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ABSTRACT. On a space of sequences, the multiplication operator and the Hankel
operator are defined and investigated. On the other hand, the concept of a space of
sequences is basic, but its properties are not well known nevertheless. In this paper,
we prove some properties of the space of sequences, and by means of this, we show
certain modification of H*-BMOA duality and L'-L°° duality (Theorem 5.2) from the
viewpoint of theory of these operators.

1 Introduction. The multiplication operator is naturally defined on the Lebesgue space
LP as well as on the space ¢P. The Hankel operator is also defined on the Hardy space HP
as well as on the space . These operators are well investigated, but properties of a space
of sequences are not well known nevertheless. In this paper, we shall prove some properties
of the space obtained from these operators (Section 3), of the space of sequences (Section
4), and show certain modification of H*-BMOA duality and L'-L® duality (Theorem 5.2)
from the viewpoint of theory of these operators.

Let T be the unit circle in the complex plane and LP be the LP space of functions on T’
with respect to Lebesgue measure. We denote by HP the Hardy space defined by

HP :={feL?|(f)n =0 forn <0},

where (f), means the n-th Fourier coefficient of f. We also denote by H{ the space of
functions in HP whose zeroth Fourier coefficient is zero, and by BMOA the set of all
analytic functions of bounded mean oscillation on T

Let 1 < p < oo. It is known that for a in L', a function a is in L if and only if the
multiplication operator M (a) is defined on LP, and L* is isomorphic to (L')*. It is also
known that for a in H?, a function a is in BMOA if the Hankel operator H(x1a) is defined
on H?, where x;(6) := e¥~1% (0 < < 2r), and BMOA is isomorphic to (H')* (cf. [1],
5))-

Now we consider the discrete versions of these topics. Let ¢P be the Banach space of
sequences of complex numbers defined by

1
&= {SD = {Son}nez | lleller := (Z lon|?)? < OO} )
ne”Z
and ¢ be the space defined by
Eo={pelf|p,=0 forn<0}.

Let 1 < p < 0o0. For a € L', a function a is in a subspace MP C L' given in Section 2
if and only if the multiplication operator M (a) is defined on . For a € H?, a function a
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is in a subspace M N HZ given in Section 3 if and only if the Hankel operator H(xia) is
defined on /% .

Therefore it is a natural question whether there are normed spaces V? and V! such that
MP? and MY NH§ are isomorphic to (V?)* and (V{)*, respectively. We will show such spaces
VP and V7 exist by construction. These are certain modification of H L_BMOA duality and
L'-L> duality.

Acknowledgements. We are grateful to Professor Hiroshige Shiga for his helpful advices.

2 Preliminaries. In this section, we shall give some basic facts on the multiplication
operators and the Hankel operators.

We denote by B(X) the set of all bounded linear operators on a Banach space X to
itself, and by (a),, the n-th Fourier coefficient of a. Let e; := {0;,} d : Kronecker’s
delta).

For 1 < p < oo and a € L, the multiplication operator M (a) on L? is defined by

ne”Z (

M(a) : LP — LP . f — a-f,
and it is easy to see that [la|p=~ = |[M(a)||sr). Note that the j-th Fourier coefficient

(a-f)jofa-fisequal to ), ,(a);_r(f)x forall j € Z.
For a function @ in L! and a sequence ¢, we put

i {zm)jwk} |
keZ jEZ

whenever the sequence a * ¢ can be defined. For 1 < p < oo, a vector space MP? is defined
by

M? = {a€ L' | |lallae :=sup {lax pller | oller <1} < 00}

It is obvious that || - ||as» is @ norm on MP. For a € MP, the multiplication operator M (a)
on P is defined by

M(a) : # — P : o — ax*p,

and [|af|arr = [[M(a)llss(er)-
The following properties of M? are basic to our argument (cf. [1]).

Proposition 2.1. 1. For1 <p < oo and % + % =1, lmr =" llaa and MP = M1.
2. a2 = - ||z and M?* = L*.
5. M = {a erL! | ZnEZKa)n‘ < OO} and ||a|yp = ZnGZ [(@)n-
4. For 1<p<r <2 || llarz <l llaar <Ml llage < |- [larn and MY C MP € M" C M?.

5. For 1 <p < oo, MP is a Banach algebra with respect to || - || v

Now we define the Hankel operators. Let 1 < p < co. The flip operator J on L? is
defined by

T LP — L7 0 ) (Paxn — D (FaXon-1,

nez nez
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the Riesz projection P is defined by

P Ll — H” 23 (Haxn — 3 (X

nez n>0

and it is well known that

cp = sup{[[P(H)llp [ 1/l <1} < o0

by the M. Riesz theorem (cf. [2]). Let I be the identity operator on L?, and Q := I — P.
For a € L, the Hankel operator H(a) on HP? is defined by

H(a) : HP — H? : f — PM(a)QJ/.

The discrete versions of these operators are similarly defined. Let 1 < p < co. The flip
operator J on /P is given by

J P — 0P {‘Pn}nez — {Sﬁfnfl}neZ’

the Riesz projection P is

P . P® — fﬁ_ : {(Pn}nez — {Sﬁn}nzo’

and @ := I — P (I : the identity operator on ¢P). For a € MP, the Hankel operator H(a)
on ¢4 is defined by

H(a) : &8 — £ : ¢ — PM(a)QJe.

3 New classes M} and N¥. Note that H(a) {¢;}, is equal to {Zk>o(a)j+k+1@k} '

= = Jz
We consider a new class MY to extend the domain of the Hankel operator. For a function
a in L' and a sequence ¢, we define a sequence a ® ¢ by

a®p:=1{ Y (a)jrri1pn ;

k=20 >0

whenever the sequence a ® ¢ can be defined.

Definition 3.1. For 1 < p < 0o, we define a vector space Mﬁ as

ML= {ae L' | alluy = sup {lla@ ¢l | Il <1} < oo}
For a € MY, we define the Hankel operator H(a) on (% as
H(a) : 5 — 0 : ¢ — a®y,
and ol = 1 H(@)llmer).

It is easy to see that || - [[yr < || - [lar» and MP C MY. Indeed, let ¢ be the space
defined by

P o={pelfP|p,=0 forn>0},
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and

o =

lallay = sup [ D1 Y (@jmnewl” | |lelle <1

J>0 k<—1
= sw{IPax Pl | I¢le <1}

sup {Jla* olles | il <1}

sup {||a * @ller | lller < 1}
= |lallare-

IN

IN

Hence, we extended the domain of the Hankel operator to M?.
Here, || - ”M«Iﬁ is actually a norm on M N HZ. In fact, it is a semi-norm and we see that

1

I4

> l@al

Z |(a)n+1‘p

n>1 n>0
P
< sup S | DY (@l | L lleller <1
j=0 k>0
= Yl
for a € M. Thus | - HMi is a norm on M¥ N HE. The real inner product (-, -)g is defined

by

<{an}nez ; {bn}n.gz)R = Z anbn.

ne”Z

The space MY has the following properties like M?.
Proposition 3.2. 1. Mi NHE = M'nHE.

2. For1<p< o0 and%+%:1, I lare =1+ [l aes and MY = M1,

3. For1<p<r<2|llpz <l-llag <~ llagr and MY € MY C M3
Proof. 1. We show

MiNnL*=<acL’|) |(a)a| <o
n>1

It is already proved that > -, [(a),| < Ha||M}r fora e M}. Fora e L? with ), -, [(a)n| <
oo, we have

H(a) = H(Z(a)nxn) = H(Z(a)nxn) = Z(a)nH(Xn)'

nez n>1 n>1

Therefore

lallare <D l(@allxallae <D l(@)al,

n>1 n>1
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and we conclude
MinL*=SacL’|> |(a)] <oo
n>1

This implies the conclusion.
2. Let a € MY. Since (e;, H(a)er)r = (a)j4r+1 = (H(a)e;,ex)r holds for j, k > 0,
(¢, H(a)y)r = (H(a)p,¥)r holds for ¢,¢ € £5. Thus
lallae = sup {1 H(@)eller | ol <1}
= sup { (H(a)e, x| I¢llez, llles <1}
= sup { (¢, H(@)¥)z | lleler [¥les <1}
= sup { || H(@)¥lleg | 6]y <1}
= llallasz

and a € M{. This implies the conclusion.
3. Let a € MY and 1 < p < r < 2. Since H(a) € B() NB(LL), [[H(a)plle; <

||H(a)H1%7(Zi)||H(a)g0||t%(£q+) (0 <t <1) by the Riesz-Thorin interpolation theorem. Hence
lallaz < llalasz < llollag- O

We also consider another new class N¥ to extend the domain of the Hankel operator
on the Hardy space. Note that the j-th Fourier coefficient (H(a)f); of H(a)f is equal to

> k>0(@)j+k+1(f)k for all j > 0.

Definition 3.3. For 1 < p < oo, we define a vector space N¥ as

N = ae I flallwy = sup § 130 Y (@jana (sl |1l <19 < o0
J=0k>0

For a € N¥, we define the Hankel operator H(a) on H? as

H(a) : H? — H? : f + ZZ(@)]‘MH(f)ka»

Jj=0k>0
and ||al|xv = [|H (a)|s(me)-
It is easy to see that || - [ y» < |l -l and L> C N?. Indeed,
lallye = sup{[[P(a- (QJ))ae | 1 fllar <1}
< sup{cpllallpoocql[fllee | 1 f e <1}
< C;”CL”Lm.

Hence, the domain of the Hankel operator is extended to NY.
Here, || - ||Ni is actually a norm on N¥ N HZ. In fact, it is a semi-norm and we see that

1P(a-x-1)mr
1P(a- (QJx0))m»

lallne

lall e

IN
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for a € HZ. Thus || - HNi is a norm on N¥ N HE.
The space N¥ has the following properties like M? too.

Proposition 3.4. 1. For 1 <p < oo and ]% + é =1 || [lxv =1 lIne and NP = N{.
2. For1<p<r<2||ln2 <|llny <l lx» and NY C NL C N

3. For1 <p<oo, N/ N HZ is isomorphic to the subspace of BMOA as normed spaces,
via the isomorphism :
av+— x_1a

4ol lasz = |- Iz and M2 = N?.
5. Z\LQr N HE is isomorphic to the subspace of BMOA as normed spaces.
6. For 1 <p < oo, MY N Hf is a Banach space with respect to || - ||Mi.

Proof. 1. The proof is the same as that of Proposition 3.2.2.
2. The proof is the same as that of Proposition 3.2.3.
3. The statement is the known fact by the proof of the Nehari Theorem (cf. [1], [5]).
4. A unitary operator

U : H? —>£i : Z‘ann'—’{Qon}nZO
n>0

implies the conclusion.

5. 3 and 4 imply the conclusion.

6. For 1 < p < o0, 3, 4 and Proposition 3.2.3 show the statement. For p = 1, Proposition
2.1.5 and Proposition 3.2.1 show the statement too. O

In Section 5, we will prove that MP and M. _’; N HZ are not only Banach spaces but also
dual spaces of some spaces.
Let ¢ and ci be subspaces of £°>° given by

== {Henhnez | @l == supezlon] < oo, limy—iocpy =0}
and
) = {(pECO|<pn:O forn <0},
respectively. For two sequences ¢ and 1, we define a sequence ¢ * ¢ by
pxp = {Z%Mﬁk} ;
kez JEZ

whenever the sequence ¢ * 1 can be defined.
We show the following norm estimates of M% N H§ and MP?.

Proposition 3.5. Let 1 <p < o0, and a € L'.

1 allr = sup {|{(@ns1} im0 9% V)=l | @l s ey <1} hotds. When p =1, we
replace £ with cg in the right-hand side.
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2. |lallare = sup {|{(a)n}nez - 0 * V)Rl | loller, 1Wlles <1} holds. When p = 1, we re-
place 04 with ¢V in the right-hand side.

Proof. 1. Let 1 < p < 2. For ¢ € ¢/ with leller <1, a linear mapping
Dy : 4L —C: pr— (a0 p)r

satisfies
la® ¢lle = IDgller)-

= sup {|(1,a ® p)xl | 9]l <1}

<sup {|(a© ¢, V)=l | el Iller <1}

= sup {[{{(@ns1}nz0-9+ Bl lpllers Illee <1}
It implies

lallary =sup {lle ® ell | Il <1}
< sup {|({(@at1}z0- 0+ Vx| | el I6lles <1}

Conversely,

lallare = I1H (@) lmer)
> sup {|G(H(@)¢)| | I¢ller, 1Glery- <1}
= sup {|(H(a)p, g}l | lglle» llglles <1}
= sup {[{{(@nt1 o 2+ el | Iller lglley <1}

Now let p = 1. [lallary < sup {[{{(@ns1}z0 ¢ % 02l | Iller, 1¥llcg < 1} holds from
as above. Conversely,

1H (@)l
sup {|GH(@@)| | elle» Gl - <1}
= sup {[(H(@)¢, 9=l | I ¢ler llgllez <1}

> sup {|({(@)ni1 )z 2 * 9021 | Il lolla <1}

When 2 < p < oo, Proposition 3.2.2 leads the conclusion.
2. For ¢ = {¢n}, ez € £, we define " as ¢* :={¢_n},cs
Let 1 < p < 2. For ¢ € £7 with |||/ <1, a linear mapping

D, : t1 —C : ¢r— (Y,a*xp)r

lallar

Y

satisfies
llax@ller = | Dyl ea)-
= sup{[(¢,a * p)r| | [[¢[lee <1}
< sup {[(a* @, V)r| | [|@ller, Plles <1}
= sup {|({(@)n}nez " * )zl | @llers [Pllea <1}
= sup {[({(@)n}nez @ * V)=l | lellers [Plles <1}
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It implies
lallare = sup {lla* @ller | [l@ller <1}
< sup {[({(@)n}nez 0 * V)Rl | lleller, [l9lles <1}
Conversely,
lallare = 1M (a)llser)
> sup {|G(M(a)p)| | @ller, [Gllery- <1}

=sup {[(M(a)p, g)r| | [|oller, llgllea <1}
= sup {|({(a)n}nez 2 * Orl | @ller, llgllea <1},

Hence lal| s = sup {[({(@)n},cz @ * V)=l | loller, [[9]le < 1}.

Now let p = 1. flallan < sup {|({(@)n ez @ * ¥zl | loler, [l < 1} from as above,
Conversely,

lallar = [|M (a)]ls(er
> sup {|G(M(a)@)| | eller, [Gllery- <1}
= sup{|(M(a)g, g)el | [#ller; llgllee <1}
> sup {|{({()n} ez * 9l | lolles llgllo <1}
When 2 < p < 00, Proposition 2.1.1 leads the conclusion. O

4 Some spaces of sequences. In this section, we show some properties of spaces which
are linearization of sets of all ¢ * 1. Namely,

Definition 4.1. For 1 < p < co, we define VI and VP as

VPi={o" x gt + 4" =" [neEN, ol o e Y e}
and

VP .= {(,01*1/J1+-~-+<,0”*1/J"|n6N, ol e Pt e}

When p = 1, we replace % and £9 with (33_ and c® in the right-hand side, respectively. When
p = 00, we also replace {5 and (7 with ci and c® in the right-hand side, respectively.

ff=p sy +-- 4"+ and g = '« ! + ... 4+ ®™ % U™ belong to each of above
sets, then
belongs to the same sets. Thus it is easy to see that V! and V? are vector spaces, respec-
tively.

Definition 4.2. For f = @' st 4+ + " x " € VY, we define ||fHVf as

Ifllv> := inf Z ||<,0j||e{i||¢j||ggr | representations of f in VY
1<5<n

For f = ol sl + -+ " x 9™ € VP, we define || f||v» as

| fllve := inf Z 7 e |47 || ¢a | Tepresentations of f in VP
1<5<n
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These spaces have the following properties.

Proposition 4.3. 1. For ¢ € (% and ¢ € (%, there are ® € (1 and ¥ € (% with
o= W and |9 = |¥]r.

2. For f € Vi, sup;solfil < [ fllve-
3. VEcd.

4. For f € €, |[flve < 1 Flle.

5. - llve =1l lleo and V{=cf.
6.1 lhve = I lvs and V2 = V2,

7. Vf and H' are isometrically isomorphic via the isomorphism :

{(f)j}jzo «—— f whose Fourier coefficients are {(f)j}jzo .

Proof. 1. If we set @ := ”w”qgo and U = (/1€leqy then px1 =&+ T and ||D, =

lells [EIP
Vilellpl[elle = 1%

2. Take f =t xpl + -+ + @™ x 9™ € VL. By the Holder’s inequality,

|/l (" % ph)g] -+ (™ ™)

o s 1t ey + -+ ll™ s 17 g

IN A

for j > 0. Thus sup;>o|f;| < [If[lve-
3. For any € > 0, ¢ = {goj}j>0 elh Y= {1/Jj}j>0 € (%, there is an N € N such that

[{ei}isnllp < o, and [{¥}isn lla < e, By the Holder’s inequality,

(pxv);l = |Z¢j—N+k¢N—k+Z¢j—N—k¢N+k|

k>0 k>1

< 1D nktN okl ) e N kN ]
k>0 k>1

< H{ej-nNtrbiso IplH{N=k} o la T 1 {ej-N=r}tpsy pll {¥n+rtis1 Mg

=g + lellpsr

_€ ol —— = e
2[l9llg " P2(loll,

hold for any j > 2N.
Thus, for any € > 0, f = @ s+ 4+pmxyp™ € VP, if we put €, 1= —S
then there exist Ny, ---, N, € N such that

il < et x )il 4+ (0" x9m)
< €@+t en<e€

for any j > 2maxi<p<m Np. This and 2 mean the conclusion.
4. Let f € 09. We regard f as eg * f, and therefore ||f||Vf < ||eo||@z;||ngq+ = ||ng'1+.
5. By 3 and 4, it is immediately seen.
6. By o x 19 =1 * ¢, it is easy to see.



10 A. HosHIDA

7. Since Ei and H? are isometrically isomorphic via the isomorphism : {(p) j}
©=>":50(#)jx;, we can see easily that V7 and

320

{¢1¢1++¢n¢n|n€N7 5017"'5§0n€H27 ¢17"‘7¢n€H2}

are isometrically isomorphic, whenever a norm of the space of the right-hand side is defined
by

1£1 := inf {[lo" |29 |2 + - + " | 2|4 || 2 | representations of £} .

We show that this normed space is equal to H'. By the Hélder’s inequality,

oo df do L de
/|¢1w1+-~~+<pw| < /|w1¢1|*+~~+/|wz/f|*
2 2

27
lo =l + -+ ™ a2 90" |22,

IA

therefore || - ||g1 < || - | Conversely, let f € H'. By the inner-outer factorization theorem,

there are an inner function g € H* and an outer function h € H' satisfying f = gh. If we
1 1

set ¢ := gh? € H> and v := hz € H? then f = gh = o and || f|| < |lell gz l1]l 2 = || £ -

Consequently, Vf and H' are isometrically isomorphic. O

Proposition 4.4. 1. For ¢ € P and ¢ € 9, there are ® € P and ¥ € {9 with ¢ *x ¥ =
ST and ||l = ||V a-

2. For [ e VP, sup;ey|fil < [|fllve-
3. vec .
4. For fe 9, |[fllve <|[fllea.
5.\l -llvr =1l lleo and V' = c°.
6. 1 |lve =1+ llve and VP = V1.
7. V2 and L' are isometrically isomorphic via the isomorphism :
{(f)j};ez < f whose Fourier coefficients are {(f);},cy -
Proof. The proof is the same as that of Proposition 4.3. O

Remark 4.5. By Proposition 4.3.2 and Proposition 4.4.2, it is seen that || - va and || - |lve
are morms on Vf and VP respectively.

Now, we consider what representations of an element of these spaces we can take. In
general, it doesn’t say that a representation ¢! %! + .- + " 1™ of an element f satisfies

e Il lg = - =l Ipll0" g
However, the following result says that there is such a representation for all f.
Theorem 4.6. Let e, > 0.
1. For f € V2, there is a representation of f, f = ®* x« Ul + ... 4+ &N « UV such that

1£1lyp—¢ . 1£1lyp-+e . . ,
—x— <lI¥llf < —F— and [|®7]|pp = [|W]lpg for L <j<N.
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2. For f € VP, there is a representation of f, f = ®' x Wl + ... + ®N « UV sych that
MIg=e < |93, < MLg=e and |[99]|e = [|¥9]|es for 1< j < N.

Proof. 1. If we take an f € V¥, then by Proposition 4.3.1, there is a representation of f,
= st + -+ " x4)" such that

I£llve < llotllp + -+ 1™l < Ifllve +e

and [|¢7 ]|, = [[¢7]lq for 1 < j <n.
Assume n > 2 and [[p!]]2 < --- < [[o"]|2.
We show that it may assume [|'||> > 0 without loss of generality. Indeed, assume
||<p"||12) > (’)Cand ||<p1||12, =0. We take 2 < k % n with HapkHi > (0 and ||apk_1||l2) = 0. If we set
L ; ¥ ;
pi— dvie 1Sisk o qw lve 1SisE
oy k+1<i<n P, k+1<:<n,
thenf:Lpl*,(/)l_F.___i_(pn*wn:(Dl*\lll_i__.__i_q)n‘*ﬁp" and 0 < ||<I)1H127 <. < H(I)TLHIQ)
[I£1ly»
»

fllyp—¢
Tep

. { I 15 llvr +€)

When ||f||y» > €, if we take an €’ with 0 < €’ < — 1, then we can take r; € Q
VP j

satisfying

|2 < r; < min
=T T2+ + ]

for 1 < j <n, and take k; € N satisfying the ratio

20l 501 + 6”)}
p

riieee iy =kyee i ky
for 1 <j<n. ‘ '
Let kg := 0 and N := Zogegnké- If we set ®7 := \‘}% and U7 .= \1/!}]7 for 1 <7 <n and

Do<o<ioi ke +1 <7< 3 0cpci g ke + ki, then we see that

f=@ st 4 " k" =L U BV PN

171z~ o e _ ,
and N < ||®7||2 = [[w7]; < ~— for 1 < j < N. Indeed, for 1 < i < n and

Do<o<ici ke +1 <3 <3 0cpei g ke + ki,

1992 = o2 = e A N A i ek e i PR ST
PR ri ki ri o kit 4kn T N ’
and
flve=¢ Il
N S NI+
N Rl L
- N(1+€)
< fr'l +...+Tn
= NIt
< ||(pl||12771++rn
Ti N
< 1 ++7ﬂn
- N
- 1fllve + e

N
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hold.
When ||f||vf < ¢, we can take r; € Q satisfying

- 7151 vy +€)
||SD]H;DSTA< 112 n||2
ol + -+ lle™lI3

for 1 < j <n, and take k; € N satisfying the ratio

riioeeirp =k ky
for 1 <j<n. _ v
Let ko := 0 and N := 37/, ke. If we set ®I = \71? and Wi .= j}?’ then we see that
Fllve — ¢
N
< o7
I e )
T N
< r1+...+rn
- N
_ Wl e
N

hold for 1 <4 <mn and ZOSEgifl ke+1<5< Zogegifl ko + k;. This leads the conclusion.
2. The proof is the same as that of 1. O

Remark 4.7. The auther generalized Theorem 4.6 to Theorem 2.2 of [4] after this paper
submitted.

5 Duality theorems. Here, we extend Proposition 3.5 to V{ and V7.

Proposition 5.1. Let 1 < p < 00, and a € L'.
1. fallar = sup {[{{(@)ks1 bso - F)z] 1 lvy < 1} holds.
2. |lallare = sup {[{{(a)x}pez - Nkl | [fllve < 1} holds.

Proof. 1. Since {@ v | Il Il <1} {f e VP Iflvy <1},

lallar = sup {|({(@s1}iso -0 * V)l | leller, Ioller <1}

< sup {|({(@irihiso el | 1Flvz <1}

hold by Proposition 3.5.1.

Conversely, for any €,¢/ > 0, f € V{, there is a representation of f in V{, f =

J g such that 0 il = 112 < T fr a1 < < b
Z1§j§n¢ * 7 suc a n < | [l7o = 977 < or a =) = nby

n
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Theorem 4.6.1. Thus

[({(@rr1}iso, RIS Y [{(@k+1} 55097 * 97D

1<j<n

flive +
< Y sup {|<{(a)n+1}n>o,ww>RI | () € EL llellers [[9ler < ””Vge}

1<j<n

1l + e
= sup {|({ (@1 bso 9 < VR | (2,%) € BL, llen, lller < 1}

= (I£llve + e)llallae

hold by Proposition 3.5.1. Hence,

sup {[{{(@)k1 bz el 11 lvy <1} < Nl
2. The proof is the same as that of 1. O
Finally, we show the main results.
Theorem 5.2. Let 1 <p < 0.
1. MY N HZ and (VP)* are isometrically isomorphic as normed spaces.

2. MP and (VP)* are isometrically isomorphic as normed spaces.

Proof. 1. Let a € M} N H§. By Proposition 5.1.1,

D:V]—C: f— <f){(a)n+1}n20>]R

satisfios D vz)» = sup {[{{@ksr bz el | 17y < 1} = lallsg and D e (V)"
Coversely, let D € (V!)* and let an41 := D(e,) n > 0.
When 1 < p < 2, since

D(f) = Z faD(en) = Z fn@ni1 = (f, {an+1}n20>R

n>0 n>0

holds for f =37, 5 fnen € VI,

50 > D) = sup { (. {ans1bosodel | I Flve <1}

> sup {|(f. {aus1}zolxl | £l <1}

This implies {an+1},50 € ((1)* = ¢ C (2 =2 H?> and a := Y, o  anxn € H. Thus,
by Proposition 5.1.1, allyz = sup {|({(@1}s- sl | IFlvy <1} = [Dlle). and
ae M.

When p = 1, we replace ¢4 with ¢.. When 2 < p < oo, it is soon from M¥ N H§ =
M{ NHE and VI = V]

2. Let a € MP. By Proposition 5.1.2,

D :VP—C.: f}_)<f7{(a)n}n€Z>R
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satisties D)+ = sup {|{(@}ocz - Nl | £y < 1} = llallass and D & (v7)".
Coversely, let D € (VP)* and let a,, := D(e,) n € Z.
When 1 < p < 2, since

D(f) =Y faD(en) =Y fntn = (f{an},cr)w

neZ nez

holds for f =3, fnen € VP,

00 > [ Dllve)- = sup {[{f, {an}nezzl | I fllve <1}
> sup {[(f, {an},cz)rl | | flles < 1}

This implies {an},c; € ((9)* = 7 C (> = L? and a := ) 5 anxn € L?. Thus, by

Proposition 5.1.2, [lallxs = sup {|({(@)k}yer Szl | [flve < 1} = [ Dvsy- and a € M.
When p = 1, we replace £2 with ¢°. When 2 < p < oo, it is soon from MP = M? and

VP =V1, O

Remark 5.3. Theorem 5.2.1 is the modification of the H-BMOA duality because of Propo-
sition 3.4.5 and Proposition 4.3.7. Also Theorem 5.2.2 is the modification of the classical
L'-L> duality because of Proposition 2.1.2 and Proposition 4.4.7.
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