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Abstract. In this paper, by using the Cauchy-Schwarz inequality for matrices via
the matrix geometric mean due to J.I. Fujii, we show the following matrix version of a
mixed Schwarz inequality for any square matrices: Let A be an n-square matrix. For
any n-square matrices X, Y

|Y ∗AX| ≤ X∗|A|2αX ] U∗Y ∗|A∗|2βY U

holds for all α, β ∈ [0, 1] with α + β = 1, where U is a unitary matrix in a polar
decomposition of Y ∗AX = U |Y ∗AX|. As applications, we show matrix Parseval’s
equation, Lin’s type extensions for a weighted version of a mixed Schwarz inequality,
and a weighted version of the Wielandt inequality for matrices.

1 Introduction Let Mm×n = Mm×n(C) be the space of m × n complex matrices and
Mn = Mn×n(C), and denote the matrix absolute value of any A ∈ Mm×n by |A| = (A∗A)1/2.
For A ∈ Mn, we write A ≥ 0 if A is positive semidefinite and A > 0 if A is positive definite;
that is, x∗Ax > 0 for all nonzero column vectors x ∈ Cn. For two Hermitian matrices A
and B of the same size, we write A ≥ B if A − B ≥ 0, and A > B if A − B > 0. For
A ∈ Mm×n, kerA and ranA mean the null space of A and the range of A, respectively.

The Cauchy-Schwarz inequality is one of the most useful and fundamental inequalities
in functional analysis: For any complex n-dimensional column vectors x and y,

(1.1) |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉

and the equality holds if and only if x and y are linearly dependent. As an extension of
(1.1), the following inequality holds: For any positive semidefinite matrix A in Mn,

|〈Ax, y〉|2 ≤ 〈Ax, x〉〈Ay, y〉.

Even if A is an arbitrary matrix in Mn, by virtue of the matrix absolute value of A, we
have a mixed Schwarz inequality

(1.2) |〈Ax, y〉|2 ≤ 〈|A|x, x〉〈|A∗|y, y〉,

also see [5]. In [3], Furuta showed the weighted version of (1.2) as follows: For any A ∈ Mn

(1.3) |〈Ax, y〉|2 ≤ 〈|A|2αx, x〉〈|A∗|2βy, y〉

holds for any x, y ∈ Cn and any α, β ∈ [0, 1] with α+β = 1, and the equality in (1.3) holds if
and only if |A|2αx and A∗y are linearly dependent if and only if Ax and |A∗|2βy are linearly
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dependent. In fact, Furuta has shown the operator version of (1.3). Moreover, Kittaneh
extended (1.3) for two real valued continuous functions f and g under some conditions, also
see [7]. We recall the matrix Cauchy-Schwarz inequality in terms of the matrix geometric
mean due to [1], also see [2]: For any X,Y ∈ Mn

(1.4) |Y ∗X| ≤ X∗X ] U∗Y ∗Y U

holds, where U is a unitary matrix in a polar decomposition of Y ∗X = U |Y ∗X| and the
matrix geometric mean A ] B is defined by

A ] B = A1/2(A−1/2BA−1/2)1/2A1/2

for any positive definite matrices A and B, also see [8].
In this paper, by virtue of the matrix Cauchy-Schwarz inequality (1.4) due to J.I.Fujii

via the matrix geometric mean, we show the matrix version of a weighted mixed Schwarz
inequality (1.3). As applications, we show matrix Parseval’s equations, Lin’s type extensions
for a weighted version of a mixed Schwarz inequality, and a weighted version of the Wielandt
inequality for matrices.

2 Weighted mixed Schwarz inequality In this section, we present a weighted version
of the mixed Schwarz inequality (1.3) for matrices of the same size. As a preparation of our
main assertion, we state the following matrix Cauchy-Schwarz inequality due to J.I.Fujii [2]
via the matrix geometric mean:

Lemma 2.1 (Matrix Cauchy-Schwarz inequality). Let X and Y be matrices in Mn, and
U ∈ Mn a unitary matrix in a polar decomposition of Y ∗X = U |Y ∗X|. Then

(2.1) |Y ∗X| ≤ X∗X ] U∗Y ∗Y U

and

(2.2) |X∗Y | ≤ UX∗XU∗ ] Y ∗Y.

Under the assumption kerX ⊆ kerY U (resp. ker Y ⊆ kerXU∗), the equality in (2.1) (resp.
the equality in (2.2) ) holds if and only if there exists W ∈ Mn such that Y U = XW (resp.
XU∗ = Y W ).

For any n-square matrix A, we denote the orthogonal projection on the column space of
A by PA. That is, PA is the range projection of A. By Lemma 2.1, we have the following
matrix version of the weighted Schwarz inequality (1.3) for matrices of the same size:

Theorem 2.2 (Weighted mixed Schwarz inequality). Let A, X and Y be matrices in Mn

and U ∈ Mn a unitary matrix in a polar decomposition of Y ∗AX = U |Y ∗AX|, and V ∈ Mn

a unitary matrix in a polar decomposition of A = V |A|. Then

(2.3) |Y ∗AX| ≤ X∗|A|2αX ] U∗Y ∗|A∗|2βY U

and

(2.4) |X∗A∗Y | ≤ UX∗|A|2αXU∗ ] Y ∗|A∗|2βY

hold for all α, β ∈ [0, 1] with α + β = 1. Under the assumption kerAX ⊆ kerA∗Y U (resp.
ker A∗Y ⊆ kerAXU∗), the equality in (2.3) (resp. the equality in (2.4)) holds if and only if
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there exists W ∈ Mn such that A∗Y U = |A|2αXW (resp. AXU∗ = |A∗|2βY W ) if and only
if |A∗|2βY U = AXW (resp. |A|2αXU∗ = A∗Y W ).

In particular, for the case of α = 0 in (2.3),

(2.5) |Y ∗AX| ≤ X∗P|A|X ] U∗Y ∗|A∗|2Y U.

Under the assumption kerP|A|X ⊆ ker |A|V ∗Y U , the equality in (2.5) holds if and only if
there exists W ∈ Mn such that |A|V ∗Y U = P|A|XW .

For the case of α = 1 in (2.3),

(2.6) |Y ∗AX| ≤ X∗|A|2X ] U∗Y ∗P|A∗|Y U.

Under the assumption ker |A|X ⊆ ker P|A∗|V
∗Y U , the equality in (2.6) holds if and only if

there exists W ∈ Mn such that P|A|V
∗Y U = |A|XW .

Proof. Firstly, we show (2.3). For the case of 0 < α < 1, replacing X (resp. Y ) by |A|αX
(resp. |A|βV ∗Y ) in (2.1) of Lemma 2.1, then we obtain

|Y ∗AX| = |(|A|βV ∗Y )∗|A|αX| ≤ X∗|A|2αX ] U∗Y ∗V |A|2βV ∗Y U.

It follows from [3] and [4, Theorem 4 in 2.2.2] that

V |A|2βV ∗ = (V |A|V ∗)2β = (V |A||A|V ∗)β = (AA∗)β = |A∗|2β

and we can get the desired inequality (2.3):

|Y ∗AX| ≤ X∗|A|2αX ] U∗Y ∗V |A|2βV ∗Y U = X∗|A|2αX ] U∗Y ∗|A∗|2βY U.

For the case of α = 0, since |Y ∗AX| = |Y ∗V |A|P|A|X| = |(|A|V ∗Y )∗P|A|X|, by replacing
X (resp. Y ) by P|A|X (resp. |A|V ∗Y ) in (2.1) of Lemma 2.1, we obtain

|Y ∗AX| ≤ X∗P|A|X ] U∗Y ∗V |A|2V ∗Y U = X∗P|A|X ] U∗Y ∗|A∗|2Y U

and so we have (2.5). For the case of α = 1, we have (2.6) similarly.
For the equality conditions, since kerAX ⊆ kerA∗Y U is equivalent to ker |A|αX ⊆

ker |A|βV ∗Y U for α, β ∈ [0, 1] with α + β = 1, it follows from Lemma 2.1 that under the
assumption ker |A|αX ⊆ ker |A|βV ∗Y U , the equality in (2.3) holds if and only if there exists
W ∈ Mn such that |A|βV ∗Y U = |A|αXW .

By a way similar to (2.3), we can get the inequality (2.4) and the equality condition of
(2.4).

Remark 2.3. Similarly, we can consider the case of α = 0, 1 of (2.4) in Theorem 2.2.
For the case of α = 0, then

|X∗A∗Y | ≤ UX∗P|A|XU∗ ] Y ∗|A∗|2Y.

Under the assumption ker |A∗|Y ⊆ kerP|A∗|V XU∗, the equality holds if and only if there
exists W ∈ Mn such that P|A∗|V XU∗ = |A∗|Y W .

For the case of α = 1, then

|X∗A∗Y | ≤ UX∗|A|2XU∗ ] Y ∗P|A∗|Y.

Under the assumption kerP|A∗|Y ⊆ ker |A∗|V XU∗, the equality holds if and only if there
exists W ∈ Mn such that |A∗|V XU∗ = P|A∗|Y W .
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3 Weighted mixed Schwarz inequality for an arbitrary matrix In this section,
we present the weighted version of a mixed Schwarz inequality for matrices of any different
sizes. For this, we need the following lemmas, see [6, p.449].

Lemma 3.1 (Polar decomposition). Let A be an m × n matrix in Mm×n.

(i) If m > n, then A = U |A|, in which U ∈ Mm×n consists of orthonormal columns.

(ii) If m = n, then A = U |A|, in which U ∈ Mn is unitary.

(iii) If m < n, then A = |A∗|U , in which U ∈ Mn×m consists of orthonormal rows.

The following lemma is a matrix Cauchy-Schwarz inequality for an arbitrary matrix,
also see [2, Corollary 2.7].

Lemma 3.2. Let X be a matrix in Mk×m and Y in Mk×n.

(i) If m ≤ n, then

(3.1) |Y ∗X| ≤ X∗X ] U∗Y ∗Y U,

in which U ∈ Mn×m consists of orthonormal columns and Y ∗X = U |Y ∗X|.

(ii) If m > n, then

(3.2) |X∗Y | ≤ U∗X∗XU ] Y ∗Y,

in which U ∈ Mm×n consists of orthonormal columns and X∗Y = U |X∗Y |.

Under the assumption ker X ⊆ kerY U (resp. kerY ⊆ kerXU), the equality in (3.1) (resp.
the equality in (3.2)) holds if and only if there exists W ∈ Mm (resp. W ∈ Mn) such that
Y U = XW (resp. XU∗ = Y W ).

By using a polar decomposition for an arbitrary matrix, we have the following theorem,
whose proof is similar to that of Theorem 2.2.

Theorem 3.3. Let A be a matrix in Mp×m, X in Mm×n, Y in Mp×q. For all α, β ∈ [0, 1]
with α + β = 1, the following inequalities hold.

(i) If q ≥ n, then

(3.3) |Y ∗AX| ≤ X∗|A|2αX ] U∗
1 Y ∗|A∗|2βY U1,

in which U1 ∈ Mq×n consists of orthonormal columns and Y ∗AX = U1|Y ∗AX|.

(ii) If q < n, then

(3.4) |X∗A∗Y | ≤ U∗
2 X∗|A|2αXU2 ] Y ∗|A∗|2βY,

in which U2 ∈ Mn×q consists of orthonormal columns and X∗A∗Y = U2|X∗A∗Y |.

Under the assumption ker AX ⊆ kerA∗Y U1 (resp. ker A∗Y ⊆ ker AXU2 ), the equality in
(3.3) (resp. the equality in (3.4)) holds if and only if there exists W ∈ Mn (resp. W ∈ Mq)
such that |A∗|2βY U1 = AXW (resp. AXU2 = |A∗|2βY W ).
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Proof. We show (3.3) only. If p ≥ m, then by Lemma 3.1 we have A = V1|A|, in which
V1 ∈ Mp×m consists of orthonormal columns. In this case, we replace X (resp. Y ) by
|A|αX (resp. |A|βV ∗

1 Y ) in (3.1) of Lemma 3.2, and we have |A∗|2β = V1|A|2βV ∗
1 . If p < m,

then we have A = |A∗|V2, in which V2 ∈ Mm×p consists of orthonormal rows. In this case,
we replace X (resp. Y ) by |A∗|αV2X (resp. |A∗|βY ) in (3.1) of Lemma 3.2, and we have
|A|2α = V ∗

2 |A∗|2αV2. Hence we obtain (3.3) and the equality condition.

Inspired by Kittaneh’s result [7, Theorem 1], we show an extension of Theorem 3.3,
which is a generalization of Schwarz inequality for two nonnegative functions f and g.

Theorem 3.4. Let A be in Mp×m, X in Mm×n, Y in Mp×q and f, g real valued continuous
functions on [0,∞) which are nonnegative and satisfying the relation f(t)g(t) = t for all
t ∈ [0,∞). If q ≥ n and p ≥ m, then

(3.5) |Y ∗AX| ≤ X∗f(|A|)2X ] U∗Y ∗g(|A∗|)2Y U,

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|.
Under the assumption ker f(|A|)X ⊆ ker g(|A|)V ∗Y U where V ∈ Mp×m consists of

orthonormal columns and A = V |A|, the equality in (3.5) holds if and only if there exists
W ∈ Mn such that g(|A|)V ∗Y U = f(|A|)XW .

Proof. Replacing X and Y by f(|A|)X and g(|A|)V ∗Y respectively in (3.1) of Lemma 3.2,
we obtain (3.5). In fact, we have |A∗| = V |A|V ∗ and V V ∗ ≤ I, and so V g(|A|)2V ∗ ≤
g(V |A|V ∗)2 = g(|A∗|)2. Therefore it follows that

|Y ∗AX| = |Y ∗V |A|X| = |Y ∗V g(|A|)f(|A|)X|
≤ X∗f(|A|)2X ] U∗Y ∗V g(|A|)2V ∗Y U

≤ X∗f(|A|)2X ] U∗Y ∗g(V |A|V ∗)2Y U

= X∗f(|A|)2X ] U∗Y ∗g(|A∗|)2Y U

and the equality condition holds.

4 Lin’s type extensions We consider further extensions of the weighted version of the
mixed Schwarz inequality for matrices. Firstly, inspired by Lin [9], we show that some
orthogonal conditions imply an improvement of the Cauchy-Schwarz inequality for matrices
of any different sizes in Lemma 3.2. For this, we recall the result due to Lin [9], which is
the sharpen (1.1) as follows: If y, z ∈ Cn and y is orthogonal to z, then

(4.1) (|〈x, y〉|2 ≤ ) |〈x, y〉|2 +
〈y, y〉|〈x, z〉|2

〈z, z〉
≤ 〈x, x〉〈y, y〉

for all x ∈ Cn. We show the matrix version of (4.1). For any matrix A, we denote by
P⊥

A (= I − PA) the orthogonal projection on the orthogonal complement of the column
space of A.

Lemma 4.1. Let X be in Mk×m, Y in Mk×n, ZX in Mk×lX and ZY in Mk×lY . Suppose
that X∗ZX = 0, Y ∗ZY = 0 and Z∗

Y ZX = 0.

(i) If n ≥ m, then

(4.2) |Y ∗X| ≤ X∗P⊥
ZY

X ] U∗Y ∗P⊥
ZX

Y U (≤ X∗X ] U∗Y ∗Y U),

in which U ∈ Mn×m consists of orthonormal columns and Y ∗X = U |Y ∗X|.
Under the assumption kerP⊥

ZY
X ⊆ kerP⊥

ZX
Y U , the equality in (4.2) holds if and only

if there exists W ∈ Mm such that P⊥
ZX

Y U = P⊥
ZY

XW .
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(ii) If n < m, then

|X∗Y | ≤ U∗X∗P⊥
ZY

XU ] Y ∗P⊥
ZX

Y (≤ U∗X∗XU ] Y ∗Y ),

in which U ∈ Mm×n consists of orthonormal columns and X∗Y = U |X∗Y |.
Under the assumption kerP⊥

ZX
Y ⊆ kerP⊥

ZY
XU , the equality holds if and only if there

exists W ∈ Mn such that P⊥
ZY

XU = P⊥
ZX

Y W .

Proof. We only show (4.2). Put X1 = P⊥
ZY

X and Y1 = P⊥
ZX

Y . Since X∗ZX = Y ∗ZY =
Z∗

Y ZX = 0, we have PZX
X = Y ∗PZY

= PZX
PZY

= 0 and it follows that

Y ∗
1 X1 = Y ∗P⊥

ZX
P⊥

ZY
X = Y ∗(I − PZX )(I − PZY )X = Y ∗X.

Hence it follows from Lemma 3.2 that

|Y ∗X| = |Y ∗
1 X1| ≤ X∗

1X1 ] U∗Y ∗
1 Y1U = X∗P⊥

ZY
X ] U∗Y ∗P⊥

ZX
Y U,

and so we have the desired inequality (4.2) and the equality condition holds.

Nextly, we focus on Parseval’s equation: Let x, y be in Ck and {ei}k
i=1 a complete

orthonormal system in Ck. Then

(4.3) ‖x‖2 =
k∑

i=1

|〈x, ei〉|2

and

(4.4) 〈x, y〉 =
k∑

i=1

〈x, ei〉〈ei, y〉.

The next result is a matrix generalization of Parseval’s equation (4.3). It follows from a
way similar to Gram-Schmidt orthogonalization.

Lemma 4.2. Let X be in Mk×m, Y in Mk×n, Z(X, 1), . . . , Z(X,x) in Mk×lX and Z(Y, 1),
. . . , Z(Y, y) in Mk×lY . Then

(4.5) X∗X =
y∑

j=0

S∗
j PZ(Y,j+1)Sj

and

Y ∗Y =
x∑

i=0

T ∗
i PZ(X,i+1)Ti,

where S0 = X, Sj = P⊥
Z(Y,j)Sj−1 for j = 1, 2, . . . , y, T0 = Y , Ti = P⊥

Z(X,i)Ti−1 for i =
1, 2, . . . , x and Z(Y, y + 1) (resp. Z(X,x + 1)) satisfies ranSy ⊆ ranZ(Y, y + 1) ( resp.
ranTx ⊆ ranZ(X,x + 1) ).

Proof. We only show (4.5). The following equation holds by induction:

S∗
ySy = (S∗

y−1 − S∗
y−1PZ(Y,y))(Sy−1 − PZ(Y,y)Sy−1)

= S∗
y−1Sy−1 − S∗

y−1PZ(Y,y)Sy−1

...
= S∗

0S0 − S∗
0PZ(Y,1)S0 − · · · − S∗

y−1PZ(Y,y)Sy−1

= X∗X −
y−1∑
j=0

S∗
j PZ(Y,j+1)Sj .
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Since the assumption ran Sy ⊆ ranZ(Y, y + 1) implies PZ(Y,y+1)Sy = Sy, we have

S∗
yPZ(Y,y+1)Sy = X∗X −

y−1∑
j=0

S∗
j PZ(Y,j+1)Sj

and so we have the desired equation (4.5).

The following remak is a vector version of Lemma 4.2, see [9].
Remark 4.3. Let x, z1, . . . , zn ∈ Ck. Then we have a generalization of Parseval’s equation
(4.3):

〈x, x〉 =
n∑

i=0

|〈ui, zi+1〉|2

〈zi+1, zi+1〉
,

where u0 = x, ui = ui−1−
〈ui−1, zi〉
〈zi, zi〉

zi for i = 1, 2, . . . , n and zn+1 =
1

‖un‖
un. If {z1, . . . , zk}

is a complete orthonormal system in Ck, then we can just get Parseval’s equation (4.3).
Under orthogonal conditions, we have the following matrix version of Parseval’s equation

(4.4).

Theorem 4.4. Let X be in Mk×m, Y in Mk×n, Z1, . . . , Zp in Mk×l and Z∗
i Zj = 0 for all

i 6= j, i, j ∈ {1, . . . , p}. Then

(4.6) Y ∗X =
p−1∑
q=0

Y ∗PZq+1X + T ∗
p Sp

where S0 = X, Sj = P⊥
Zj

Sj−1 for j = 1, . . . , p, T0 = Y and Ti = P⊥
Zi

Ti−1 for i = 1, . . . , p.

Proof. Since Z∗
i Zj = 0, we have PZiPZj = 0 for all i 6= j, i, j ∈ {1, . . . , p} and it follows

that

PZj Sj−1 = PZj (I − PZj−1)Sj−2

= PZj Sj−2

= · · · = PZj X

and similarly we have
PZj Tj−1 = PZj Y.

Hence it follows that

T ∗
p Sp = T ∗

p−1(I − PZp)(I − PZp)Sp−1

= T ∗
p−1Sp−1 − T ∗

p−1PZpSp−1

...
= T ∗

0 S0 − T ∗
0 PZ1S0 − · · · − T ∗

p−1PZpSp−1

= Y ∗X −
p−1∑
q=0

T ∗
q PZq+1Sq

= Y ∗X −
p−1∑
q=0

Y ∗PZq+1X

and hence we have the desired equality (4.6).
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Remark 4.5. We can consider a vector version of Theorem 4.4. Let x, y, z1, . . . , zp be in Ck

and 〈zi, zj〉 = 0 for all i 6= j, i, j ∈ {1, . . . , p}. Then we have a generalziation of Parseval’s
equation (4.4):

〈x, y〉 =
p−1∑
i=0

〈x, zi+1〉〈zi+1, y〉
〈zi+1, zi+1〉

+ 〈up, vp〉,

where u0 = x, uj = uj−1 −
〈uj−1, zj〉
〈zj , zj〉

zj for j = 1, . . . , p, v0 = y and vi = vi−1 −
〈vi−1, zi〉
〈zi, zi〉

zi

for i = 1, . . . , p.
In [9], Lin showed the following refinement of a weighted mixed Schwarz inequality (1.3):

Let A be a bounded linear operator on a complex Hilbert space H and 0 6= y ∈ H. If A∗y
is orthogonal to a vector z ∈ H with Az 6= 0, then

(4.7) |〈Ax, y〉|2 +
〈|A∗|2βy, y〉|〈|A|2αx, z〉|2

〈|A|2αz, z〉
≤ 〈|A|2αx, x〉〈|A∗|2βy, y〉

for all x ∈ H and α, β ∈ [0, 1] with α + β = 1. The next theorem is a matrix version of
(4.7).

Theorem 4.6. Let X be in Mm×n, Y in Mp×q, ZX in Mm×lX , ZY in Mp×lY and A
in Mp×m. Suppose that X∗|A|2αZX = 0, Y ∗|A∗|2βZY = 0 and Z∗

Y AZX = 0 for given
α, β ∈ [0, 1] with α + β = 1. If q ≥ n and p ≥ m, then

|Y ∗AX| ≤ X∗|A|αP⊥
|A∗|ZY

|A|αX ] U∗Y ∗V |A|βP⊥
|A|ZX

|A|βV ∗Y U

(≤ X∗|A|2αX ] U∗Y ∗|A∗|2βY U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|.

Under the assumption kerP⊥
|A∗|ZY

|A|αX ⊆ ker P⊥
|A|ZX

|A|βV ∗Y U , the equality holds if
and only if there exists W ∈ Mn such that P⊥

|A|ZX
|A|βV ∗Y U = P⊥

|A∗|ZY
|A|αXW .

Proof. Replacing X by |A|αX, Y by |A|βV ∗Y , ZX by |A|αZX and ZY by |A|βV ∗ZY in
(4.2) of Lemma 4.1, then we obtain the desired inequality and the equality condition.

The next result is a multivariate extension of Lemma 4.1, which is a refinement of matrix
Cauchy-Schwarz inequality (2.1) of Lemma 2.1:

Lemma 4.7. Let X be in Mk×m, Y in Mk×n, Z(X, 1), . . . , Z(X,x) in Mk×lX and Z(Y, 1),
. . . , Z(Y, y) in Mk×lY . Suppose that X∗Z(X, i) = 0, Y ∗Z(Y, j) = 0 and Z(Y, j)∗Z(X, i) = 0
for i = 1, 2, . . . , x, j = 1, 2, . . . , y If n ≥ m, then

|Y ∗X| ≤ (X∗X −
y−1∑
j=0

S∗
j PZ(Y,j+1)Sj) ] U∗(Y ∗Y −

x−1∑
i=0

T ∗
i PZ(X,i+1)Ti)U

(≤ X∗X ] U∗Y ∗Y U),

in which U ∈ Mn×m consists of orthonormal columns and Y ∗X = U |Y ∗X|, where S0 = X,
Sj = P⊥

Z(Y,j)Sj−1 for j = 1, 2, . . . , y, T0 = Y and Ti = P⊥
Z(X,i)Ti−1 for i = 1, 2, . . . , x.

Under the assumption ker(
y∏

b=1

P⊥
(Y,y−b+1))X ⊆ ker(

x∏
a=1

P⊥
(X,x−a+1))Y U , the equality holds

if and only if there exists W ∈ Mm such that (
x∏

a=1

P⊥
(X,x−a+1))Y U = (

y∏
b=1

P⊥
(Y,y−b+1))XW .
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Proof. By Lemma 4.2, the following equations hold:

S∗
ySy = X∗X −

y−1∑
j=0

S∗
j PZ(Y,j+1)Sj

and

T ∗
x Tx = Y ∗Y −

x−1∑
i=0

T ∗
i PZ(X,i+1)Ti.

Since X∗Z(X, i) = 0, Y ∗Z(Y, j) = 0 and Z(Y, j)∗Z(X, i) = 0, we have PZ(X,i)X =
Y ∗PZ(Y,j) = PZ(X,i)PZ(Y,j) = 0 for i = 1, 2, . . . , x and j = 1, 2, . . . , y. Then it follows
that

T ∗
x Sy = T ∗

x−1P
⊥
Z(X,x)P

⊥
Z(Y,y)Sy−1

= Y ∗

I +
x∑

s=1

 ∑
1≤c1<···<cs≤x

s∏
p=1

(−1)sPZ(X,cp)


+

y∑
t=1

 ∑
1≤d1<···<dt≤y

t∏
q=1

(−1)tPZ(Y,dt+1−q)

 X

= Y ∗X.

So, we can get the desired inequality by Lemma 3.2:

|Y ∗X| = |T ∗
x Sy|

≤ S∗
ySy ] U∗T ∗

x TxU

= (X∗X −
y−1∑
j=0

S∗
j PZ(Y,j+1)Sj) ] U∗(Y ∗Y −

x−1∑
i=0

T ∗
i PZ(X,i+1)Ti)U.

Since Sy = (
y∏

b=1

P⊥
(Y,y−b+1))X and Tx = (

x∏
a=1

P⊥
(X,x−a+1))Y , we have the equality condition

by Lemma 3.2.

Moreover, Lin showed the following multivariate extension of (4.7): Under the hypothe-
ses of (4.7), if A∗y is orthogonal to a set of vectors {z1, . . . , zn} ⊆ H with Azi 6= 0,
i = 1, . . . , n, then

(4.8) |〈Ax, y〉|2 + 〈|A∗|2βy, y〉
n∑

i=1

|〈|A|2αui−1, zi〉|2

〈|A|2αzi, zi〉
≤ 〈|A|2αx, x〉〈|A∗|2βy, y〉

for every x ∈ H, where ui = ui−1 −
〈|A|2αui−1, zi〉
〈|A|2αzi, zi〉

zi, i = 1, . . . , n with u0 = x. The next

result is a multivariate extension of Theorem 4.6 and a matrix version of (4.8).

Theorem 4.8. Let X be in Mm×n, Y in Mp×q, Z(X, 1), . . . , Z(X,x) in Mm×lX , Z(Y, 1),
. . . , Z(Y, y) in Mp×lY , and A in Mp×m. Suppose that X∗|A|2αZ(X, i) = 0, Y ∗|A∗|2βZ(Y, j)
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= 0, Z(Y, j)∗AZ(X, i) = 0 for i = 1, 2, . . . , x, j = 1, 2, . . . , y for given α, β ∈ [0, 1] with
α + β = 1. If q ≥ n and p ≥ m, then

|Y ∗AX| ≤ (X∗|A|2αX −
y−1∑
j=1

S∗
j P|A∗|Z(Y,j+1)Sj) ] U∗(Y ∗|A∗|2βY −

x−1∑
i=1

T ∗
i P|A|Z(X,i+1)Ti)U

(≤ X∗|A|2αX ] U∗Y ∗|A∗|2βY U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|, where S0 = |A|αX, Sj = P⊥

|A∗|Z(Y,j)Sj−1

for j = 1, 2, . . . , y, T0 = |A|βV Y and Ti = P⊥
|A|Z(X,i)Ti−1 for i = 1, 2, . . . , x.

Under the assumption ker(
y∏

b=1

P⊥
|A∗|Z(Y,y−b+1))|A|αX ⊆ ker(

x∏
a=1

P⊥
|A|Z(X,x−a+1))|A|βV ∗Y U ,

the equality holds if and only if there exists W ∈ Mn such that (
x∏

a=1

P⊥
|A|Z(X,x−a+1))|A|βV ∗Y U

= (
y∏

b=1

P⊥
|A∗|Z(Y,y−b+1))|A|αXW , where V ∈ Mp×m consists of orthonormal columns and

A = V |A|.

Proof. Replacing X by |A|αX, Y by |A|βV ∗Y , Z(X, i) by |A|αZ(X, i) and Z(Y, j) by
|A|βV ∗Z(Y, j) in Lemma 4.7 for all i = 1, 2, . . . , x and j = 1, 2, . . . , y, then we obtain the
desired inequality and the equality condition.

We note that the vector version of Theorem 4.8 is a matrix version of Theorem 4 in
[9]: Let x be in Cm, y in Cp, z(x, 1), . . . , z(x, a) in Cm, z(y, 1), . . . , z(y, b) in Cp, and A in
Mp×m. Suppose that 〈|A|2αz(x, i), x〉 = 0, 〈|A∗|2βz(y, j), y〉 = 0, 〈Az(x, i), z(y, j)〉 = 0 for
i = 1, 2, . . . , a, j = 1, 2, . . . , b for given α, β ∈ [0, 1] with α + β = 1. If p ≥ m, then

|〈Ax, y〉|2 ≤

〈|A|2αx, x〉 −
b−1∑
j=1

|〈|A∗|z(y, j + 1), sj〉|2

〈|A∗|2z(y, j + 1), z(y, j + 1)〉


×

(
〈|A∗|2βy, y〉 −

a−1∑
i=1

|〈|A|z(x, i + 1), ti〉|2

〈|A|2z(x, i + 1), z(x, i + 1)〉

)
,

in which V ∈ Mp×m consists of orthonormal columns and A = V |A|, s0 = |A|αx, sj =
P⊥
|A∗|z(y,j)sj−1 for j = 1, 2, . . . , b, t0 = |A|βV y and ti = P⊥

|A|z(x,i)ti−1 for i = 1, 2, . . . , a.

5 Weighted Wielandt inequality We consider a different way of a refinement of a
weighted Schwarz inequality in §4. We show a weighted version of matrix Wielandt in-
equality. We proved a matrix version of Wielandt inequality, see [2]: Let A be a positive
semidefinite matrix in Mk, with rank(A) = r, λ1 ≥ · · · ≥ λr > 0 eigenvalues of A, and X,Y
in Mk×n such that Y ∗PAX = 0 where PA is the orthogonal projection on the column space
of A. Then

(5.1) |Y ∗AX| ≤
(

λ1 − λr

λ1 + λr

)
(X∗AX ] U∗Y ∗AY U),

in which U ∈ Mn is a unitary matrix such that Y ∗AX = U |Y ∗AX|. The following theorem
is a weighted version of (5.1).
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Theorem 5.1. Let A be a matrix in Mp×m, with rank(A)=r, σ1 ≥ · · · ≥ σr > 0 singular
values of A, X ∈ Mm×n and Y ∈ Mp×q. For all α, β ∈ [0, 1] with α + β = 1, if p ≥ m,
q ≥ n and Y ∗V P|A|X = 0, then

|Y ∗AX| ≤
(

σ1 − σr

σ1 + σr

)
(X∗|A|2αX ] U∗Y ∗|A∗|2βY U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|.

Proof. Let c =
2σ1σr

σ1 + σr
. Since σ1P|A| − |A| and |A| − σrP|A| are positive semidefinite and

they commute, it follows that (σ1P|A| − |A|)(|A| − σrP|A|) ≥ 0 and hence

(5.2) (P|A| − c|A|†)2 ≤

(
σ1 − σr

σ1 + σr

)2

I,

where |A|† means the Moore-Penrose generalized inverse of |A|. So, we can get the desired
inequality:

|Y ∗AX| = |Y ∗AX − cY ∗V P|A|X| = |Y ∗V |A|β(P|A| − c|A|†)|A|αX|
= |(P|A| − c|A|†)|A|βV ∗Y )∗(|A|αX)|
≤ X∗|A|2αX ] U∗Y ∗V |A|β(P|A| − c|A|†)2|A|βV ∗Y U by Lemma 3.2

≤ X∗|A|2αX ] U∗Y ∗V |A|β
(

σ1 − σr

σ1 + σr

)2

|A|βV ∗Y U by (5.2)

=
(

σ1 − σr

σ1 + σr

)
(X∗|A|2αX ] U∗Y ∗|A∗|2βY U).

Lastly, we consider a Wielandt version of Theorem 3.4 by a way similar to the proof of
Theorem 5.1.

Theorem 5.2. Let A be a matrix in Mp×m, with rank(A)=r, σ1 ≥ · · · ≥ σr > 0 singular
values of A, X ∈ Mm×n, Y ∈ Mp×q and f, g complex functions on [0,∞) which are con-
tinuous and satisfying the relation f(t)g(t) = t for all t ∈ [0,∞) For all α, β ∈ [0, 1] with
α + β = 1, if p ≥ m, q ≥ n and Y ∗V P|A|X = 0, then

|Y ∗AX| ≤
(

σ1 − σr

σ1 + σr

)
(X∗|f(|A|)|2X ] U∗Y ∗|g(|A∗|)|2Y U),

in which U ∈ Mq×n consists of orthonormal columns and Y ∗AX = U |Y ∗AX|, and V ∈
Mp×m consists of orthonormal columns and A = V |A|.
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