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ABSTRACT. In this paper, by using the Cauchy-Schwarz inequality for matrices via
the matrix geometric mean due to J.I. Fujii, we show the following matrix version of a
mixed Schwarz inequality for any square matrices: Let A be an n-square matrix. For
any n-square matrices X,Y

[Y*AX| < X*|AP*X  UY*|A" YU

holds for all a, 8 € [0,1] with a + 8 = 1, where U is a unitary matrix in a polar
decomposition of Y*AX = U|Y*AX|. As applications, we show matrix Parseval’s
equation, Lin’s type extensions for a weighted version of a mixed Schwarz inequality,
and a weighted version of the Wielandt inequality for matrices.

1 Introduction Let M,,y, = M,,x,(C) be the space of m x n complex matrices and
M,, = M, »,,(C), and denote the matrix absolute value of any A € M, by |A| = (A*A)'/2,
For A € M,,, we write A > 0 if A is positive semidefinite and A > 0 if A is positive definite;
that is, x* Az > 0 for all nonzero column vectors z € C™. For two Hermitian matrices A
and B of the same size, we write A > Bif A— B >0,and A > Bif A— B > 0. For
A € M, «n, ker A and ran A mean the null space of A and the range of A, respectively.

The Cauchy-Schwarz inequality is one of the most useful and fundamental inequalities
in functional analysis: For any complex n-dimensional column vectors z and y,

(1.1) [z, y)]* < (2,2)(y, y)

and the equality holds if and only if x and y are linearly dependent. As an extension of
(1.1), the following inequality holds: For any positive semidefinite matrix A in M,,,

[{Az, y)* < (Az,z)(Ay. y).

Even if A is an arbitrary matrix in M,,, by virtue of the matrix absolute value of A, we
have a mixed Schwarz inequality

(1.2) [(Az, y)* < (| Az, 2)(|A" |y, ),
also see [5]. In [3], Furuta showed the weighted version of (1.2) as follows: For any A € M,
(1.3) [(Az, y)|* < (JAP 2, 2) (| A"y, y)

holds for any x,y € C™ and any «, 8 € [0,1] with a4+ = 1, and the equality in (1.3) holds if
and only if |A|?*2 and A*y are linearly dependent if and only if Az and |A*|?%y are linearly
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dependent. In fact, Furuta has shown the operator version of (1.3). Moreover, Kittaneh
extended (1.3) for two real valued continuous functions f and g under some conditions, also
see [7]. We recall the matrix Cauchy-Schwarz inequality in terms of the matrix geometric
mean due to [1], also see [2]: For any X,Y € M,

(1.4) YV*X| < X*X § U*Y*YU

holds, where U is a unitary matrix in a polar decomposition of Y*X = U|Y*X]| and the
matrix geometric mean A f B is defined by

A ﬁ B = A1/2(A—1/2BA—1/2)1/2A1/2

for any positive definite matrices A and B, also see [8].

In this paper, by virtue of the matrix Cauchy-Schwarz inequality (1.4) due to J.I.Fujii
via the matrix geometric mean, we show the matrix version of a weighted mixed Schwarz
inequality (1.3). As applications, we show matrix Parseval’s equations, Lin’s type extensions
for a weighted version of a mixed Schwarz inequality, and a weighted version of the Wielandt
inequality for matrices.

2 Weighted mixed Schwarz inequality In this section, we present a weighted version
of the mixed Schwarz inequality (1.3) for matrices of the same size. As a preparation of our
main assertion, we state the following matrix Cauchy-Schwarz inequality due to J.I.Fujii [2]
via the matrix geometric mean:

Lemma 2.1 (Matrix Cauchy-Schwarz inequality). Let X and Y be matrices in M,,, and
U € M, a unitary matriz in a polar decomposition of Y*X = U|Y*X|. Then

(2.1) Y*X| < X*X g U'Y*YU
and
(2.2) IX*Y| <UX*XU* g Y'Y.

Under the assumption ker X C ker YU (resp. kerY C ker XU™*), the equality in (2.1) (resp.
the equality in (2.2) ) holds if and only if there exists W € M, such that YU = XW (resp.
XU* =YW).

For any n-square matrix A, we denote the orthogonal projection on the column space of
A by P4. That is, P4 is the range projection of A. By Lemma 2.1, we have the following
matrix version of the weighted Schwarz inequality (1.3) for matrices of the same size:

Theorem 2.2 (Weighted mixed Schwarz inequality). Let A, X and Y be matrices in M,
and U € M, a unitary matriz in a polar decomposition of Y*AX = U|Y*AX|, and V € M,
a unitary matriz in a polar decomposition of A =V|A|. Then

(2.3) [V*AX| < X*|AP°X ¢ UY*|A*]PPYU
and
(2.4) | X*A*Y| < UX*|AP“XU* § Y*|A* Y

hold for all o, 8 € [0,1] with o + 8 = 1. Under the assumption ker AX C ker A*YU (resp.
ker A*Y C ker AXU™), the equality in (2.3) (resp. the equality in (2.4)) holds if and only if
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there exists W € ML, such that A*YU = |A|?**XW (resp. AXU* = |A*|*YW) if and only
if |A*|2PYU = AXW (resp. |A|P*XU* = A*YW).
In particular, for the case of a =0 in (2.3),

(2.5) [Y*AX| < X*PaX § UTY*|A*PYU.

Under the assumption ker P4 X C ker [A|[V*YU, the equality in (2.5) holds if and only if
there exists W € M, such that [A|V*YU = P g XW.
For the case of a =1 in (2.3),

(2:6) Y*AX| < X*|APX § U'Y*Plas YU.

Under the assumption ker |A|X C ker P4« \V*Y'U, the equality in (2.6) holds if and only if
there exists W € M, such that P, \V*YU = [A|XW.

Proof. Firstly, we show (2.3). For the case of 0 < o < 1, replacing X (resp. Y) by |A|*X
(resp. |A|°V*Y) in (2.1) of Lemma 2.1, then we obtain

[Y*AX| = |(JA|IPV*Y)*|A|*X| < X*|AP*X ¢ U*Y*V|APPVYU.
It follows from [3] and [4, Theorem 4 in 2.2.2] that
VIAPPV: = (VIAIV)? = (VIA|A[V*)? = (AA")7 = |A* 7
and we can get the desired inequality (2.3):
[Y*AX| < X*|APX § UY*V|APPV*YU = X*|APX § UY*|A*|*PYU.

For the case of @ = 0, since |[Y*AX| = [Y*V[A|P 4 X| = [(JA|V*Y)* P 4 X|, by replacing
X (resp. Y) by P4/ X (resp. |A|V*Y) in (2.1) of Lemma 2.1, we obtain

Y*AX| < X*Pa X § UY*VIAPV*YU = X*P 4 X § UY*A*PYU

and so we have (2.5). For the case of a = 1, we have (2.6) similarly.

For the equality conditions, since ker AX C ker A*YU is equivalent to ker |A|*X C
ker |A|PV*YU for o, 3 € [0,1] with a + 3 = 1, it follows from Lemma 2.1 that under the
assumption ker |A|*X C ker |A|*V*Y U, the equality in (2.3) holds if and only if there exists
W € M, such that [A|V*YU = |[A|*XW.

By a way similar to (2.3), we can get the inequality (2.4) and the equality condition of
(2.4). O

Remark 2.3. Similarly, we can consider the case of o = 0,1 of (2.4) in Theorem 2.2.
For the case of a = 0, then

| X*A*Y| <UX*P 4 XU* § Y*|A*?Y.

Under the assumption ker |[A*|Y" C ker P4V XU*, the equality holds if and only if there
exists W € M, such that P4 VXU* = |[A*[YW.
For the case of a = 1, then

| X*A*Y| < UX*|APXU* § Y*Ps|Y.

Under the assumption ker P 4+|Y" C ker |[A*|V XU*, the equality holds if and only if there
exists W € M, such that [A*[VXU* = P 4. YW.
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3 Weighted mixed Schwarz inequality for an arbitrary matrix In this section,
we present the weighted version of a mixed Schwarz inequality for matrices of any different
sizes. For this, we need the following lemmas, see [6, p.449].

Lemma 3.1 (Polar decomposition). Let A be an m X n matriz in My, .
(i) If m > n, then A = U|A|, in which U € My, xn, consists of orthonormal columns.
(ii) If m =n, then A = U|A|, in which U € M, is unitary.
(i) If m <mn, then A= |A*|U, in which U € M, consists of orthonormal rows.

The following lemma is a matrix Cauchy-Schwarz inequality for an arbitrary matrix,
also see [2, Corollary 2.7].

Lemma 3.2. Let X be a matriz in Mgy, and Y in Mgy,.
(i) If m < n, then
(3.1) Y*X| < X*X 4 U'Y*'YU,
in which U € My, consists of orthonormal columns and Y*X = U|Y*X]|.
(ii) If m > n, then
(3.2) | X*Y|<U*X*XU ¢ Y'Y,
in which U € My, xn, consists of orthonormal columns and X*Y = U|X*Y|.

Under the assumption ker X C ker YU (resp. kerY C ker XU), the equality in (3.1) (resp.
the equality in (3.2)) holds if and only if there exists W € M,,, (resp. W € M,,) such that
YU = XW (resp. XU* =YW).

By using a polar decomposition for an arbitrary matrix, we have the following theorem,
whose proof is similar to that of Theorem 2.2.

Theorem 3.3. Let A be a matriz in Mpxm,, X in My, xn, Y in My, For all o, 8 € [0,1]
with a + B =1, the following inequalities hold.

(i) If ¢ > n, then

(3.3) [V*AX| < X*|AP*“X ¢ Uy Y™ |A*|*°Y U,

in which Uy € Myx, consists of orthonormal columns and Y*AX = U,|Y*AX]|.
(ii) If ¢ < n, then

(3.4) |IX*A*Y| < U X*|A** XU, § Y*|A*|?PY,

in which Uy € M, x4 consists of orthonormal columns and X*A*Y = Uy|X*A*Y|.

Under the assumption ker AX C ker A*YU; (resp. ker A*Y C ker AXU, ), the equality in
(3.3) (resp. the equality in (3.4)) holds if and only if there exists W € M, (resp. W € M)
such that |A*|?°Y U, = AXW (resp. AXUy = |A*|?PYW).
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Proof. We show (3.3) only. If p > m, then by Lemma 3.1 we have A = V;|A4|, in which
Vi € M., consists of orthonormal columns. In this case, we replace X (resp. Y) by
|A]*X (resp. |A|PV}*Y) in (3.1) of Lemma 3.2, and we have |A*|?% = V1 |A|PV*. If p < m,
then we have A = |A*|V3, in which V5 € M, consists of orthonormal rows. In this case,
we replace X (resp. Y) by |A*|*VoX (resp. |A*|?Y) in (3.1) of Lemma 3.2, and we have
|A]2% = V5| A*|?* V4. Hence we obtain (3.3) and the equality condition. O

Inspired by Kittaneh’s result [7, Theorem 1], we show an extension of Theorem 3.3,
which is a generalization of Schwarz inequality for two nonnegative functions f and g.

Theorem 3.4. Let A be in Myxpm, X in Myxn, Y in My, and f, g real valued continuous
functions on [0,00) which are nonnegative and satisfying the relation f(t)g(t) =t for all
t€[0,00). If g >n and p > m, then

(3-5) [Y*AX| < X*f(JA]’X ¢ U"Y"g(|A*])*YU,

in which U € Mgy, consists of orthonormal columns and Y*AX = U|Y*AX]|.
Under the assumption ker f(|A])X C kerg(|A|)V*YU where V. € Myy,, consists of

orthonormal columns and A = V|A|, the equality in (3.5) holds if and only if there exists
W e M, such that g(|A)V*YU = f(JA)XW.

Proof. Replacing X and Y by f(JA])X and ¢g(|A|)V*Y respectively in (3.1) of Lemma 3.2,
we obtain (3.5). In fact, we have |A*| = V|A|V* and VV* < I, and so Vg(|A|)?V* <
g(V|A|V*)?2 = g(|A*|)?. Therefore it follows that

YPAX| = Y'VIAIX] = [Y"Vg(lA])f(A)X]
< XUf(JAD2X § UTY*Vg(|A)PVIYU
< XUF(JANPX § UTY g(VIAV)?YU
= X'f(JAD*X £ UY"g(|A")*YU
and the equality condition holds. O

4 Lin’s type extensions We consider further extensions of the weighted version of the
mixed Schwarz inequality for matrices. Firstly, inspired by Lin [9], we show that some
orthogonal conditions imply an improvement of the Cauchy-Schwarz inequality for matrices
of any different sizes in Lemma 3.2. For this, we recall the result due to Lin [9], which is
the sharpen (1.1) as follows: If y, 2 € C™ and y is orthogonal to z, then

2
4.1 2 < 2_|_ <y7y>|<$7z>|
(4.1) ()P <) eyl + LIS
for all z € C™. We show the matrix version of (4.1). For any matrix A, we denote by
P31 (= I — Py4) the orthogonal projection on the orthogonal complement of the column
space of A.

<A{z,z)(y, )

Lemma 4.1. Let X be in Mixm, Y in Mixn, Zx in Mixi, and Zy in Mgy, . Suppose
that X*Zx =0, Y*Zy =0 and Z3y Zx = 0.

(i) If n > m, then
(4.2) Y*X| < X*Pé-yX i U*Y*Pé-XYU (< X*X t U*Y*YU),
in which U € My, consists of orthonormal columns and Y*X = U|Y*X]|.

Under the assumption ker Pé-yX C ker Pé-XYU, the equality in (4.2) holds if and only
if there exists W € My, such that P, YU = Pz XW.
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(ii) If n < m, then
| X*Y| < U*X*Pé-yXU i Y*P}-XY (SUX*XU YY),
in which U € My, xn consists of orthonormal columns and X*Y = U|X*Y]|.
Under the assumption ker PéXY C ker PZlyXU, the equality holds if and only if there
exists W € M, such that PZL},XU = PZLX YW.
Proof. We only show (4.2). Put X; = Pé-yX and Y; = Pé-XY. Since X*Zx = Y*Zy =
ZyZx =0, we have Py, X =Y*Py, = Pz, Pz, =0 and it follows that
X, = Y*PZLXPZlyX =Y*(I—-Pz,)(I— Py, )X =Y"X.
Hence it follows from Lemma 3.2 that
Y*X| = Y7 X1 | < X{ X1 § UYyYZWU = X*Pz, X  U*Y*Pz YU,
and so we have the desired inequality (4.2) and the equality condition holds. O

Nextly, we focus on Parseval’s equation: Let z,y be in C* and {ei}le a complete
orthonormal system in C*. Then

k
(4.3) l]|* = Z [, )]

and
k

(4.4) (wy) = (w.edleny).

i=1
The next result is a matrix generalization of Parseval’s equation (4.3). It follows from a
way similar to Gram-Schmidt orthogonalization.

Lemma 4.2. Let X be in Mgy, Y in Mgy, Z(X,1),...,Z(X,z) in Mgy, and Z(Y,1),
s Z(Y,y) in Mgy, . Then

Yy
(4.5) X*X = S Py j+1)S;)
j=0

Y'Y =) T PyxirnTi
i=0
where Sy = X, S; = PZL(YJ)Sj_1 forj=1,2,...,y, To =Y, T = PZL(X,i)Ti_l for i =
1,2,...,x and Z(Y,y + 1) (resp. Z(X,z + 1)) satisfies ran S, C ranZ(Y,y + 1) ( resp.
ranT, CranZ(X,z + 1) ).
Proof. We only show (4.5). The following equation holds by induction:

SZSy = (S;;fl - SfjflPZ(Yyy))(Syfl - PZ(Y,y)Syfl)
= S;_lSy,1 - S;—1PZ(Y,y)Sy*1

= 5580 — S5 Pzv,1)S0 — - — Sy _1Pz(v.y)Sy—1
y—1

_ X*X_ZS;PZ(YJJFUST
j=0
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Since the assumption ran S, C ran Z(Y,y + 1) implies Pz(y,y41)S, = Sy, we have

y—1
SyPz(vasnSy = XX =) S Pav i)

=0

and so we have the desired equation (4.5). O
The following remak is a vector version of Lemma 4.2, see [9].
Remark 4.3. Let x,21,...,2, € C*. Then we have a generalization of Parseval’s equation
(4.3):
| Us, ZH—l
I .’17
Z Z1+1;Zz+1
(ui—1,2:)

where uy = , u; = Uj_1 — ) zifori=1,2,...,nand 2,1 = T Hun It {z,..., 21}
1y~ 'fL

is a complete orthonormal system in C*, then we can just get Parseval’s equation (4.3).
Under orthogonal conditions, we have the following matrix version of Parseval’s equation

(4.4).
Theorem 4.4. Let X be in Myyxm, Y in Myxn, Z1,...,Zp in My, and Z;Z; =0 for all
i#7,4,5€{L,...,p}. Then

p—1
(4.6) Y*X =) Y*Pyz, X + 178,

q=0

where So = X, Sj:Pi,Sj,l forj=1,....p, Tho =Y andTZ-:Pé;TZ-,l fori=1,....p
Proof. Since Z}Z; = 0, we have Pz, Pz, = 0 for all i # j, i,j € {1,...,p} and it follows
that

Pz,Sj-1 = Pz,(I— Pz ,)Sj s
S

= ..=P; X

J

and similarly we have

Pz, Tj1 = Pg,Y.

Hence it follows that

TrS, = Ti,(I-Py )(1 — PZP)S

= T;_ 1Sp-1—T; 1Pz, S,

= T;So—T;Pz, 80— —T; 1Pz, 51
p—1

= Y*X — Z T; Pz,..5
q=0
p—1

= Y'X-> Y'P; X
q=0

and hence we have the desired equality (4.6). O
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Remark 4.5. We can consider a vector version of Theorem 4.4. Let z,y, 21,...,2, be in Ck
and (z;, z;) = 0 for all i # j, 4,5 € {1,...,p}. Then we have a generalziation of Parseval’s
equation (4.4):
p71 2, 2i1)(Zig1, Y)
+1){zit1,
Z ZZ—Z%> + (up, vp),
= i+15 Zit1
Uj_1,2 Vi1, %
where ug =, uj; = uj_1 — (-1, ]>z] forj=1,...,p,vg =y and v; = v;_1 — le
(23, 2)) (23, 2)

fori=1,...,p.
In [9], Lin showed the following refinement of a weighted mixed Schwarz inequality (1.3):

Let A be a bounded linear operator on a complex Hilbert space H and 0 # y € H. If A*y
is orthogonal to a vector z € H with Az # 0, then

(A [Py, y) (| Az, 2)|?

(4.7) [(Az,y)” + (A2, 2)

< (AP, z)(| A"y, y)

for all z € H and «, 8 € [0,1] with o + 8 = 1. The next theorem is a matrix version of
(4.7).

Theorem 4.6. Let X be in My, xn, Y in Myxy, Zx in Mpxiy, Zy in Mpx, and A
in Mpxm. Suppose that X*|A|?*Zx = 0, Y*|A*|*$Zy = 0 and Z3 AZx = 0 for given
a,f€[0,1] witha+8=1. If ¢ >n and p > m, then
Y*AX| < X*A|*Plhu iz, [AI°X § UY*VIAPPY 4 APV YU
(< X*|APX ¢ UY*|A*]?PYU),
in which U € Mgy, consists of orthonormal columns and Y*AX = U|Y*AX|, and V €

My« consists of orthonormal columns and A =V]A|.
Under the assumption ker P |A 2y |A|*X C ker P\IL‘HZ |A|PV*YU, the equality holds if

and only if there exists W € M, such that |JA|ZX |APV*YU = P\i*lzy |A|[*XW.

Proof. Replacing X by |A|*X, Y by |A|PV*Y, Zx by |A|*Zx and Zy by |A|PV*Zy in
(4.2) of Lemma 4.1, then we obtain the desired inequality and the equality condition. [

The next result is a multivariate extension of Lemma 4.1, which is a refinement of matrix
Cauchy-Schwarz inequality (2.1) of Lemma 2.1:

Lemma 4.7. Let X be in Mgy, Y in Mgxn, Z(X,1),...,Z(X,x) in Mgy, and Z(Y,1),
S Z(Y,y) in Mgy, . Suppose that X*Z(X,i) =0,Y*Z(Y,j) =0 and Z(Y,5)*Z(X,i) =
fori=1,2,....x, j=1,2,...,y If n > m, then

y—1 x—1
Y*X| < (X*X =) SiPryven)S) $ UN(Y'Y = > T Prix,ii)T)U
=0 i=0

(£ X*X gUY*YU),
in which U € M,y consists of orthonormal columns and Y*X = U|Y*X|, where So = X
S; = PZL(y,j)Sj—l forj=12,....y, To=Y and T; = PZL(X,i)Ti—l fori=1,2,...,x
Y T
Under the assumption ker(H P(§7y7b+1))X - ker(H P(J)‘(’mfaﬂ))YU, the equality holds

b=1 a=1

if and only if there exists W € M, such that ( H PXI at1)YU = H P(Yy b)) XW.
a=1
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Proof. By Lemma 4.2, the following equations hold:

y—1
SiSy=X"X = S5 Pyyvj11)S;
j=0
and
x—1
TiTe =YY =) T Pricisn T
i=0
Since X*Z(X,i) = 0, Y*Z(Y,j) = 0 and Z(Y,j)*Z(X,i) = 0, we have Pyx X =
Y*Pyv,j) = Pzx,yPzv,;) = 0 fori = 1,2,...,0 and j = 1,2,...,y. Then it follows
that
T8, = T;—lpé_(X,x)Pé_(Yw)Sy_l
= Y*[I+ > TED Poxe,

s=1 1<ci1 < <ecs <z p=1

Y

t
+Z Z H(_l)tPZ(Y’dtJrl*q) X

t=1 \1<d;<--<d;<yq=1
= Y*X.

So, we can get the desired inequality by Lemma 3.2:

Y*X| = |T; S,
< SiS, 4 U'TIT,U
y—1 z—1
= (XX =) St Pryy40)Si) t U(YY = > T} Pyix,ii)Ti)U.
=0 i=0

Yy x
Since S, = (H P(%,)yfbﬂ))X and T, = (H Pé{’mfaﬂ))Y, we have the equality condition
b=1 a=1
by Lemma 3.2. O

Moreover, Lin showed the following multivariate extension of (4.7): Under the hypothe-
ses of (4.7), if A*y is orthogonal to a set of vectors {z1,...,2,} C H with Az; # 0,
i=1,...,n, then

* . AQaui— ) %4 2 « *
48) s+ (4P Y EEmt R < e, aygarpiy g
i=1 1y 71

(AP uir, zi)

2% Ziy 1
(|42, 24)

result is a multivariate extension of Theorem 4.6 and a matrix version of (4.8).

for every x € H, where u; = u;_1 — =1,...,n with ug = z. The next

Theorem 4.8. Let X be in My, xpn, Y in Mpy,, Z(X,1),...,Z(X,z) in My, iy, Z(Y,1),
s Z(Y,y) in Mpxiy, and A in My, Suppose that X*|A|?*Z(X,i) =0, Y*|A*|*8Z(Y, §)
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=0, Z(Y,j)*AZ(X,i) =0 fori =1,2,...,2, j = 1,2,...,y for given a, 3 € [0,1] with
a+pB=1. Ifg>n and p > m, then

y—1 x—1
Y*AX| < (X*|AP°X - ZS;P|A*|Z(Y,J‘+1)SJ') g U (YA PPY — ZTi*F)IA|Z(X,i+1)n)U
j=1 i=1

(< X*|APX 4 U Y*|A*?PYU),

in which U € Mgy, consists of orthonormal columns and Y*AX = U|Y*AX|, and V €
M, xm consists of orthonormal columns and A = V| A|, where So = |A|*X, S, = P|JA*\Z(Yj)Sj—1

forj=1,2,...,y, To = |A|PVY and T; = P‘j‘z(x’i)Ti_l fori=1,2,...,x

Y T
Under the assumption ker(H ﬂj*‘z(y’y7b+1))|A|aX C ker(H })|1L4\Z(X,w7a+1))‘A|BV*YUf
b=1 a=1

the equality holds if and only if there exists W € M, such that (H P‘jlz(x,x_aﬂ)ﬂAWV*YU

a=1
Y

= (H P‘j*‘z(y}yfbH)HA\aXW, where V. € Mpy., consists of orthonormal columns and
b=1
A=V|A]

Proof. Replacing X by |A|*°X, Y by |[A|V*Y, Z(X,i) by |A|*Z(X,i) and Z(Y,j) by
|A|PV*Z(Y,4) in Lemma 4.7 for all i = 1,2,...,2 and j = 1,2,...,y, then we obtain the

desired inequality and the equality condition. O
We note that the vector version of Theorem 4.8 is a matrix version of Theorem 4 in
[9]: Let « be in C™, y in CP, z(x,1),...,2(x,a) in C™, 2(y,1),...,2(y,b) in CP, and A in
Mpxm- Suppose that <‘A|20¢ (Z‘,’L), > 7 <|A*|2ﬂz(y7j)ay> = Ov <AZ(.T77,),Z(y7])> = 0 for
i=1,2,...,a,j=1,2,...,b for given a, § € [0,1] with o+ 5 = 1. If p > m, then
|<A$U y>|2 < |A|2a.’17.’L‘ § |A*|Zy]+1> S]>|
= 2 A2y + 1,205 1 D)
S (A i+ 1), )2
A* 28 v
( AT ) ; (AP (i + 1), (x,i+1)>>’

in which V' € M,x,, consists of orthonormal columns and A = V4|, sg = |A|%z, s; =

]D‘JA*‘z(y,j)sj—l for _] = 1,27 . .,b7 to = |A|va and ti = ai\z(m,i)ti_l for ¢ = 1,27 e, Q.

5 Weighted Wielandt inequality We consider a different way of a refinement of a
weighted Schwarz inequality in §4. We show a weighted version of matrix Wielandt in-
equality. We proved a matrix version of Wielandt inequality, see [2]: Let A be a positive
semidefinite matrix in My, with rank(4) =r, Ay > --- > A, > 0 eigenvalues of A, and X, Y
in My, such that Y*P4 X = 0 where P4 is the orthogonal projection on the column space
of A. Then

AL = Ar (X*AX § UY*AYU),
VSN

(5.1) Y*AX| < (

in which U € M, is a unitary matrix such that Y*AX = U|Y*AX]|. The following theorem
is a weighted version of (5.1).
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Theorem 5.1. Let A be a matriz in My, with rank(A)=r, o1 > --- > o, > 0 singular
values of A, X € My xn and Y € Mpy,. For all o, 8 € [0,1] with a+ 3 =1, ifp > m,
qg=n and Y*VP X =0, then

01— Oy

[Y*AX]| < (
o1+ 0

) (X*[APOX § U'Y* A POY D),

T

in which U € Mgy, consists of orthonormal columns and Y*AX = U|Y*AX|, and V €
My xm consists of orthonormal columns and A = V|A|.

2010,

Proof. Let ¢ = o Since 1P 4) — |A| and |A] — 0, P 4| are positive semidefinite and
g1 Oy

they commute, it follows that (o1 P4 — |A])(|A| — 0P 4)) > 0 and hence

(5.2) (P — cA[1)? < (H> I,

o1+ oy,

where |A|T means the Moore-Penrose generalized inverse of |A|. So, we can get the desired
inequality:

Y AX]|

Y*AX — cY*VP o X| = |[Y*VIA|P(Pa) — c|A]T)|A]*X|
|(Plaj = clAINIAPV*Y)*(|A]* X))
X*|AP*X § U Y*V|A|P(Pa — c|A[")?|A]°V*YU by Lemma 3.2

IN

IN

2
xHAPex s Uy VAP [ 220} | APVTYU by (5.2)
o1+ o,

= (”1 - ”T) (X*|APX § UTY*|A*2PYU).
o1+ o,

O

Lastly, we consider a Wielandt version of Theorem 3.4 by a way similar to the proof of
Theorem 5.1.

Theorem 5.2. Let A be a matriz in My, with rank(A)=r, o1 > --- > o, > 0 singular
values of A, X € Myyxn, Y € My and f,g complex functions on [0,00) which are con-
tinuous and satisfying the relation f(t)g(t) =t for all t € [0,00) For all o, B € [0,1] with
at+p=1,ifp>m,q=>n and Y*VP 4 X =0, then

01— Oy

) (X[ fADPX ¢ UTY*|g(|A)PYU),

Y*AX| < (
o1+ 0o

in which U € Mgy, consists of orthonormal columns and Y*AX = U|Y*AX|, and V €
My, xs, consists of orthonormal columns and A = V|A|.
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