1, 0)$ or $(H, \circ_2, 0)$.

Proof. We prove theorem for type (2, 2) and the proof for the other types is similar. Let $(x \circ_1 y) \circ_1 z \cap I \neq \emptyset$ or $(x \circ_1 y) \circ_1 z \cap I \neq \emptyset$ and $z \in I$, so $(x \circ y) \circ z \cap I \neq \emptyset$. Since I is a commutative hyper K-ideal of type (2, 2) in H, we have $x \circ (y \circ (y \circ x)) \cap I \neq \emptyset$. Thus $x \circ_1 (y \circ_1 (y \circ_1 x)) \cap I \neq \emptyset$ or $x \circ_2 (y \circ_2 (y \circ_2 x)) \cap I \neq \emptyset$.

Theorem 4.12. Let $(H, \circ, 0)$ be O-decomposition into two hyper K-algebras $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$ and the nonempty subset I of H be a commutative hyper K-ideal of type (1, 1) or $(i, j); i \in \{1, 2, 3\}, j \in \{2, 3\}$ in $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, then I is a commutative hyper K-ideal of the same type in H.

Proof. We prove theorem for type (1,1) and the proof for the other types is similar. Let $(x \circ y) \circ z \subseteq I$ and $z \in I$. So $(x \circ_1 y) \circ_1 z \subseteq I$ and $(x \circ_2 y) \circ_2 z \subseteq I$. Since I is a commutative hyper K-ideal of type (1,1) in $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, we have $x \circ_1 (y \circ_1 (y \circ_1 x)) \subseteq I$ and $x \circ_2 (y \circ_2 (y \circ_2 x)) \subseteq I$. Finally $x \circ (y \circ (y \circ x)) \subseteq I$ and I is a commutative hyper K-ideal of type (1,1) in H.

The following example shows that, in the theorem 4.12 we can not use "or" instead of "and".

Example 4.13. Consider the following hyper K-algebras $(H, \circ, 0)$, $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$. Then $(H, \circ, 0)$ is O-decomposition into $(H, \circ_1, 0)$ and $(H, \circ_2, 0)$, and $I = \{0, 1\}$ is a commutative hyper K-ideal of type (1, 1) in $(H, \circ_1, 0)$, but I is not commutative hyper K-ideal of type (1,1) in $(H, \circ_2, 0)$. Since $(1 \circ_2 0) \circ_2 0 \subseteq I$ and $1 \circ_2 (0 \circ_2 (0 \circ_2 1)) = \{0,1,2\} \nsubseteq I$. Finally $(1 \circ 0) \circ 0 \subseteq I$ but $1 \circ (0 \circ (0 \circ 1)) = \{0,1,2\} \nsubseteq I$, so I is not a commutative hyper K-ideal of type (1,1) in H.

0	0	1	2	\circ_1	0	1	2		\circ_2	0	1	2
0	{0}	$\{0,1,2\}$	$\{0,1,2\}$	0	{0}	{0}	$\{0\}$	-	0	{0}	$\{0,1,2\}$	$\{0,1,2\}$
1	{1}	$\{0,1,2\}$	$\{0,1,2\}$	1	{1}	$\{0\}$	$\{1\}$		1	{1}	$\{0,1,2\}$	$\{0,2\}$
2	$\{2\}$	$\{1,2\}$	$\{0,1,2\}$	2	$\{2\}$	$\{2\}$	$\{0,2\}$		2	$\{2\}$	$\{1,2\}$	$\{0,1,2\}$

References

- A. Borumand Saeid, R. A. Borzooei and M. M. Zahedi, (Weak) implicative hyper K-ideal, Bull, Korean Mathematics Soc, 40 (2003), 123-137.
- [2] R. A. Borzooei, A. Hasankhani, M. M. Zahedi, and Y.B. Jun, On hyper K-algebras, Mathematica Japonicae, no. 1, 52 (2000), 113-121.
- [3] Y. Imai and K. Iséki, On axiom systems of propositional calculi xiv, Proc. Japan Academi, no. 42, (1966), 19-22.
- [4] Y. B. Jun, X. L. Xin, E. H. Roh, and M. M. Zahedi, Strong on hyper BCK-ideals of hyper BCK-algebras, Math. Japon. no. 3, 51 (2000), 493-498.
- [5] F. Marty, Sur une generalization de la notion de group, 8th congress Math Scandinavies, Stockhholm (1934), 45-49.
- [6] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co, 1994.
- [7] M. A. Nasr-Azadani and M. M. Zahedi, Quasi union hyper K-algebras, Quasigroups and Related systems, 16 (2008), 77-88.
- [8] T. Roodbari and M. M. Zahedi, Positive implicative hyper K-algebras, Quasigroups and Related systems, (2007), 507-520.
- [9] M. M. Zahedi, R. A. Borzooei, Y. B. Jun, and A. Hasankhani, Some results on hyper K-algebra, Scientiae Mathematicae, no. 1, 3 (2000), 53-59.

Communicated by Jair Minoro Abe

Department of Mathematics, Shahed University, Tehran, Iran, S.madadi@shahed.ac.ir, Department of Mathematics, Shahed University, P.O.Box 18151-159, Tehran, Iran, nasr@shahed.ac.ir.