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Abstract. It is well known that the meaning of the convergence in posets stings the
interest of many investigators such as R. F. Anderson, J. C. Mathews and V. Olejc̆ek
(see, for example [13,14]). Among others, the notions of the order-convergence and of
the o2-convergence in posets were studied in details, presenting necessary and sufficient
conditions under of which these convergences are topological. Many researchers give a
special attention to the study of these convergences in different posets, inserting new
knowledge in the classical theory of posets’s convergence. In this paper, we introduce
the ideal-order-convergence in posets, proving results which are based on this notion.
We insert topologies in posets and we study their properties. We also give a sufficient
and necessary condition for the ideal-order-convergence in a poset to be topological.
The introduction of a weaker form of the ideal-order-convergence in posets, called
ideal-o2-convergence, completes our study.

Introduction

The order-convergence in posets was introduced by G. Birkhoff [1]. In general, the
order-convergence is not topological, that is a poset X may not have a topology τ so that
nets order-converge if and only if they converge with respect to the topology τ on X [14,22].
Then, much attention was paid to those posets in which the order-convergence is topological
[15–17,23]. Also, modifications of the order-convergence was studied in [13,18,20,22,23].

Meanwhile with the study of the order-convergence in posets, the notion of the o2-
convergence was communicated by the authors in [13, 18]. In fact, the o2-convergence is a
generalization of the order-convergence and, as the order-convergence, the o2-convergence
is also, not topological in general. Also in [20], many sufficient and necessary conditions
were given so that this kind of convergence be topological.

On the other hand, in recent years, a lot of papers have been written on statistical
convergence and ideal convergence in metric and topological spaces (see, for instance, [2,3,
7–9,12]).

In the present paper we introduce and study the notion of convergence of nets in posets
via an ideal. We proceed with the following enumeration: In Section 1, we recall some
definitions which will be used in the rest of the paper. In Section 2, we define the notion of
the ideal-order-convergence in posets proving classical results for the notion of convergence.
In Section 3, we introduce topologies in posets and we give a sufficient and necessary
condition for the ideal-order-convergence in a poset to be topological. In Section 4, we
study the ideal-order-convergence in Cartesian products of posets. Finally, in Section 5, the
concepts of the ideal-o2-convergence and the topological ideal-o2-convergence in posets are
developed.

1 Preliminaries

In this section we recall some definitions that are needed in the sequel and we refer
to [1] for more details. We shall frequently denote posets by their underlying sets, and we
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write X for (X,6). We will also use the following symbols (a, b) = {x ∈ X : a < x < b},
[a, b] = {x ∈ X : a 6 x 6 b}, (a, b] = {x ∈ X : a < x 6 b}, and [a, b) = {x ∈ X : a 6 x < b}.
In addition, by writing A ⊆fin B we mean that the set A is a finite subset of the set B.

(1) A subset A of a poset X is said to be directed if A 6= ∅, and for any a1, a2 ∈ A there
exists a ∈ A such that a1 6 a and a2 6 a.

(2) A subset A of a poset X is said to be filtered if A 6= ∅, and for any a1, a2 ∈ A there
exists a ∈ A such that a 6 a1 and a 6 a2.

If (D1,61) and (D2,62) are directed sets, then the Cartesian product D1×D2 is directed
by 6, where (d1, d2) 6 (d′1, d

′
2) if and only if d1 61 d

′
1 and d2 62 d

′
2.

A net in a set X is an arbitrary function x from a non-empty directed preordered set D
to X. If x(d) = xd, for all d ∈ D, then the net x will be denoted by the symbol (xd)d∈D.

Let X be a topological space. A net (xd)d∈D in X is said to topology-converge to a point
x ∈ X, if for every open neighborhood U of x, xd ∈ U eventually. In this case we write

(xd)d∈D
t−→ x.

A net (yλ)λ∈Λ in X is said to be a semi-subnet of the net (xd)d∈D in X if there exists
a function ϕ : Λ→ D such that y = x ◦ ϕ, or equivalently, yλ = xϕ(λ) for every λ ∈ Λ. We
write (yλ)ϕλ∈Λ to indicate the fact that ϕ is the function mentioned above.

A family I of subsets of a non-empty set D is called an ideal if I has the following
properties:

(1) ∅ ∈ I.

(2) If A ∈ I and B ⊆ A, then B ∈ I.

(3) If A,B ∈ I, then A ∪B ∈ I.

The ideal I is called non-trivial if D /∈ I.
Suppose that (yλ)ϕλ∈Λ is a semi-subnet of the net (xd)d∈D in X. For every ideal I of the

directed set D, we consider the family {A ⊆ Λ : ϕ(A) ∈ I}. This family is an ideal on Λ
which will be denoted by IΛ(ϕ).

A filter F in a non-empty set X is a family of subsets of X that has the following
properties:

(1) X ∈ F .

(2) If A ∈ F and B ⊇ A, then B ∈ F .

(3) If A,B ∈ F , then A ∩B ∈ F .

If ∅ /∈ F , we say that F is a proper filter.
Given a filter F on a set X, let M = {(x, F ) ∈ X×F : x ∈ F} and for (x, F ), (y,G) ∈M

define (x, F ) > (y,G) if and only if F ⊆ G. It is easily seen that > directs M . The map
sF : M → X with sF (x, F ) = x, is a net in X, which is called the net associated with F . If

(X, τ) is a topological space, then F t−→ x ∈ X with respect to τ if and only if sF
t−→ x with

respect to τ .
Dually, given a net s : M → X on a set X, define

Fs = {F ⊆ X : {s(m) : m > m0} ⊆ F for some m0 ∈M}.

Then Fs is a filter on X, which is called the filter associated with s. If (X, τ) is a topological

space, then s
t−→ x with respect to τ if and only if Fs

t−→ x with respect to τ .

Definition 1.1 [9] Let X be a topological space. A net (xd)d∈D in X is said to I-topology-
converge to a point x ∈ X, where I is an ideal on D, if for every open neighborhood U of

x, {d ∈ D : xd /∈ U} ∈ I. In this case we write (xd)d∈D
I−t−−→ x.
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Definition 1.2 [1] Let X be a poset. A net (xd)d∈D in X is said to order-converge to a
point x ∈ X if there exist subsets A and B of X such that:

(1) A is directed and B is filtered.

(2) x =
∨
A =

∧
B.

(3) For every a ∈ A and b ∈ B, there exists d0 ∈ D such that a 6 xd 6 b hold for all
d > d0.

In this case we write (xd)d∈D
o−→ x.

Given a poset X, by T oX we denote the set consisting of all subsets U of X satisfying

the following property: If (xd)d∈D
o−→ x ∈ U , then there exists d0 ∈ D such that xd ∈ U for

every d > d0. The set T oX forms a topology on X, which is called the order topology on X
(see [21,23]).

Definition 1.3 [19] Let X be a poset and x, y, z ∈ X. We define:

(1) x � y, if for any directed subset A ⊆ X, for which
∨
A exists and y 6

∨
A, there is

a ∈ A such that x 6 a.

(2) z � y, if for any filtered subset B ⊆ X, for which
∧
B exists and

∧
B 6 y, there is

b ∈ B such that b 6 z.

Clearly, if x, y, z ∈ X, then the following implications hold: x � y ⇒ x 6 y, and z � x ⇒
z > x.

Definition 1.4 [19] A poset X is called doubly continuous if for each element x ∈ X, the
set {a ∈ X : a� x} is directed, the set {b ∈ X : b� x} is filtered and

x =
∨
{a ∈ X : a� x} =

∧
{b ∈ X : b� x}.

Definition 1.5 [23] The order-convergence in a poset X is called topological, if there exists

a topology τ on X such that for every net (xd)d∈D in X and x ∈ X we have (xd)d∈D
o−→ x

if and only if (xd)d∈D
t−→ x with respect to τ .

Proposition 1.6 [23] Let X be a complete lattice. If X satisfies the two infinite dis-
tributivity (the meet-infinite distributivity and the join-infinite distributivity) laws, then
the following are equivalent:

(1) The order-convergence on X is topological.

(2) X is doubly continuous.

(3) X is a completely distributive lattice.

In the next we recall some definitions and results from [16].

Definition 1.7 Let X be a poset and x, y, z ∈ X. We define:

(1) x �S y, if for every directed subset D of X with
∨
D = y, there exists d ∈ D such

that x 6 d.

(2) z �S y, if for every filtered subset G of X with
∧
G = y, there exists g ∈ G such that

z > g.

Clearly, if x, y, z ∈ X, then the following implications hold: x � y ⇒ x �S y ⇒ x 6 y,
and z � x⇒ z �S x⇒ z > x. Also for a poset X and x ∈ X we use the following symbols:
⇓Sx = {a ∈ X : a �S x}, ⇑Sx = {b ∈ X : x �S b}, ↓↓Sx = {c ∈ X : x �S c} and
↑↑Sx = {d ∈ X : d�S x}.

Convergence of nets in posets via an ideal
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Definition 1.8 A poset X is called

(1) S-doubly continuous if for each element x ∈ X, the sets ⇓Sx and ↑↑Sx are directed
and filtered, respectively and

∨
⇓Sx =

∧
↑↑Sx = x, and

(2) S∗-doubly continuous if it is S-doubly continuous, and for every x ∈ X, y ∈ ⇓Sx and
z ∈ ↑↑Sx, there exist y0 ∈ ⇓Sx and z0 ∈ ↑↑Sx such that [y0, z0] ⊆ ⇑Sy ∩ ↓↓Sz.

Proposition 1.9 If X is a doubly continuous poset, then X is S∗-doubly continuous.

Definition 1.10 Let X be a poset.

(1) A filter F in X order-converges to x in the sense of Birkhoff if there exist a directed
set D and a filtered set G such that

∨
D = x =

∧
G and [a, b] ∈ F for all a ∈ D and

b ∈ G. In this case, we write F O−→ x.

(2) A subset U of X is called a B-open set if for any filter F that order converges to
x ∈ U , there exists F ∈ F such that F ⊆ U . The set TX of all B-open subsets of X
forms a topology on X, which is called the B-topology on X.

Proposition 1.11 Let X be a poset and U ⊆ X. Then, U ∈ TX if and only if for any
directed subset D of X and any filtered subset G of X with

∨
D =

∧
G = x ∈ U , there

exist d0 ∈ D and g0 ∈ G such that [d0, g0] ⊆ U .

Theorem 1.12 For a poset X, the order-convergence in X is topological if and only if X
is an S∗-doubly continuous poset.

2 Ideal-oder convergence

In this section we introduce the ideal-order-convergence in posets and prove some of its
properties.

Definition 2.1 Let X be a poset. A net (xd)d∈D in X is said to I-order-converge to a
point x ∈ X, where I is an ideal on D, if there exist subsets A and B of X such that:

(1) A is directed and B is filtered.

(2) x =
∨
A =

∧
B.

(3) For every a ∈ A and b ∈ B, {d ∈ D : xd /∈ [a, b]} ∈ I.

Notation 2.2 Let (xd)d∈D be a net in a poset X and let I be a non-trivial ideal on D.
If (xd)d∈D I-order-converges to x ∈ X, then the point x is called the I-o-limit of the net

(xd)d∈D. In this case we write (xd)d∈D
I−o−−−→ x.

The ideal-convergences with respect to non-trivial ideals can be reduced to convergences
of semi-subnets. More precisely, the following fact holds:

Proposition 2.3 Let (xd)d∈D be a net in a poset X and I a non-trivial ideal on D. Then
there exists a semi-subnet (yλ)ϕI

λ∈ΛI
of (xd)d∈D such that for every A ⊆ X,

{d ∈ D : xd /∈ A} ∈ I if and only if there exists λ0 ∈ ΛI such that yλ ∈ A for all λ > λ0.

In particular, for x ∈ X and a topology τ on X,

(1) (xd)d∈D
I−t−−→ x with respect to τ if and only if (yλ)ϕI

λ∈ΛI

t−→ x with respect to τ .

(2) (xd)d∈D
I−o−−−→ x if and only if (yλ)ϕI

λ∈ΛI

o−→ x.
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Proof. Set ΛI = {(d, I) ∈ D × I : d /∈ I} and define a preorder 6 on ΛI by letting
(d, I) 6 (d′, I ′) if and only if I ⊆ I ′ for (d, I), (d′, I ′) ∈ ΛI . Since I is non-trivial, (ΛI ,6)
is directed. Let ϕI : ΛI → D such that (d, I) 7→ d be the projection. Then the semi-subnet
(yλ)ϕI

λ∈ΛI
of (xd)d∈D is as required. Indeed, let {d ∈ D : xd /∈ A} ∈ I for some A ⊆ X. If

we set I0 = {d ∈ D : xd /∈ A} and λ0 = (d0, I0), then for each λ = (d, I) > λ0 (i.e. I ⊇ I0)
we have yλ = xd ∈ A.

Conversely, let that for some A ⊆ X there exists λ0 = (d0, I0) ∈ ΛI such that yλ = xd ∈
A for all λ = (d, I) > λ0. Then {d ∈ D : xd /∈ A} ⊆ I0 ∈ I.
(1) Take A = U an arbitrary τ -open neighborhood of x.
(2) Take A = [a, b] an arbitrary interval. 2

Proposition 2.4 Suppose that the net (xd)d∈D in X I-order-converges to x, y ∈ X, where
I is a non-trivial ideal on D. Then, x = y.

Proof. It follows directly from Proposition 2.3 and the fact that a limit of order-convergence
is uniquely determined (see Remark 1 in p.15 of [11]). 2

Example 2.5 Let (xd)d∈D be a net in a poset X and x ∈ X. We consider the family

{A ⊆ D : A ⊆ {d ∈ D : d � d0} for some d0 ∈ D}.

This family is a non-trivial ideal on D which will be denoted by ID. The net (xd)d∈D

order-converges to x if and only if (xd)d∈D
ID−o−−−−→ x.

Example 2.6 Let X = {x} ∪ {ai : i ∈ N}, where N denotes the set of all natural numbers.
The order 6 on X is defined as follows:

(O1) ai < x, for every i ∈ N.

(O2) For all i, j ∈ N, if i < j, then ai < aj .

Then, (ai)i∈N
o−→ x. Indeed, for the subsets A = {ai : i ∈ N} and B = {x} of X we have:

(1) A is directed and B is filtered.

(2) x =
∨
A =

∧
B.

(3) For every i ∈ N, there exists j0 ∈ N (j0 = i) such that ai 6 aj 6 x hold for all j > j0.

Generally, for every admissible ideal I on N, namely, I contains all finite subsets of N, we

have (ai)i∈N
I−o−−−→ x. Let Ie be the ideal of even numbers on N. Then, the net (ai)i∈N does

not Ie-order-converge to x.

Proposition 2.7 If (xd)d∈D is a net with xd = x for every d ∈ D, then (xd)d∈D
I−o−−−→ x

holds for every ideal I of D.

Proof. The sets A = B = {x} satisfy the conditions of Definition 2.1. Particularly, for the
condition (3) we have {d ∈ D : xd = x /∈ {x}} = ∅ ∈ I. 2

Proposition 2.8 If (xd)d∈D
I−o−−−→ x, then for every semi-subnet (yλ)ϕλ∈Λ of the net (xd)d∈D

we have (yλ)ϕλ∈Λ

IΛ(ϕ)−o−−−−−→ x.

Proof. Let (yλ)ϕλ∈Λ be a semi-subnet of the net (xd)d∈D. Suppose that A and B are subsets
of X such that:

(1) A is directed and B is filtered.

Convergence of nets in posets via an ideal
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(2) x =
∨
A =

∧
B.

(3) For every a ∈ A and b ∈ B, {d ∈ D : xd /∈ [a, b]} ∈ I.

It suffices to prove that for every a ∈ A and b ∈ B, {λ ∈ Λ : yλ /∈ [a, b]} ∈ IΛ(ϕ). Let
C = {λ ∈ Λ : yλ /∈ [a, b]}. If C = ∅, then we are done. Suppose that C 6= ∅. We
prove that ϕ(C) ∈ I. Let ϕ(λ) ∈ ϕ(C), where λ ∈ C. Since yλ = xϕ(λ) /∈ [a, b], we
have ϕ(λ) ∈ {d ∈ D : xd /∈ [a, b]} which means that ϕ(C) ⊆ {d ∈ D : xd /∈ [a, b]}. Since
{d ∈ D : xd /∈ [a, b]} ∈ I, ϕ(C) ∈ I. 2

Proposition 2.9 Let X be a poset and x, y, z ∈ X. If y �S x and z �S x, then for
every net (xd)d∈D in X, which I-order-converges to x, where I is a non-trivial ideal on D,
{d ∈ D : xd /∈ [y, z]} ∈ I.

Proof. Let y �S x, z�S x and (xd)d∈D be a net in X which I-order-converges to x, where
I is a non-trivial ideal on D. Then, there exist subsets A and B of X such that:

(1) A is directed and B is filtered.

(2) x =
∨
A =

∧
B.

(3) For each a ∈ A and b ∈ B, {d ∈ D : xd /∈ [a, b]} ∈ I.

Since y �S x, there exists a0 ∈ A such that y 6 a0 and since z�Sx, there exists b0 ∈ B such
that b0 6 z. By assumption, for a0 ∈ A and b0 ∈ B we have that {d ∈ D : xd /∈ [a0, b0]} ∈ I.
Since {d ∈ D : xd /∈ [y, z]} ⊆ {d ∈ D : xd /∈ [a0, b0]}, we have that {d ∈ D : xd /∈ [y, z]} ∈ I.
2

Corollary 2.10 Let X be a poset and x, y, z ∈ X. If y � x and z � x, then for every
net (xd)d∈D in X, which I-order-converges to x, where I is a non-trivial ideal on D,
{d ∈ D : xd /∈ [y, z]} ∈ I.

Proposition 2.11 Let X be a S-doubly continuous poset, (xd)d∈D be a net in X, x ∈ X,
and I be a non-trivial ideal on D. If for every y, z ∈ X with y �S x and z �S x we have

{d ∈ D : xd /∈ [y, z]} ∈ I, then (xd)d∈D
I−o−−−→ x.

Proof. Is a direct consequence of the Definitions 2.1 and 1.8. 2

Proposition 2.12 Let X be a doubly continuous poset, (xd)d∈D be a net in X, x ∈ X,
and I be a non-trivial ideal on D. If for every y, z ∈ X with y � x and z � x we have

{d ∈ D : xd /∈ [y, z]} ∈ I, then (xd)d∈D
I−o−−−→ x.

Proof. Is a direct consequence of the Definitions 2.1 and 1.4. 2

3 Topologies in posets

In this section we introduce topologies in posets and we give a sufficient and necessary
condition for the ideal-order-convergence in a poset to be topological.

Proposition 3.1 Let X be a set and let CX be a class consisting of triads ((xd)d∈D, x, I),
where (xd)d∈D is a net in X, x ∈ X, and I is a non-trivial ideal on D. The family

{U ⊆ X : {d ∈ D : xd /∈ U} ∈ I for every ((xd)d∈D, x, I) ∈ CX , x ∈ U}

is a topology τ(CX) on X.
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Proof. Obviously ∅ ∈ τ(CX). Moreover, since {d ∈ D : xd /∈ X} = ∅ ∈ I, X ∈ τ(CX).
Let U, V ∈ τ(CX) and ((xd)d∈D, x, I) ∈ CX , x ∈ U ∩ V . Then, {d ∈ D : xd /∈ U} ∈ I and
{d ∈ D : xd /∈ V } ∈ I. Therefore,

{d ∈ D : xd /∈ U ∩ V } = {d ∈ D : xd /∈ U} ∪ {d ∈ D : xd /∈ V } ∈ I

which means that the intersection U ∩ V ∈ τ(CX). Now, let Ui ∈ τ(CX), i ∈ I and
((xd)d∈D, x, I) ∈ CX , x ∈ ∪i∈IUi. Then, {d ∈ D : xd /∈ Ui0} ∈ I for some i0 ∈ I. Since

{d ∈ D : xd /∈ ∪i∈IUi} ⊆ {d ∈ D : xd /∈ Ui0} ∈ I,

we have {d ∈ D : xd /∈ ∪i∈IUi} ∈ I. Hence, ∪i∈IUi ∈ τ(CX). 2

Proposition 3.2 If ((xd)d∈D, x, I) ∈ CX , then (xd)d∈D
I−t−−→ x with respect to τ(CX).

Proof. Let ((xd)d∈D, x, I) ∈ CX and U be an open neighborhood of x. Since x ∈ U ∈ τ(CX),
by the definition of the topology τ(CX), we have {d ∈ D : xd /∈ U} ∈ I. Therefore,

(xd)d∈D
I−t−−→ x with respect to τ(CX). 2

Notation 3.3 For an arbitrary poset X, we denote by CoX the class consisting of triads
((xd)d∈D, x, I), where (xd)d∈D is a net in X, x ∈ X, and I is a non-trivial ideal on D such

that (xd)d∈D
I−o−−−→ x.

Proposition 3.4 Let X be a poset. Then, τ(CoX) = T oX .

Proof. Firstly, we prove that τ(CoX) ⊆ T oX . Let U ∈ τ(CoX) and a net (xd)d∈D
o−→ x ∈ U .

Then by Example 2.5 (xd)d∈D
ID−o−−−−→ x. By the definition of ID it follows that (xd)d∈D is

eventually in U . Thus U ∈ T oX .

We prove the opposite direction T oX ⊆ τ(CoX). Let U ∈ T oX and a net (xd)d∈D
I−o−−−→ x ∈

U , where I is a non-trivial ideal on D. Then by Proposition 2.3 the net (yλ)ϕI
λ∈ΛI

o−→ x.
That is, there exists λ0 ∈ ΛI such that yλ ∈ U for all λ > λ0. Thus {d ∈ D : xd /∈ U} ∈ I,
which means that U ∈ τ(CoX). 2

The following result is a characterization of open sets in T oX .

Lemma 3.5 Let X be a poset and U ⊆ X. Then, U ∈ T oX if and only if for any directed
subset D of X and any filtered subset F of X with

∨
D =

∧
F = x ∈ U , there exist d0 ∈ D

and f0 ∈ F such that [d0, f0] ⊆ U .

Proof. Let U ∈ T oX , D be a directed subset of X, F be a filtered subset of X and
∨
D =∧

F = x ∈ U . Suppose that for each d ∈ D and f ∈ F there exist g(d,f) ∈ X with
d 6 g(d,f) 6 f and g(d,f) /∈ U . The Cartesian product D × F is directed if we define

(d′, f ′) > (d, f) to mean that d′ > d and f ′ 6 f . Then, (g(d,f))(d,f)∈D×F
o−→ x, and,

therefore, the net (g(d,f))(d,f)∈D×F converges to x, with respect to T oX , contradiction. Thus,
for some d0 ∈ D and f0 ∈ F we get [d0, f0] ⊆ U .

Now, let U ⊆ X and suppose that for any directed subset D of X and any filtered subset
F of X with

∨
D =

∧
F = x ∈ U , there exist d0 ∈ D and f0 ∈ F such that [d0, f0] ⊆ U .

Consider a net (xλ)λ∈Λ
o−→ x ∈ U . Then, by Definition 1.2 there exist a directed subset E

of X and a filtered subset G of X with
∨
E =

∧
G = x and for every e ∈ E and g ∈ G,

there exists λe,g ∈ Λ such that xλ ∈ [e, g] for every λ > λe,g. By hypothesis there exist
e0 ∈ E and g0 ∈ G such that [e0, g0] ⊆ U . Consequently, there exists λ0 ∈ Λ such that
xλ ∈ [e0, g0] ⊆ U for every λ > λ0. Hence, by the definition of the topology T oX we have
U ∈ T oX . 2

Convergence of nets in posets via an ideal



8

Lemma 3.6 Let X be a poset and U ⊆ X. Then, U ∈ τ(CoX) if and only if for any directed
subset D of X and any filtered subset F of X with

∨
D =

∧
F = x ∈ U , there exist d0 ∈ D

and f0 ∈ F such that [d0, f0] ⊆ U .

Proof. The proof is similar to the proof of Lemma 3.5. 2

Remark 3.7 We observe that Proposition 3.4 it follows, alternatively, as a direct conse-
quence of the Lemmas 3.5 and 3.6. Also, given a poset X, in view of Lemma 3.5 and
Proposition 1.11 we have that the topology T oX on X is equal to the B-topology on X (see
Definition 1.10).

Corollary 3.8 Let X be a poset. If (xd)d∈D
I−o−−−→ x, then (xd)d∈D

I−t−−→ x with respect to
T oX .

Proof. Is similar to Proposition 3.2. 2

Proposition 3.9 Let X be a poset. The topology T oX is the finest topology τ on X such
that ideal-order-convergence implies ideal-topology-convergence with respect to τ .

Proof. Let τ be a topology on X such that ideal-order-convergence implies ideal-topology-
convergence with respect to τ . We prove that τ ⊆ T oX . Let U ∈ τ . It suffices to prove that
for every ((xd)d∈D, x, I) ∈ CoX , x ∈ U we have that {d ∈ D : xd /∈ U} ∈ I (see Proposition

3.4). Let ((xd)d∈D, x, I) ∈ CoX . Then, (xd)d∈D
I−o−−−→ x and, by assumption, (xd)d∈D

I−t−−→ x
with respect to τ . Therefore, {d ∈ D : xd /∈ U} ∈ I. 2

Definition 3.10 The ideal-order-convergence in a poset X is called topological, if there
exists a topology τ on X such that for every net (xd)d∈D in X, x ∈ X and for every

non-trivial ideal I of D, (xd)d∈D
I−o−−−→ x if and only if (xd)d∈D

I−t−−→ x with respect to τ .

Proposition 3.11 Let X be a poset such that the ideal-order-convergence is topological and
let τ be the corresponding topology on X. Then, τ ⊆ T oX .

Proof. Is a direct consequence of the Proposition 3.9. 2

Proposition 3.12 The ideal-order-convergence in a poset X is topological if and only if
the order-convergence in X is topological.

Proof. Consider a poset X and suppose that the ideal-order-convergence in X is topological.
Let (xd)d∈D be a net in X and x ∈ X. For the non-trivial ideal ID of D (see Example 2.5)

we have that (xd)d∈D
ID−o−−−−→ x if and only if (xd)d∈D

ID−t−−−→ x with respect to some topology

τ on X. Therefore, (xd)d∈D
o−→ x if and only if (xd)d∈D converges to x with respect to τ .

Thus, the order-convergence in X is topological.
Conversely, suppose that the order-convergence in X is topological. Let (xd)d∈D be a

net in X, I a non-trivial ideal on D and x ∈ X. Then by Proposition 2.3 and hypothesis

we have the following equivalences: (xd)d∈D
I−o−−−→ x if and only if (yλ)ϕI

λ∈ΛI

o−→ x if and only

if (yλ)ϕI
λ∈ΛI

t−→ x with respect to some topology τ on X if and only if (xd)d∈D
I−t−−→ x with

respect to τ . Thus, the ideal-order-convergence in X is topological. 2

As the study of the notion of the ideal-order-convergence is extended, it raises the
necessity to clarify, in which posets, is the ideal-order-convergence topological. Following
[16] we prove that for a poset X the ideal-order-convergence is topological if and only if X
is an S∗-doubly continuous poset.
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Proposition 3.13 Let X be a poset.

(1) If F is a filter on X and sF is its associated net, then F O−→ x ∈ X (in the sense of

Definition 1.10) if and only if sF
o−→ x (in the sense of Definition 1.2).

(2) If s : M → X is a net in X and Fs is its associated filter, then s
o−→ x ∈ X (in the

sense of Definition 1.2) if and only if Fs
O−→ x (in the sense of Definition 1.10).

Proof. (1) Suppose that F O−→ x ∈ X. Then, there exist a directed set D ⊆ X and a
filtered set G ⊆ X such that ∨D = ∧G = x and [a, b] = E ∈ F for all a ∈ D and b ∈ G.
It follows that for every (f, F ) > (e, E) equivalently F ⊆ E, we have sF (f, F ) = f ∈ F ⊆
E ⇒ a 6 sF (f, F ) 6 b. Thus sF

o−→ x.

Conversely, let sF
o−→ x ∈ X. Then, there exist a directed set D ⊆ X and a filtered

set G ⊆ X such that ∨D = ∧G = x and for every a ∈ D and b ∈ G there exists m0 =
(f0, F0) ∈ M such that a 6 sF (m) 6 b for all m > m0. Then, for all f ∈ F0 we have

a 6 sF (f, F0) = f 6 b, since (f, F0) > (f0, F0). Thus, F0 ⊆ [a, b]. So [a, b] ∈ F and F O−→ x.

(2) Suppose that s
o−→ x ∈ X. Then, there exist a directed set D ⊆ X and a filtered set

G ⊆ X such that ∨D = ∧G = x and for every a ∈ D and b ∈ G there exists m0 ∈ M such
that a 6 s(m) 6 b for all m > m0, which means that [a, b] ⊇ {s(m) : m > m0} ∈ Fs and

thus Fs
O−→ x.

Conversely, let Fs
O−→ x ∈ X. Then, there exist a directed set D ⊆ X and a filtered set

G ⊆ X such that ∨D = ∧G = x and [a, b] ∈ Fs for all a ∈ D and b ∈ G. This means that

for some m0 ∈M we have {s(m) : m > m0} ⊆ [a, b] and thus s
o−→ x. 2

We observe that the coincidence of T oX and B-topology on X is, also, immediate from
Proposition 3.13.

Proposition 3.14 The order-convergence in a poset X (in the sense of Definition 1.2) is
topological if and only if the order-convergence in X (in the sense of Definition 1.10) is
topological.

Proof. Is a direct consequence of Proposition 3.13. 2

Proposition 3.15 For a poset X, the ideal-oder convergence is topological for the T oX topol-
ogy if and only if X is an S∗-doubly continuous poset.

Proof. Is a direct consequence of Theorem 1.12, Remark 3.7, Proposition 3.12 and Propo-
sition 3.14. 2

4 Ideal-order-convergence in Cartesian products of posets

In this section we study ideal-order-convergence in the Cartesian product of two posets
X and Y .

For an ideal (resp., filter) I on a set X, let I∗ denote the dual filter (resp., ideal) on I,
that is, I∗ = {A ⊆ X : X \ A ∈ I}. For filters F1 and F2 on sets D1 and D2, respectively,
let F1 ×F2 denote the product filter, that is,

F1 ×F2 = {A ⊆ D1 ×D2 : F1 × F2 ⊆ A for some F1 ∈ F1 and some F2 ∈ F2}.

Then the following trivial facts hold:

(1) An ideal (resp., filter) I on a set X is non-trivial if and only if so is the dual filter
(resp., ideal) I∗.

Convergence of nets in posets via an ideal
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(2) If filters F1 and F2 on sets D1 and D2, respectively, are non-trivial, so is the product
filter F1 ×F2.

Proposition 4.1 Let D1, D2 be two directed sets and let I1, I2 be two non-trivial ideals
on D1 and D2, respectively. The family (I∗1 ×I∗2 )∗ is a non-trivial ideal on D1×D2, which
will denote by I1 × I2.

Proof. Is an easy consequence of the above discussion. 2

Proposition 4.2 Let X and Y be two posets. Then, we have (xd1)d1∈D1

I1−o−−−→ x and

(yd2)d2∈D2

I2−o−−−→ y, where I1 and I2 are two non-trivial ideals of D1 and D2, respectively

if and only if ((xd1 , yd2))(d1,d2)∈D1×D2

I1×I2−o−−−−−−→ (x, y).

Proof. Let (xd1
)d1∈D1

I1−o−−−→ x and (yd2
)d2∈D2

I2−o−−−→ y. We prove that

((xd1 , yd2))(d1,d2)∈D1×D2

I1×I2−o−−−−−−→ (x, y).

There exist subsets A1, B1 and A2, B2 of X and Y , respectively such that:

(1) A1, A2 are directed and B1, B2 are filtered.

(2) x =
∨
A1 =

∧
B1 and y =

∨
A2 =

∧
B2.

(3) For every a1 ∈ A1 and b1 ∈ B1, {d1 ∈ D1 : xd1
/∈ [a1, b1]} ∈ I1.

(4) For every a2 ∈ A2 and b2 ∈ B2, {d2 ∈ D2 : yd2
/∈ [a2, b2]} ∈ I2.

We set A = A1 ×A2 and B = B1 ×B2. Then:

(5) A is directed and B is filtered.

(6) (x, y) =
∨
A =

∧
B.

Let (a1, a2) ∈ A and (b1, b2) ∈ B. We prove that

{(d1, d2) ∈ D1 ×D2 : (xd1
, yd2

) /∈ [(a1, a2), (b1, b2)]} ∈ I1 × I2.

It suffices to prove that

W = {(d1, d2) ∈ D1 ×D2 : (xd1 , yd2) ∈ [(a1, a2), (b1, b2)]} ∈ I∗1 × I∗2 .

We set I1 = {d1 ∈ D1 : xd1 /∈ [a1, b1]} and I2 = {d2 ∈ D2 : yd2 /∈ [a2, b2]}.
Then D1 \I1 = {d1 ∈ D1 : xd1

∈ [a1, b1]} ∈ I∗1 and D2 \I2 = {d2 ∈ D2 : yd2
∈ [a2, b2]} ∈ I∗2 .

We see that

(D1 \ I1)× (D2 \ I2) ⊆W .
Therefore, W ∈ I∗1 × I∗2 .

Conversely, let ((xd1
, yd2

))(d1,d2)∈D1×D2

I1×I2−o−−−−−−→ (x, y). We prove that

(xd1)d1∈D1

I1−o−−−→ x.

There exist subsets A and B of X × Y such that:

(7) A is directed and B is filtered.

(8) (x, y) =
∨
A =

∧
B.

(9) For every (a1, a2) ∈ A and (b1, b2) ∈ B,
{(d1, d2) ∈ D1 ×D2 : (xd1

, yd2
) /∈ [(a1, a2), (b1, b2)]} ∈ I1 × I2.

D. N. Georgiou, A. C. Megaritis, I. Naidoo, G. A. Prinos, F. Sereti
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We set:
A1 = {x1 ∈ X : (x1, y1) ∈ A for some y1 ∈ Y },
B1 = {x1 ∈ X : (x1, y1) ∈ B for some y1 ∈ Y }.

Then A1 is directed, B1 is filtered and x =
∨
A1 =

∧
B1.

We prove that:

(10) For every a1 ∈ A1 and b1 ∈ B1, {d1 ∈ D1 : xd1
/∈ [a1, b1]} ∈ I1.

Let a1 ∈ A1 and b1 ∈ B1. Then, there exist a2, b2 ∈ Y such that (a1, a2) ∈ A and
(b1, b2) ∈ B. Hence,

{(d1, d2) ∈ D1 ×D2 : (xd1 , yd2) /∈ [(a1, a2), (b1, b2)]} ∈ I1 × I2,

or equivalently

W = {(d1, d2) ∈ D1 ×D2 : (xd1 , yd2) ∈ [(a1, a2), (b1, b2)]} ∈ I∗1 × I∗2 .

Therefore, there exist I1 ∈ I1 and I2 ∈ I2 such that (D1 \ I1)× (D2 \ I2) ⊆W . Since

{d1 ∈ D1 : xd1
∈ [a1, b1]} ⊇ D1 \ I1 ∈ I∗1 ,

we have {d1 ∈ D1 : xd1
/∈ [a1, b1]} ∈ I1. Similarly, we get (yd2

)d2∈D2

I2−o−−−→ y. 2

Proposition 4.3 Let X and Y be two posets. Then, (xd)d∈D
I−o−−−→ x and (yd)d∈D

I−o−−−→ y

if and only if ((xd, yd))d∈D
I−o−−−→ (x, y).

Proof. Is similar to the proof of Proposition 4.2. 2

Based on the ideas of papers [4–6], we will use Proposition 3.4 to prove the following
two propositions.

Proposition 4.4 Let X and Y be two posets. Then, T oX × T oY ⊆ T oX×Y .

Proof. Suppose that UX ∈ T oX and UY ∈ T oY . It suffices to prove that UX × UY ∈ T oX×Y .
Let (((xd, yd))d∈D, (x, y), I) ∈ CoX×Y , (x, y) ∈ UX × UY . From Proposition 4.3, it follows
that ((xd)d∈D, x, I) ∈ CoX and ((yd)d∈D, y, I) ∈ CoY , where x ∈ UX and y ∈ UY . Therefore,

{d ∈ D : xd /∈ UX} ∈ I and {d ∈ D : yd /∈ UY } ∈ I.

Since {d ∈ D : (xd, yd) /∈ UX × UY } = {d ∈ D : xd /∈ UX} ∪ {d ∈ D : yd /∈ UY } ∈ I,
we conclude that {d ∈ D : (xd, yd) /∈ UX × UY } ∈ I and, consequently, the product
UX × UY ∈ T oX×Y . 2

Proposition 4.5 Let X and Y be two posets. The Cartesian product topology T oX × T oY
coincides with the topology T oX×Y if the latter has a base of Cartesian product sets.

Proof. By Proposition 4.4 it suffices to prove that T oX×Y ⊆ T oX ×T oY . Consider any product
UX × UY which is open in the topology T oX×Y . We prove that UX × UY ∈ T oX × T oY . For
this purpose we show that UX ∈ T oX and UY ∈ T oY . Let ((xd)d∈D, x, I) ∈ CoX , x ∈ UX . Let
y ∈ UY and consider the net (yd)d∈D, where yd = y for every d ∈ D. By Propositions 2.7 and
4.3 we have (((xd, yd))d∈D, (x, y), I) ∈ CoX×Y , (x, y) ∈ UX × UY . Since UX × UY ∈ T oX×Y ,
we have {d ∈ D : (xd, yd) /∈ UX × UY } ∈ I. Now, since

{d ∈ D : xd /∈ UX} ⊆ {d ∈ D : (xd, yd) /∈ UX × UY },

we have {d ∈ D : xd /∈ UX} ∈ I. Therefore, UX ∈ T oX . Similarly, we can see that UY ∈ T oY .
2

Convergence of nets in posets via an ideal
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5 Ideal-o2-convergence and ideal-o2-topology

A generalization of the ideal-order-convergence in posets, the so-called ideal-o2-converge-
nce, is discussed in this section. Moreover, an investigation of the topological ideal-o2-
convergence in posets completes this section.

We will need the following notions.

Definition 5.1 [13,18] Let X be a poset. A net (xd)d∈D in X is said to o2-converge to a
point x ∈ X if there exist subsets M and N of X such that:

(1) x =
∨
M =

∧
N .

(2) For each m ∈ M and n ∈ N , there exists d0 ∈ D such that m 6 xd 6 n hold for all
d > d0.

In this case we write (xd)d∈D
o2−→ x.

Definition 5.2 [20] Let X be a poset and x, y, z ∈ X. We define:

(1) x �α y, if for every net (xd)d∈D in X with (xd)d∈D
o2−→ y there exists d0 ∈ D such

that xd > x for every d > d0.

(2) z�α y, if for every net (xd)d∈D in X with (xd)d∈D
o2−→ y there exists d0 ∈ D such that

xd 6 z for every d > d0.

Definition 5.3 [20] A poset X is called α-doubly continuous if for each element x ∈ X,
x =

∨
{a ∈ X : a�α x} =

∧
{b ∈ X : b�α x}.

Definition 5.4 [10] A poset X is called O2-doubly continuous if it satisfies the following
conditions:

(1) X is α-doubly continuous and

(2) if y �α x and z �α x, then there exist A ⊆fin {a ∈ X : a�α x} and B ⊆fin {b ∈ X :
b�α x} such that y �α c and z �α c for each c ∈

⋂
m∈A

⋂
n∈B

[m,n].

Definition 5.5 Let X be a poset. A net (xd)d∈D in X is said to I-o2-converge to a point
x ∈ X, where I is a non-trivial ideal on D, if there exist subsets M and N of X such that:

(1) x =
∨
M =

∧
N .

(2) For each m ∈M and n ∈ N , {d ∈ D : xd /∈ [m,n]} ∈ I.

Notation 5.6 Let (xd)d∈D be a net in a poset X and let I be a non-trivial ideal on D.
If (xd)d∈D I-o2-converges to x ∈ X, then the point x is called the I-o2-limit of the net

(xd)d∈D. In this case we write (xd)d∈D
I−o2−−−→ x.

Proposition 5.7 Let X be a poset, (xd)d∈D be a net in X and I a non-trivial ideal on D.

Then (xd)d∈D
I−o2−−−→ x if and only if (yλ)ϕI

λ∈ΛI

o2−→ x.

Proof. Is similar to Proposition 2.3 (2). 2

Proposition 5.8 If a net (xd)d∈D in X I-o2-converges to x, y ∈ X, where I is a non-trivial
ideal on D, then x = y.

Proof. It follows directly from Proposition 5.7 and the fact that a limit of o2-convergence
is uniquely determined (see Remark 3 (2) of [20]). 2
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Proposition 5.9 Let (xd)d∈D be a net in a poset X and let I be a non-trivial ideal on D.

If (xd)d∈D
I−o−−−→ x, where x ∈ X, then (xd)d∈D

I−o2−−−→ x. Therefore, the I-order-convergence
implies the I-o2-convergence.

Proof. Is a direct consequence of the Definitions 2.1 and 5.5. 2

The converse of Proposition 5.9 is not necessarily true as the following example verifies.

Example 5.10 Let (Z,6) be the poset represented by the following diagram:

0

1 2 3 4

−1 −2 −3 −4

Figure 1: The poset (Z,6)

Let I be an admissible ideal on N. For the net (an)n∈N, where an = n, n ∈ N, we have

(an)n∈N
I−o2−−−→ 0. Indeed, for the subsets M = {0} and N = {−n : n ∈ N} of Z we have:

(1) 0 =
∨
M =

∧
N .

(2) For every n ∈ N, {m ∈ N : am /∈ [0,−n]} ∈ I.

But the net (an)n∈N does not I-order-converge to 0, because the subset N of Z is not
filtered.

Remark 5.11 From Proposition 5.9 we can, easily, see that Propositions 2.7, 2.8, Corollary
2.10, and Propositions 4.2, 4.3 are satisfied, also, for the notion of I-o2-convergence.

Notation 5.12 For an arbitrary poset X, we denote by Co2

X the class consisting of triads
((xd)d∈D, x, I), where (xd)d∈D is a net in X, x ∈ X, and I is a non-trivial ideal on D such

that (xd)d∈D
I−o2−−−→ x. The corresponding topology τ(Co2

X ) on X (see Proposition 3.1) is
called the ideal-o2-topology on X.

Proposition 5.13 For any poset X, τ(Co2

X ) = T o2

X ⊆ T oX .

Proof. The equality is similar to the proof of Proposition 3.4 taking into account Proposition
5.7. The inclusion it follows immediately from the definitions. 2

Proposition 5.14 If ((xd)d∈D, x, I) ∈ Co2

X , then (xd)d∈D
I−t−−→ x with respect to τ(Co2

X ).

Proof. It is similar to the proof of Proposition 3.2. 2

Remark 5.15 The Corollary 3.8 and the Propositions 3.9, 4.4, 4.5 are satisfied for the
ideal-o2-convergence, replacing the correspondent notions.

Convergence of nets in posets via an ideal
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Definition 5.16 The ideal-o2-convergence in a poset X is called topological, if there exists
a topology τ on X such that for every net (xd)d∈D in X, x ∈ X and for every non-trivial

ideal I of D, (xd)d∈D
I−o2−−−→ x if and only if (xd)d∈D

I−t−−→ x with respect to τ .

Proposition 5.17 The ideal-o2-convergence in a poset X is topological if and only if the
o2-convergence in X is topological.

Proof. Is similar to the proof of Proposition 3.12 taking into account Propositions 2.3 and
5.7. 2

Proposition 5.18 Let X be a chain and x1, x2 ∈ X. Then, (x1, x2) ∈ τ(Co2

X ).

Proof. It suffices to prove that for every ((xd)d∈D, x, I) ∈ Co2

X , x ∈ (x1, x2) we have that

{d ∈ D : xd /∈ (x1, x2)} ∈ I. Let ((xd)d∈D, x, I) ∈ Co2

X . Then, (xd)d∈D
I−o2−−−→ x. Therefore,

there exist subsets M and N of X such that:

(1) x =
∨
M =

∧
N .

(2) For each m ∈M and n ∈ N , {d ∈ D : xd /∈ [m,n]} ∈ I.

Let m0 ∈M and n0 ∈ N such that x1 6 m0 < x < n0 6 x2. Then,

{d ∈ D : xd /∈ [m0, n0]} ∈ I.

Since

{d ∈ D : xd /∈ (x1, x2)} ⊆ {d ∈ D : xd /∈ [m0, n0]} ,

we have {d ∈ D : xd /∈ (x1, x2)} ∈ I. 2

Proposition 5.19 Let X be a poset and x, y, z ∈ X. Then, the following statements hold:

(1) x �α y if and only if for every net (xd)d∈D in X and every non-trivial ideal I on D

such that (xd)d∈D
I−o2−−−→ y we have {d ∈ D : xd � x} ∈ I.

(2) z �α y if and only if for every net (xd)d∈D in X and every non-trivial ideal I on D

such that (xd)d∈D
I−o2−−−→ y we have {d ∈ D : xd 
 z} ∈ I.

Proof. (1) (⇐) Let (xd)d∈D be net in X such that (xd)d∈D
o2−→ y. Consider the ideal ID.

Then, (xd)d∈D
ID−o2−−−−→ y and therefore, {d ∈ D : xd � x} ∈ ID. By the definition of ID

there exists d0 ∈ D such that {d ∈ D : xd � x} ⊆ {d ∈ D : d � d0}. Therefore, xd > x for
every d > d0.

(⇒) Let (xd)d∈D be a net in X and I a non-trivial ideal on D such that (xd)d∈D
I−o2−−−→ y.

Then, by Proposition 5.7, (yλ)ϕI
λ∈ΛI

o2−→ y. Thus, there exists λ0 ∈ ΛI such that yλ > x for
all λ > λ0. By Proposition 2.3 {d ∈ D : xd � x} ∈ I.

(2) Is similar to the proof of (1). 2

Proposition 5.20 The ideal-o2-convergence in a poset X is topological if and only if X is
an O2-doubly continuous poset.

Proof. According to Theorem 4.11 in [10] and Proposition 5.17 we have the result. 2

Corollary 5.21 The ideal-o2-convergence in every finite lattice, every chain or antichain
is topological.
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Proof. Is a direct consequence of Remark 3.3 in [10] and Proposition 5.20. 2
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[7] P. Kostyrko, T. S̆alát, W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2000/01), no.
2, 669-685.

[8] B.K. Lahiri, P. Das, I and I∗-convergence in topological spaces, Math. Bohem. 130 (2005),
no. 2, 153-160.

[9] B. K. Lahiri and P. Das, I and I∗-convergence of nets, Real Anal. Exchange 33 (2008), no. 2,
431-442.

[10] Q. Li and Z. Zou, A result for O2-convergence to be topological in posets, Open MAth. 2016,
14, 205-211.

[11] E. J. McShane, Order-preserving maps and integration processes, Annals of Mathematics
Studies, no. 31, Princeton University Press, 1953.
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