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Abstract. Analysis of variance (ANOVA) is tailored for independent observations. Recently,
there has been considerable demand for the ANOVA of high-dimensional and dependent ob-
servations in many fields. Thus, it is important to analyze the differences among big data’s
averages of areas from all over the world, such as the financial and manufacturing industries.
However, the numerical accuracy of ANOVA for such observations has been inadequately de-
veloped. Thus, herein, we study the Edgeworth expansion of distribution of ANOVA tests for
high-dimensional and dependent observations. Specifically, we present the second-order ap-
proximation of classical test statistics proposed for independent observations. We also provide
numerical examples for simulated high-dimensional time-series data.

1 Introduction Analysis of variance (ANOVA) is a type of hypothesis testing method for the
null hypothesis of “no treatment effect”. It is generally used to test the null hypothesis that the
means of three or more populations of within-group means are all equal. Moreover, this method
shows whether the within-group means are equal.

ANOVA has a long history in statistics. Gauss founded it in the late 1800s, and Markoff devel-
oped it in the early 1900s. Many test statistics for ANOVA and multivariate analysis of variance
(MANOVA) have been proposed, primarily under independent disturbances of a MANOVA model.
The early applications can be found in [10] and [14]. In addition, [3] and [4] obtained general
theoretical results. They derived asymptotic expansions of the null and non-null distributions of
the likelihood ratio test-statistics. [2] discussed higher-order approximations (Edgeworth expan-
sions) and their validity. Furthermore, [8] developed higher-order asymptotic expansions of the null
and non-null distributions of the likelihood ratio test statistic, Lawley-Hotelling test statistic, and
Bartlett-Nanda-Pillai test statistic under high-dimensional and i.i.d. settings. Moreover, in a time-
series analysis, [13] discussed the Edgeworth expansions for various statistics. Recently, under a
high-dimensional time-series setting, [12] discussed the first-order asymptotics of Lawley-Hotelling
test statistic, likelihood ratio test statistic, and Bartlett-Nanda-Pillai test statistic.

In the current era of big data, an analysis of high-dimensional time-series data is required in
practical problems, such as those in economics, finance, and bioinformatics. Especially, the accuracy
of statistical decisions for high-dimensional time-series data has become increasingly important.
Many data analysts need accurate methods for the equivalence of the within-group means of big
data, because this analysis is very basic. MANOVA will be useful for these needs. However, from
the viewpoint of the numerical accuracy of approximations, higher-order asymptotics of ANOVA
test statistics for high-dimensional data are not adequately developed. In the present study, we
focus on Edgeworth expansions of distributions of Lawley-Hotelling test statistic, likelihood ratio
test statistic, and Bartlett-Nanda-Pillai test statistic.
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In this paper, we consider a one-way MANOVA model whose disturbance process is generated
by a high-dimensional stationary process.

Herein, let δij be Kronecker’s delta, Ip be the p-dimensional identity matrix, OP (an) be an
order of the probability that is, for a sequence of random variables {Xn} and {an}, 0 < an ∈ R,
{a−1

n Xn} is bounded in probability, and let OU
P (·) be a p×p matrix whose elements are probability

order OP (·) with respect to all elements uniformly. In addition, let | · | be the determinant of ·, ∥·∥
be the Euclidean norm of ·, and 1l be the indicator function.

2 Problems and Preliminaries Throughout this paper, we consider the MANOVA model
under which a q-tuple of p-dimensional time series Xi1, · · · ,Xini , i = 1, . . . , q satisfies

(1) Xit = µ+αi + ϵit, t = 1, · · · , ni, i = 1, · · · , q,

where µ ∈ Rp is the global mean of the model (1), the disturbances ϵi ≡ {ϵi1, · · · ϵini} are kth-order
stationary with mean 0, lag u autocovariance matrix Γ(u) = (Γjk(u))1≤j,k≤p, u ∈ Z, and ni is
the observation length of the ith group. Furthermore, the total observation length of all groups
n =

∑q
i=1 ni and {ϵi}, i = 1, · · · , q are mutually independent. We impose a further standard

assumption, which is called homoscedasticity (e.g., Ch. 8.9 of [1]). Now αi denotes the effect of the
ith treatment, which measures the deviation from µ satisfying

∑q
i=1 αi = 0. Because the treatment

effects sum to zero, we discuss the problem of testing:

(2) H : α1 = · · · = αq= 0 vs. A : αi ̸= 0 for some i.

The null hypothesis H implies that all effects are zero.

For our high-dimensional dependent observations, we use the Lawley-Hotelling test statistic T̃1,
likelihood ratio test statistic T̃2, and Bartlett-Nanda-Pillai test statistic T̃3:

T̃1 ≡ ntrŜH Ŝ−1
E ,

T̃2 ≡ −n log|ŜE |/|ŜE + ŜH |,
T̃3 ≡ ntrŜH(ŜE + ŜH)−1,

where

ŜH ≡
q∑

i=1

ni(X̂i· − X̂··)(X̂i· − X̂··)
′ and ŜE ≡

q∑
i=1

ni∑
t=1

(Xit − X̂i·)(Xit − X̂i·)
′ with

X̂i· =
1

ni

ni∑
t=1

Xit and X̂·· =
1

n

q∑
i=1

ni∑
t=1

Xit.

Now, we call ŜH and ŜE the between-group sums of squares and products (SSP) and the within-
group SSP, respectively. To derive the stochastic expansion of n−1ŜE in Section 4, we introduce

(3) Ŝi ≡ (ni − 1)−1
ni∑
t=1

(Xit − X̂i·)(Xit − X̂i·)
′,

(4) V =

q∑
i=1

√
ni

n
Vi, Vi =

√
ni(Ŝi − Ip).
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In addition, to derive the Edgeworth expansion of distributions of the three test statistics under H,
we impose the following assumptions:

Assumption 1

p3/2√
n

→ 0 as n, p → ∞,(5)

ni

n
→ ρi > 0 as n → ∞,(6)

where ρi is a positive constant which is independent of n and p for every i.

Here, the condition (6) implies the orders of ni and n are asymptotically the same.

Assumption 2 For the p-vectors ϵit = (ϵ
(1)
it , · · · , ϵ(p)it )′ given in (1), there exists an ℓ ≥ 0 with

∞∑
t1,...,tk−1=−∞

{1 + |tj |}ℓ|cia1,··· ,ak
(t1, · · · , tk−1)| < ∞,

for j = 1, · · · , k − 1 and any k-tuple a1, · · · , ak∈ {1, · · · , p} and i = 1, · · · , q, when k = 2, 3, · · · .
Here cia1,··· ,ak

(t1, · · · , tk−1) = cum{ϵ(a1)
it1

, · · · , ϵ(ak)
itk

}.

If ϵ
(am1 )
it , · · · , ϵ(amh

)

it for any h-tuplem1, · · · ,mh ∈ {1, · · · , k} are independent of ϵ
(amh+1

)

it , · · · , ϵ(amk
)

it

for the remaining (k − h)-tuple mh+1, · · · ,mk ∈ {1, · · · , k}, then ciam1 ,··· ,amk
(tm1 , · · · , tmk−1) = 0

([5], p. 19). Assumption 2 implies that if the time points of a group of ϵ
(a∗)
itl

’s are well separated

from the remaining time points of ϵ
(a∗)
its

’s, the values of cia1,··· ,ak
(t1, · · · , tk−1) become small (and

hence summable) (see [5, p.19]).This property is natural for stochastic processes with short memory.
We introduce a concrete example of the high-dimensional process ϵi’s which satisfy Assumption 2.
That is DCC-GARCH(p, q) model (9). [9] expressed a typical component of this model as

(7)
∞∑
l=0

∑
jl<jl−1<···<j1<t

bt−j1 · · · bjl−1−jlηj1 · · · ηjl

where ηj ’s are i.i.d. with Eη2j < ∞. By (7), we can easily check this model satisfies Assumption 2.

Assumption 3

(8) Γ(j) = 0 for all j ̸= 0.

Assumption 3 means that the disturbance process {ϵi} is an uncorrelated process. Now, note
that the condition (8) is not very severe because of the very practical nonlinear time-series model
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DCC-GARCH(q, r)

ϵit = Hit
1/2ηit, ηit

i.i.d.∼ (0, Ip) ,

Hit = DitRitDit, Dit = diag

[√
σ
(1)
it , · · · ,

√
σ
(p)
it

]
,

ϵit =


ϵ
(1)
it
...

ϵ
(p)
it

 , σ
(j)
it = cj + aj

r∑
l=1

{
ϵ
(j)
i,t−l

}2

+ bj

q∑
l=1

σ
(j)
i,t−l,(9)

Rit = (diag [Qit])
−1/2

Qit (diag [Qit])
−1/2

,

ϵ̃it =


ϵ̃
(1)
it
...

ϵ̃
(p)
it

 , ϵ̃
(j)
it =

ϵ
(j)
it√
σ
(j)
it

, Qit = (1− α− β)Q̃+ αϵ̃i,t−1ϵ̃
′
i,t−1 + βQi,t−1,

(see [7]) satisfies (8). Here, Q̃, the unconditional correlation matrix, is a constant positive semidef-
inite matrix, and Hit’s are measurable with respect to ηi,t−1,ηi,t−2, · · · .

3 Main Results In what follows, without loss of generality, we assume Γ(0) = Ip, and µ = 0

because the three test statistics T̃1, T̃2, and T̃3 are invariant under linear transformation, our
discussion for Xit remains valid for the case where we apply a linear transformation {Γ(0)}−1/2

to Xit. We derive the stochastic expansion of the standardized versions T1, T2, and T3 of the
three test statistics T̃1 (Lawley-Hotelling test statistic), T̃2 (likelihood ratio test statistic), and T̃3

(Bartlett-Nanda-Pillai test statistic), respectively:

T1 ≡ 1√
2(q − 1)

{
n
√
p
trŜH Ŝ−1

E −√
p(q − 1)

}
,(10)

T2 ≡ − 1√
2(q − 1)

{
n
√
p
log|ŜE |/|ŜE + ŜH |+√

p(q − 1)

}
,(11)

T3 ≡ 1√
2(q − 1)

{
n
√
p
trŜH(ŜE + ŜH)−1 −√

p(q − 1)

}
.(12)

This section provides their Edgeworth expansions. Lemmas and all proofs are provided in Section
4.

Theorem 1 Suppose Assumptions 1-3. Then, under the null hypothesis H, we have the following
Edgeworth expansions:

P (Ti < z) = Φ(z)− ϕ(z)
{
p−1/2 · c3

6
(z2 − 1) + p−1 · c4

24
(z3 − 3z)

}
(13)

+o
(
p−1
)
, (i = 1, 2, 3)

where

Φ(z) =

∫ z

−∞
ϕ(y)dy, ϕ(y) = (2π)−1/2exp

(
−y2

2

)
,

H. Nagahata
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and

c3 =

(
2

q − 1

)3/2
{
q − 3 + 3

q∑
i=1

(ni

n

)2
−

q∑
i=1

(ni

n

)3}
,

c4 =

(
2

q − 1

)2
{
q − 4 + 6

q∑
i=1

(ni

n

)2
− 4

q∑
i=1

(ni

n

)3
−

q∑
i=1

(ni

n

)4}
.

Remark 1 This asymptotic result is an extended version of [8] and [12]. Our setting in Section 2
shows we can apply this result to not only high-dimensional i.i.d. data (that was discussed in [8])
but also high-dimensional time series data. Also, an approximation of the three test statistics Ti,
i = 1, 2, 3 in Theorem 1 is more accurate than one of them in [12] because we investigated the higher
order asymptotic structure of Ti, i = 1, 2, 3 by using Edgeworth expansion method.

4 Asymptotic theory for main results In this section, we provide the lemmas and their
proofs. In what follows, we use the same linear transformation as in Section 3. First, the stochastic
expansion of n−1ŜE and ŜH is given.

Lemma 1 Suppose Assumptions 1-3. Then, under null hypothesis H, the following (14)-(16) hold
true;

1

n
ŜE = Ip +

1√
n
V − q

n
Ip +OU

P

(
n−3/2

)
,(14) {

1

n
ŜE

}−1

= Ip −
1√
n
V +

1

n
(V 2 + qIp) +OU

P

(
n−3/2

)
,(15)

ŜH = OU
P (1) .(16)

Proof (Lemma 1) By (4), write n−1ŜE as

1

n
ŜE =

1

n

q∑
i=1

(ni − 1)Ŝi

=
1

n

q∑
i=1

(ni − 1)

(
Ip +

1
√
ni

Vi

)

= Ip +
1√
n
V − q

n
Ip −

1

n

q∑
i=1

1
√
ni

Vi.(17)

In what follows, for each i, we will show Vi = OU
P (1). By the null hypothesis H and µ = 0, we

rewrite Ŝi as follows:

Ŝi = ni(ni − 1)−1

(
1

ni

ni∑
t=1

XitX
′
it − X̂i·X̂

′
i·

)
= ni(ni − 1)−1 (A−B) (say),(18)
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where A = 1/ni

∑ni

t=1 XitX
′
it and B = X̂i·X̂

′
i·. We observe

E{A} = Ip and

Cov{Ajk, Alm}

=
1

ni

ni−1∑
s=−ni+1

(
1− |s|

ni

)
{cjl(s)ckm(s) + cjm(s)ckl(s) + cijklm(0, s, s)}(19)

= O

(
1

ni

)
= O

(
1

n

)
uniformly in j, k, l,m by Assumption 2.

Hence, A = Ip +OU
P (1/

√
n) . Next, we observe

E(X̂i·) = αi and

Cov{X̂i·, X̂i·}

=

{
1

ni

ni−1∑
s=−ni+1

(
1− |s|

ni

)
cjk(s)

}
(20)

= OU

(
1

ni

)
.

Thus,

(21) B = OU
P

(
1

n

)
.

Therefore,

Ŝi = Ip +OU
P

(
1√
n

)
,

and

(22) Vi = OU
P (1) .

By using (17) and (22), we can get

(14)
1

n
ŜE = Ip +

1√
n
V − q

n
Ip +OU

P

(
n−3/2

)
,

and {
1

n
ŜE

}−1

=

{
Ip +

1√
n
V − q

n
Ip +OU

P

(
n−3/2

)}−1

= {Ip −Mn}−1
(say).

It is known that

(23) {Ip −Mn}−1
=

∞∑
k=0

Mk
n

H. Nagahata
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(see p. 169 of [11]). From Assumption 1, it follows that

M0
n = Ip,

Mn = − 1√
n
V +

q

n
Ip +OU

P

(
n−3/2

)
,

M2
n =

1

n
V 2 +OU

P

(
n−3/2

)
,

Mk
n = OP

(
n− k

2

)
H, k ≥ 3,

where H is a p× p-matrix and H = OU
P (1). Then, we obtain

(15)

{
1

n
ŜE

}−1

= Ip −
1√
n
V +

1

n
(V 2 + qIp) +OU

P

(
n−3/2

)
.

Next, we show ŜH = OU
P (1). To this end, we recall

(24) ŜH =

q∑
i=1

ni(X̂i· − X̂··)(X̂i· − X̂··)
′.

From (20), we observe that X̂i· = αi+OU
P

(
1/
√
ni

)
,
∑q

i=1 αi = 0, and similarly, X̂·· = OU
P (1/

√
n).

Thus, we have

(16) ŜH = OU
P (1) .

Note that (14), (15), and (16) are derived for the multivariate i.i.d. case, e.g., [8, p.164].

Lemma 2 Suppose Assumputions 1-3. Then, under null hypothesis H, it holds that

(25) T̃i = U (0) +
1√
n
U (1) +

1

n

(
U (2) + βiR

(2)
)
+OP

(
p3/2

n

)
, i = 1, 2, 3,

where

U (0) = trŜH ,

U (1) = −tr{ŜHV },
U (2) = tr{ŜH(V 2 + qIp)},
R(2) = tr{Ŝ2

H}, and

(β1, β2, β3) =

(
0,−1

2
,−1

)
.

Proof (Lemma 2) From Lemma 1, it follows that

T̃1 = tr

[
ŜH

{
1

n
ŜE

}−1
]

= tr

[
ŜH

{
Ip −

1√
n
V +

1

n
(V 2 + qIp) +OU

P

(
n−3/2

)}]
= trŜH − 1√

n
tr{ŜHV }+ 1

n
tr{ŜH(V 2 + qIp)}+ tr

{
ŜH ·OU

P

(
n−3/2

)}
.
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From (16),

(25) T̃1 = trŜH − 1√
n
tr{ŜHV }+ 1

n
tr{ŜH(V 2 + qIp)}+OP

(
p3/2

n

)
.

Next, to derive (25), first, note that for every matrix F and the matrix differential operator d

d log|F | = tr(F−1dF ),

dF−1 = −F−1(dF )F−1,

and (23) (e.g., [11]). Then, a modification of Proposition 6.1.5 of [6] and Lemma 1 shows that for

f := n log

∣∣∣∣Ip + 1

n
ŜH

{
1

n
Ŝ−1
E

}∣∣∣∣ ,
we have that

f =

∞∑
m=0

1

m!
dmf.

where dm’s are m-th differentials of f which are calculated by

d0f = tr{ŜH} − 1

2n
tr{Ŝ2

H}+OP

(
p · n−2

)
,

d1f = − 1√
n
tr{ŜHV }+ 1

n
tr{ŜH(V 2 + qIp)}+OP

(
p2 · n−3/2

)
,

dmf = OP

(
p · n−2

)
, m ≥ 2.

Thus, we obtain

(25) T̃2 = tr{ŜH} − 1√
n
tr{ŜHV }+ 1

n

[
tr{ŜH(V 2 + qIp)} −

1

2
tr{Ŝ2

H}
]
+OP

(
p2 · n−3/2

)
.

From Lemma 1 and (23), it follows that

T̃3 = tr

[
ŜH

{
1

n
ŜE +

1

n
ŜH

}−1
]

= tr

[
ŜH

{
Ip +

1√
n
V +

1

n
(ŜH − qIp) +OU

P

(
n−3/2

)}−1
]

= tr

[
ŜH

∞∑
k=0

{
− 1√

n
V − 1

n
(ŜH − qIp) +OU

P

(
n−3/2

)}k
]
.

From (16),

(25) T̃3 = trŜH − 1√
n
tr{ŜHV }+ 1

n
[tr{ŜH(V 2 + qIp)} − tr{Ŝ2

H}] +OP

(
p3/2

n

)
(for the multivariate i.i.d. case, e.g., [8, p.164]).
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Lemma 3 Suppose Assumptions 1-3. Then, under the null hypothesis H, it holds that

cum(J)(

K︷ ︸︸ ︷
1
√
p
trŜH , · · ·,

L︷ ︸︸ ︷
− 1
√
pn

tr{ŜHV }, · · ·,

M︷ ︸︸ ︷
1

√
pn

tr{ŜHV 2}, · · ·,

M0︷ ︸︸ ︷
q

√
pn

trŜH , · · ·,

N︷ ︸︸ ︷
βi√
pn

trŜ2
H , · · ·)

= O
(
p1−J/2+N · n−2L−4M−M0−N

)
(26)

= o
(
p1−J/2−6L−12M−3M0−2N

)
,(27)

where K,L,M,M0, N ≥ 0, J = K + L+M ++M0 +N ≥ 1 and

(β1, β2, β3) =

(
0,−1

2
,−1

)
.

Proof (Lemma 3) First, under µ = 0 and null hypothesis H, we prepare Sjk and Vjk as (j, k)th

components of ŜH and V , respectively:

Sjk =

q∑
i1=1

1

ni1

ni1∑
r=1

ni1∑
s=1

ϵ
(j)
i1r

ϵ
(k)
i1s

− 1

n

q∑
i2=1

q∑
i3=1

ni2∑
t=1

ni3∑
u=1

ϵ
(j)
i2t

ϵ
(k)
i3u

,(28)

Vjk =
1√
n

q∑
i4=1

ni4

ni4 − 1

ni4∑
r=1

ϵ
(j)
i4r

ϵ
(k)
i4r

− 1√
n

q∑
i4=1

1

ni4 − 1

ni4∑
s=1

ni4∑
t=1

ϵ
(j)
i4s

ϵ
(k)
i4t

−
√
nδjk.(29)

Here, we can write

cum(J)(

K︷ ︸︸ ︷
1
√
p
trŜH , · · ·,

L︷ ︸︸ ︷
− 1
√
pn

tr{ŜHV }, · · ·,

M︷ ︸︸ ︷
1

√
pn

tr{ŜHV 2}, · · ·,

M0︷ ︸︸ ︷
q

√
pn

trŜH , · · ·,

N︷ ︸︸ ︷
βi√
pn

trŜ2
H , · · ·)

= (−1)LqM0βN
i · p−J/2n−L/2−M−M0−N

× cum(J)(

K+M0︷ ︸︸ ︷
trŜH , · · ·,

L︷ ︸︸ ︷
tr{ŜHV }, · · ·,

M︷ ︸︸ ︷
tr{ŜHV 2}, · · ·,

N︷ ︸︸ ︷
trŜ2

H , · · ·).(30)

By (28) and (29), a typical term of the cumulant in (30) is

p∑
j1,1

· · ·
p∑

j1,K+M0

p∑
j2,1

· · ·
p∑

j2,L

p∑
j3,1

· · ·
p∑

j3,M

p∑
j4,1

p∑
k4,1

· · ·
p∑

j4,N

p∑
k4,N

ni∑
r1,1

ni∑
s1,1

· · ·
ni∑

r1,K+M0

ni∑
s1,K+M0

ni∑
r2,1

ni∑
s2,1

· · ·
ni∑
r2,L

ni∑
s2,L

ni∑
r3,1

ni∑
s3,1

· · ·
ni∑

r3,M

ni∑
s3,M

ni∑
r4,1

ni∑
s4,1

ni∑
t4,1

ni∑
u4,1

· · ·
ni∑

r4,N

ni∑
s4,N

ni∑
t4,N

ni∑
u4,N

O
(
n−K−5L/2−4M−M0−2N

)
× cum(J)[ϵ

(j1,1)
ir1,1

ϵ
(j1,1)
is1,1

, · · · , ϵ(j2,1)ir2,1
ϵ
(j2,1)
is2,1

, · · · , ϵ(j3,1)ir3,1
ϵ
(j3,1)
is3,1

, · · · ,

ϵ
(j4,1)
ir4,1

ϵ
(k4,1)
is4,1

ϵ
(k4,1)
it4,1

ϵ
(j4,1)
iu4,1

, · · · ].(31)
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By using the properties of the cumulant and Theorem 2.3.2 in [5, p.19-21], the cumulant appearing
in (31) has a typical main-order term

O
(
n−K−5L/2−4M−M0−2N

)
nK+L+M+M0+2N
i

×
p∑

j1,1

· · ·
p∑

j1,K+M0

p∑
j2,1

· · ·
p∑

j2,L

p∑
j3,1

· · ·
p∑

j3,M

p∑
j4,1

· · ·
p∑

j4,N

cj1,1j1,2(0) · · · cj1,K+M0 j2,1
(0)

× cj2,1j2,2(0) · · · cj2,Lj3,1(0) cj3,1j3,2(0) · · · cj3,M j4,1(0) cj4,1j4,2(0) · · · cj4,N j1,1(0)

×
p∑

k4,1

· · ·
p∑

k4,N

ck4,1k4,1(0) · · · ck4,Nk4,N (0)

= O
(
n−K−5L/2−4M−M0−2N

)
nK+L+M+M0+2N
i (By Assumption 3 and Γ(0) = Ip)

×
p∑
j

cjj(0) · · · cjj(0)×
p∑

k4,1

· · ·
p∑

k4,N

ck4,1k4,1(0) · · · ck4,Nk4,N
(0)

= O
(
p1+N · n−3L/2−3M

)
.(32)

Thus, from (32), we rewrite a typical term of (30) as

cum(J)(

K︷ ︸︸ ︷
1
√
p
trŜH , · · ·,

L︷ ︸︸ ︷
− 1
√
pn

tr{ŜHV }, · · ·,

M︷ ︸︸ ︷
1

√
pn

tr{ŜHV 2}, · · ·,

M0︷ ︸︸ ︷
q

√
pn

trŜH , · · ·,

N︷ ︸︸ ︷
βi√
pn

trŜ2
H , · · ·),

= p−J/2n−L/2−M−M0−NO
(
p1+N · n−3L/2−3M

)
= O

(
p1−J/2+N · n−2L−4M−M0−N

)
= o

(
p1−J/2−6L−12M−3M0−2N

)
. (By Assumption 1)

Hence, we showed (26) and (27).

Lemma 4 Suppose Assumputions 1-3. Define Wi for every i = 1, 2, 3 by

Wi =
1√

2(q − 1)

{
1
√
p
U (0) +

1
√
pn

U (1) +
1

√
pn

(
U (2) + βiR

(2)
)
−√

p(q − 1)

}
(33)

=
1√

2(q − 1)

{
1
√
p
trŜH − 1

√
pn

tr{ŜHV }+ 1
√
pn

tr{ŜHV 2}+ q
√
pn

trŜH

+
βi√
pn

tr{Ŝ2
H} − √

p(q − 1)

}
,(34)

(β1, β2, β3) =

(
0,−1

2
,−1

)
.

H. Nagahata
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Then, under the null hypothesis H, the following (35)-(39) hold that

cum(Wi) = 0 + o
(
p−1/2

)
,(35)

cum(Wi,Wi) = 1 + o
(
p−1/2

)
,(36)

cum(Wi,Wi,Wi) = p−1/2

(
2

q − 1

)3/2

(37)

×

{
q − 3 + 3

q∑
i=1

(ni

n

)2
−

q∑
i=1

(ni

n

)3}
+ o

(
p−1/2

)
,

cum(4)(Wi, · · · ,Wi) = p−1

(
2

q − 1

)2

(38)

×

{
q − 4 + 6

q∑
i=1

(ni

n

)2
− 4

q∑
i=1

(ni

n

)3
−

q∑
i=1

(ni

n

)4}
+ o

(
p−1
)
,

cum(J)(Wi, · · · ,Wi) = O
(
p1−J/2

)
, (J ≥ 5)(39)

where (39) contains K,L,M,M0, N(≥ 0) of the first, second, third, fourth, and fifth terms of (34),
respectively.

Proof (Lemma 4) Now, from Lemma 3, we obtain from (33)

cum(Wi) =
1√

2(q − 1)

{
1
√
p
{E[U (0)]− p(q − 1)}

}
+ o

(
p−1/2

)
.

Here, under Assumptions 2 and 3, from (28), we get

E[U (0)] =

p∑
j=1

E[Sjj ]

=

p∑
j=1

q∑
i1=1

ni1−1∑
s=−ni1+1

(
1− |s|

ni1

)
cjj(s)−

p∑
j=1

q∑
i2=1

ni2

n

ni2−1∑
r=−ni2+1

(
1− |r|

ni2

)
cjj(r)

= p(q − 1).(40)

Then, we can obtain

cum(Wi) = 0 + o
(
p−1/2

)
. (By Assumption 1)(41)

Similarly, the main-order terms of cum(Wi,Wi) and cum(Wi,Wi,Wi) can be computed as follows.
From (16) and (20),

cum(Wi,Wi) =
1

2p(q − 1)
cum(U (0), U (0)) + o

(
p−1/2

)
(By Lemma 3)

=
1

2p(q − 1)

p∑
j=1

p∑
k=1

cum(Sjj , Skk) + o
(
p−1/2

)
= 1 + o

(
p−1/2

)
.(42)

HIGHER ORDER APPROXIMATION OF THE DISTRIBUTION OF
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In addition, we can obtain

cum(Wi,Wi,Wi) = {2p(q − 1)}−3/2cum(U (0), U (0), U (0)) + o
(
p−1/2

)
, (By Lemma 3)

and

cum(U (0), U (0), U (0))

=

p∑
j=1

p∑
k=1

p∑
l=1

cum(Sjj , Skk, Sll)

=

p∑
j=1

p∑
k=1

p∑
l=1

[

q∑
i1=1

q∑
i2=1

q∑
i3=1

1

ni1

1

ni2

1

ni3

ni1∑
r=1

ni1∑
s=1

ni2∑
t=1

ni2∑
u=1

ni3∑
v=1

ni3∑
w=1

cum{ϵ(j)i1r
ϵ
(j)
i2s

, ϵ
(k)
i2t

ϵ
(k)
i2u

, ϵ
(l)
i3v

ϵ
(l)
i3w

}

−3
1

n

q∑
i1=1

q∑
i2=1

q∑
i3=1

1

ni1

1

ni2

ni1∑
r=1

ni1∑
s=1

ni2∑
t=1

ni2∑
u=1

ni3∑
v=1

ni3∑
w=1

cum{ϵ(j)i1r
ϵ
(j)
i2s

, ϵ
(k)
i2t

ϵ
(k)
i2u

, ϵ
(l)
i3v

ϵ
(l)
i3w

}

+3
1

n2

q∑
i1=1

q∑
i2=1

q∑
i3=1

1

ni1

ni1∑
r=1

ni1∑
s=1

ni2∑
t=1

ni2∑
u=1

ni3∑
v=1

ni3∑
w=1

cum{ϵ(j)i1r
ϵ
(j)
i2s

, ϵ
(k)
i2t

ϵ
(k)
i2u

, ϵ
(l)
i3v

ϵ
(l)
i3w

}

− 1

n3

q∑
i1=1

q∑
i2=1

q∑
i3=1

ni1∑
r=1

ni1∑
s=1

ni2∑
t=1

ni2∑
u=1

ni3∑
v=1

ni3∑
w=1

cum{ϵ(j)i1r
ϵ
(j)
i2s

, ϵ
(k)
i2t

ϵ
(k)
i2u

, ϵ
(l)
i3v

ϵ
(l)
i3w

}

]

=

p∑
j=1

{
q∑

i1=1

8cjj(0)cjj(0)cjj(0)− 3

q∑
i1=1

ni1

n
· 8cjj(0)cjj(0)cjj(0)

+3

q∑
i1=1

(ni1

n

)2
8cjj(0)cjj(0)cjj(0)−

q∑
i1=1

(ni1

n

)3
· 8cjj(0)cjj(0)cjj(0)

}
+O

(
p · n−1

)
= 8p

{
q − 3 + 3

q∑
i=1

(ni

n

)2
−

q∑
i=1

(ni

n

)3}
+O

(
p · n−1

)
.(43)

Therefore,

(44) cum(Wi,Wi,Wi) = p−1/2

(
2

q − 1

)3/2
{
q − 3 + 3

q∑
i=1

(ni

n

)2
−

q∑
i=1

(ni

n

)3}
+ o

(
p−1/2

)
.

Similarly, we can compute

cum(4)(Wi, · · · ,Wi) = {2p(q − 1)}−1cum(4)(U (0), · · · , U (0)) + o
(
p−2
)

= {2p(q − 1)}−1

p∑
j1=1

p∑
j2=1

p∑
j3=1

p∑
j4=1

cum(Sj1j1 , · · · , Sj4j4) + o
(
p−1
)

H. Nagahata
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= p−1

(
2

q − 1

)2
{
q − 4 + 6

q∑
i=1

(ni

n

)2
− 4

q∑
i=1

(ni

n

)3
−

q∑
i=1

(ni

n

)4}
+o
(
p−1
)
.(45)

Hence, (35), (36), (37), and (38) were shown (from (41), (42), (44), and (45)). Furthermore, we
discuss the Jth order for J ≥ 5 cumulant cum(J)(Wi, · · · ,Wi). From Lemma 3, we obtain

cum(J)(Wi, . . . ,Wi) =
∑

K,L,M,M0,N ;
K+L+M+M0+N=J

{2(q − 1)}−J/2

× cum(J)(

K︷ ︸︸ ︷
1
√
p
trŜH , · · ·,

L︷ ︸︸ ︷
− 1
√
pn

tr{ŜHV }, · · ·,

M︷ ︸︸ ︷
1

√
pn

tr{ŜHV 2}, · · ·,

M0︷ ︸︸ ︷
q

√
pn

trŜH , · · ·,

N︷ ︸︸ ︷
βi√
pn

trŜ2
H , · · ·)

=
∑

K,L,M,M0,N ;
K+L+M+M0+N=J

O
(
p1−J/2+N · n−2L−4M−M0−N

)

= max
K,L,M,M0,N

O
(
p1−J/2+N · n−2L−4M−M0−N

)
= O

(
p1−J/2

)
. (L = M = M0 = N = 0)

Then, (39) was shown.

Remark 2 [12] also evaluated the high-order cumulants of Ti, i = 1, 2, 3 but there is a big difference
between this paper and [12]. The order of the stochastic expansion in Lemma 2 is higher than that
in [12], so we needed to derive asymptotics of Wi as in Lemmas 3 and 4.

Proof (Theorem 1) The Edgeworth expansion for a multivariate time series is derived by [13,
p.168-170]. We extend it to the case of high-dimensional time series. First, by the Taylor expansion
and Lemma 4, we write the characteristic function of Wi (i = 1, 2, 3) in Lemma 4 as

E[exp{itWi}]

= exp

{
cum(Wi)(it) +

1

2
cum(Wi,Wi)(it)

2 +
1

6
cum(Wi,Wi,Wi)(it)

3

+
1

24
cum(4)(Wi, · · · ,Wi)(it)

4 + · · ·
}

= exp

(
− t2

2

)
×
{
1 + p−1/2 · 1

6
cum(Wi,Wi,Wi)(it)

3 + p−1 · 1

24
cum(4)(Wi, · · · ,Wi)(it)

4

}
+o
(
p−1/2

)
.

= exp

(
− t2

2

)
×
{
1 + p−1/2 · c3

6
(it)3 + p−1 · c4

24
(it)4

}
+ o

(
p−1/2

)
.(46)

Inverting (46) by the Fourier inverse transform, we have

P (Wi < z) = Φ(z)− ϕ(z)
{
p−1/2 · c3

6
(z2 − 1) + p−1 · c4

24
(z3 − 3z)

}
+ o

(
p−1/2

)
,

HIGHER ORDER APPROXIMATION OF THE DISTRIBUTION OF
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where

Φ(z) =

∫ z

−∞
ϕ(y)dy, ϕ(y) = (2π)−1/2exp

(
−y2

2

)
.

Here, from Lemma 2, we observe that

E[exp{itTi}] = E[exp{itWi}] + o (1) .

This implies (13), so we complete the proof.

5 Simulation to verify the finite sample performance We simulate the Edgeworth expan-
sions of distributions of Ti, i = 1, 2, 3, which are given by Theorem 1. In this section, our purpose
is to show that their Edgeworth expansions P (Ti < z), i = 1, 2, 3 in (13) are more numerically
accurate than the first-order approximation, that is, Φ(z) in (13). Specifically, in the case of an un-
correlated disturbance that is assumed by Assumption 3, DCC-GARCH(1, 1) is a typical example
of that process (see [7]). Therefore, we introduce the following five simulation process steps.

1 Set α1 = α2 = α3 = 0 for the null hypothesis H.

2 Generate 20-dimensional {X1,1, . . . ,X1,5000}, {X2,1, . . . ,X2,5000}, {X3,1, . . . ,X3,5000}, with
DCC-GARCH(1, 1) disturbance.

3 Calculate the test statistics Ti, i = 1, 2, 3.

4 Repeat steps 2 and 3 1,000 times independently and obtain {T (1)
i , . . . , T

(1000)
i ; i = 1, 2, 3}.

5 Calculate F̂i,n(z), i = 1, 2, 3, which is the empirical distribution of {T (1)
i , . . . , T

(1000)
i ; i =

1, 2, 3}.

6 Write the plot of |F̂i,n(z)− Φ(z)| and |F̂i,n(z)− P (Ti < z)|, i = 1, 2, 3, which are plotted by
dotted and thick lines, respectively, in Figures 1, 3, and 5.

7 Write the plot of {|F̂i,n(z) − Φ(z)| − |F̂i,n(z) − P (Ti < z)|}, i = 1, 2, 3, by a dotted line, in
Figures 2, 4, and 6.

We set the 20-dimensional simulation from one-way MANOVA model (1) with a 20-dimensional
vector µ′ = (1, · · · , 1)′ and generate the disturbance process {ϵit} of observations {Xit} in (1) by
using DCC-GARCH(1, 1), whose innovation term is assumed to be Gaussian. The scenarios of
DCC-GARCH(q, r) (see (9)) in ϵit are

p = 20, i = 1, 2, 3, t = 1, · · · , 5000,
j = 1, · · · , 20,
q = r = 1,

aj = 0.2, bj = 0.7, cj = 0.002,

α = 0.1, β = 0.8,

Q̃kl = 0.7(|k−l|),

where Q̃kl is the (k, l)-element of Q̃. We set the observation length ni = 5000, i = 1, 2, 3, because
Table 1 of Section 5.1 in [12] demonstrates that Ti are stable for ni = 2500 or more uncorrelated

H. Nagahata
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observations (i = 1, 2, 3). The Mathematical code and the “ccgarch” package of R are used for this
algorithm. We compare the numerical accuracy of P (Ti < z) with Φ(z) based on F̂n(z) by using
|F̂i,n(z)−Φ(z)|, |F̂i,n(z)−P (Ti < z)| (see Figures 1, 3, and 5), and {|F̂i,n(z)−Φ(z)|−|F̂i,n(z)−P (Ti <
z)|}, i = 1, 2, 3 (see Figures 2, 4, and 6).

Figures 2, 4, and 6 indicate that the Edgeworth expansions P (Ti < z) of Ti work better than
the normal approximation Φ(z) from the perspective of numerical accuracy.

Figure 1: Plot of |F̂1,n(z)−Φ(z)| and |F̂1,n(z)−P (T1 < z)| by dotted and thick lines, respectively.

HIGHER ORDER APPROXIMATION OF THE DISTRIBUTION OF
ANOVA TESTS FOR HIGH-DIMENSIONAL TIME SERIES
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Figure 2: Plot of {|F̂1,n(z)− Φ(z)| − |F̂1,n(z)− P (T1 < z)|} by a dotted line.

Figure 3: Plot of |F̂2,n(z) − Φ(z)| and |F̂2,n(z) − P (T2 < z)| by a dotted line and a thick one,
respectively.

H. Nagahata
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Figure 4: Plot of {|F̂2,n(z)− Φ(z)| − |F̂2,n(z)− P (T2 < z)|} by a dotted line.

Figure 5: Plot of |F̂3,n(z) − Φ(z)| and |F̂3,n(z) − P (T3 < z)| by a dotted line and a thick one,
respectively.

HIGHER ORDER APPROXIMATION OF THE DISTRIBUTION OF
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Figure 6: Plot of {|F̂3,n(z)− Φ(z)| − |F̂3,n(z)− P (T3 < z)|} by a dotted line.
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