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ON A DUALITY BETWEEN THE OPERATORS AND THE SPACE OF
SEQUENCES

Abstract. On a space of sequences, the multiplication operator and the Hankel
operator are defined and investigated. On the other hand, the concept of a space of
sequences is basic, but its properties are not well known nevertheless. In this paper,
we prove some properties of the space of sequences, and by means of this, we show
certain modification of H1-BMOA duality and L1-L∞ duality (Theorem 5.2) from the
viewpoint of theory of these operators.

1 Introduction. The multiplication operator is naturally defined on the Lebesgue space
Lp as well as on the space `p. The Hankel operator is also defined on the Hardy space Hp

as well as on the space `p
+. These operators are well investigated, but properties of a space

of sequences are not well known nevertheless. In this paper, we shall prove some properties
of the space obtained from these operators (Section 3), of the space of sequences (Section
4), and show certain modification of H1-BMOA duality and L1-L∞ duality (Theorem 5.2)
from the viewpoint of theory of these operators.

Let T be the unit circle in the complex plane and Lp be the Lp space of functions on T
with respect to Lebesgue measure. We denote by Hp the Hardy space defined by

Hp := {f ∈ Lp | (f)n = 0 for n < 0} ,

where (f)n means the n-th Fourier coefficient of f . We also denote by Hp
0 the space of

functions in Hp whose zeroth Fourier coefficient is zero, and by BMOA the set of all
analytic functions of bounded mean oscillation on T .

Let 1 < p < ∞. It is known that for a in L1, a function a is in L∞ if and only if the
multiplication operator M(a) is defined on Lp, and L∞ is isomorphic to (L1)∗. It is also
known that for a in H2, a function a is in BMOA if the Hankel operator H(χ1a) is defined
on Hp, where χj(θ) := e

√
−1jθ (0 ≤ θ ≤ 2π), and BMOA is isomorphic to (H1)∗ (cf. [1],

[5]).
Now we consider the discrete versions of these topics. Let `p be the Banach space of

sequences of complex numbers defined by

`p :=

{
ϕ = {ϕn}n∈Z | ‖ϕ‖`p := (

∑
n∈Z

|ϕn|p)
1
p < ∞

}
,

and `p
+ be the space defined by

`p
+ := {ϕ ∈ `p | ϕn = 0 for n < 0} .

Let 1 ≤ p < ∞. For a ∈ L1, a function a is in a subspace Mp ⊂ L1 given in Section 2
if and only if the multiplication operator M(a) is defined on `p. For a ∈ H2, a function a
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is in a subspace Mp
+ ∩ H2

0 given in Section 3 if and only if the Hankel operator H(χ1a) is
defined on `p

+.
Therefore it is a natural question whether there are normed spaces V p and V p

+ such that
Mp and Mp

+∩H2
0 are isomorphic to (V p)∗ and (V p

+)∗, respectively. We will show such spaces
V p and V p

+ exist by construction. These are certain modification of H1-BMOA duality and
L1-L∞ duality.

Acknowledgements. We are grateful to Professor Hiroshige Shiga for his helpful advices.

2 Preliminaries. In this section, we shall give some basic facts on the multiplication
operators and the Hankel operators.

We denote by B(X) the set of all bounded linear operators on a Banach space X to
itself, and by (a)n the n-th Fourier coefficient of a. Let ej := {δj,n}n∈Z (δ : Kronecker’s
delta).

For 1 < p < ∞ and a ∈ L∞, the multiplication operator M(a) on Lp is defined by

M(a) : Lp −→ Lp : f 7−→ a · f,

and it is easy to see that ‖a‖L∞ = ‖M(a)‖B(Lp). Note that the j-th Fourier coefficient
(a · f)j of a · f is equal to

∑
k∈Z(a)j−k(f)k for all j ∈ Z.

For a function a in L1 and a sequence ϕ, we put

a ∗ ϕ :=

{∑
k∈Z

(a)j−kϕk

}
j∈Z

,

whenever the sequence a ∗ ϕ can be defined. For 1 ≤ p < ∞, a vector space Mp is defined
by

Mp :=
{
a ∈ L1 | ‖a‖Mp := sup {‖a ∗ ϕ‖`p | ‖ϕ‖`p ≤ 1} < ∞

}
.

It is obvious that ‖ · ‖Mp is a norm on Mp. For a ∈ Mp, the multiplication operator M(a)
on `p is defined by

M(a) : `p −→ `p : ϕ 7−→ a ∗ ϕ,

and ‖a‖Mp = ‖M(a)‖B(`p).
The following properties of Mp are basic to our argument (cf. [1]).

Proposition 2.1. 1. For 1 < p < ∞ and 1
p + 1

q = 1, ‖ · ‖Mp = ‖ · ‖Mq and Mp = Mq.

2. ‖ · ‖M2 = ‖ · ‖L∞ and M2 = L∞.

3. M1 =
{
a ∈ L1 |

∑
n∈Z |(a)n| < ∞

}
and ‖a‖M1 =

∑
n∈Z |(a)n|.

4. For 1 ≤ p ≤ r ≤ 2, ‖ · ‖M2 ≤ ‖ · ‖Mr ≤ ‖ · ‖Mp ≤ ‖ · ‖M1 and M1 ⊂ Mp ⊂ Mr ⊂ M2.

5. For 1 ≤ p < ∞, Mp is a Banach algebra with respect to ‖ · ‖Mp .

Now we define the Hankel operators. Let 1 < p < ∞. The flip operator J on Lp is
defined by

J : Lp −→ Lp :
∑
n∈Z

(f)nχn 7−→
∑
n∈Z

(f)nχ−n−1,



ON A DUALITY BETWEEN THE OPERATORS AND THE SPACE OF SEQUENCES 3

the Riesz projection P is defined by

P : Lp −→ Hp :
∑
n∈Z

(f)nχn 7−→
∑
n≥0

(f)nχn,

and it is well known that

cp := sup {‖P (f)‖p | ‖f‖p ≤ 1} < ∞

by the M. Riesz theorem (cf. [2]). Let I be the identity operator on Lp, and Q := I − P .
For a ∈ L∞, the Hankel operator H(a) on Hp is defined by

H(a) : Hp −→ Hp : f 7−→ PM(a)QJf.

The discrete versions of these operators are similarly defined. Let 1 ≤ p < ∞. The flip
operator J on `p is given by

J : `p −→ `p : {ϕn}n∈Z 7−→ {ϕ−n−1}n∈Z ,

the Riesz projection P is

P : `p −→ `p
+ : {ϕn}n∈Z 7−→ {ϕn}n≥0 ,

and Q := I − P (I : the identity operator on `p). For a ∈ Mp, the Hankel operator H(a)
on `p

+ is defined by

H(a) : `p
+ −→ `p

+ : ϕ 7−→ PM(a)QJϕ.

3 New classes Mp
+ and Np

+. Note that H(a) {ϕj}j≥0 is equal to
{∑

k≥0(a)j+k+1ϕk

}
j≥0

.

We consider a new class Mp
+ to extend the domain of the Hankel operator. For a function

a in L1 and a sequence ϕ, we define a sequence a ¯ ϕ by

a ¯ ϕ :=

∑
k≥0

(a)j+k+1ϕk


j≥0

,

whenever the sequence a ¯ ϕ can be defined.

Definition 3.1. For 1 ≤ p < ∞, we define a vector space Mp
+ as

Mp
+ :=

{
a ∈ L1 | ‖a‖Mp

+
:= sup

{
‖a ¯ ϕ‖`p

+
| ‖ϕ‖`p

+
≤ 1

}
< ∞

}
.

For a ∈ Mp
+, we define the Hankel operator H(a) on `p

+ as

H(a) : `p
+ −→ `p

+ : ϕ 7−→ a ¯ ϕ,

and ‖a‖Mp
+

= ‖H(a)‖B(`p
+).

It is easy to see that ‖ · ‖Mp
+

≤ ‖ · ‖Mp and Mp ⊂ Mp
+. Indeed, let `p

− be the space
defined by

`p
− := {ϕ ∈ `p | ϕn = 0 for n ≥ 0} ,



4 A. Hoshida

and

‖a‖Mp
+

= sup


∑

j≥0

|
∑

k≤−1

(a)j−kϕk|p
 1

p

| ‖ϕ‖`p
−
≤ 1


= sup

{
‖P (a ∗ ϕ)‖`p

+
| ‖ϕ‖`p

−
≤ 1

}
≤ sup

{
‖a ∗ ϕ‖`p | ‖ϕ‖`p

−
≤ 1

}
≤ sup {‖a ∗ ϕ‖`p | ‖ϕ‖`p ≤ 1}
= ‖a‖Mp .

Hence, we extended the domain of the Hankel operator to Mp
+.

Here, ‖ · ‖Mp
+

is actually a norm on Mp
+ ∩H2

0 . In fact, it is a semi-norm and we see that

∑
n≥1

|(a)n|p
 1

p

=

∑
n≥0

|(a)n+1|p
 1

p

≤ sup


∑

j≥0

|
∑
k≥0

(a)j+k+1ϕk|p
 1

p

| ‖ϕ‖`p
+
≤ 1


= ‖a‖Mp

+

for a ∈ Mp
+. Thus ‖ · ‖Mp

+
is a norm on Mp

+ ∩ H2
0 . The real inner product 〈·, ·〉R is defined

by

〈{an}n∈Z , {bn}n∈Z〉R :=
∑
n∈Z

anbn.

The space Mp
+ has the following properties like Mp.

Proposition 3.2. 1. M1
+ ∩ H2

0 = M1 ∩ H2
0 .

2. For 1 < p < ∞ and 1
p + 1

q = 1, ‖ · ‖Mp
+

= ‖ · ‖Mq
+

and Mp
+ = Mq

+.

3. For 1 < p ≤ r ≤ 2, ‖ · ‖M2
+
≤ ‖ · ‖Mr

+
≤ ‖ · ‖Mp

+
and Mp

+ ⊂ Mr
+ ⊂ M2

+.

Proof. 1. We show

M1
+ ∩ L2 =

a ∈ L2 |
∑
n≥1

|(a)n| < ∞

 .

It is already proved that
∑

n≥1 |(a)n| ≤ ‖a‖M1
+

for a ∈ M1
+. For a ∈ L2 with

∑
n≥1 |(a)n| <

∞, we have
H(a) = H(

∑
n∈Z

(a)nχn) = H(
∑
n≥1

(a)nχn) =
∑
n≥1

(a)nH(χn).

Therefore
‖a‖M1

+
≤

∑
n≥1

|(a)n|‖χn‖M1
+
≤

∑
n≥1

|(a)n|,
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and we conclude

M1
+ ∩ L2 =

a ∈ L2 |
∑
n≥1

|(a)n| < ∞

 .

This implies the conclusion.
2. Let a ∈ Mp

+. Since 〈ej ,H(a)ek〉R = (a)j+k+1 = 〈H(a)ej , ek〉R holds for j, k ≥ 0,
〈ϕ, H(a)ψ〉R = 〈H(a)ϕ, ψ〉R holds for ϕ, ψ ∈ `0+. Thus

‖a‖Mp
+

= sup
{
‖H(a)ϕ‖`p

+
| ‖ϕ‖`p

+
≤ 1

}
= sup

{
〈H(a)ϕ,ψ〉R | ‖ϕ‖`p

+
, ‖ψ‖`q

+
≤ 1

}
= sup

{
〈ϕ,H(a)ψ〉R | ‖ϕ‖`p

+
, ‖ψ‖`q

+
≤ 1

}
= sup

{
‖H(a)ψ‖`q

+
| ‖ψ‖`q

+
≤ 1

}
= ‖a‖Mq

+

and a ∈ Mq
+. This implies the conclusion.

3. Let a ∈ Mp
+ and 1 < p ≤ r ≤ 2. Since H(a) ∈ B(`p

+) ∩ B(`q
+), ‖H(a)ϕ‖`r

+
≤

‖H(a)‖1−t
B(`p

+)
‖H(a)ϕ‖t

B(`q
+)

(0 ≤ t ≤ 1) by the Riesz-Thorin interpolation theorem. Hence

‖a‖M2
+
≤ ‖a‖Mr

+
≤ ‖a‖Mp

+
.

We also consider another new class Np
+ to extend the domain of the Hankel operator

on the Hardy space. Note that the j-th Fourier coefficient (H(a)f)j of H(a)f is equal to∑
k≥0(a)j+k+1(f)k for all j ≥ 0.

Definition 3.3. For 1 < p < ∞, we define a vector space Np
+ as

Np
+ :=

a ∈ L1 | ‖a‖Np
+

:= sup

‖
∑
j≥0

∑
k≥0

(a)j+k+1(f)kχj‖Hp | ‖f‖Hp ≤ 1

 < ∞

 .

For a ∈ Np
+, we define the Hankel operator H(a) on Hp as

H(a) : Hp −→ Hp : f 7−→
∑
j≥0

∑
k≥0

(a)j+k+1(f)kχj ,

and ‖a‖Np
+

= ‖H(a)‖B(Hp).

It is easy to see that ‖ · ‖Np
+
≤ c2

p‖ · ‖L∞ and L∞ ⊂ Np
+. Indeed,

‖a‖Np
+

= sup {‖P (a · (QJf))‖Hp | ‖f‖Hp ≤ 1}
≤ sup {cp‖a‖L∞cq‖f‖Hp | ‖f‖Hp ≤ 1}
≤ c2

p‖a‖L∞ .

Hence, the domain of the Hankel operator is extended to Np
+.

Here, ‖ · ‖Np
+

is actually a norm on Np
+ ∩H2

0 . In fact, it is a semi-norm and we see that

‖a‖Hp = ‖P (a · χ−1)‖Hp

= ‖P (a · (QJχ0))‖Hp

≤ ‖a‖Np
+
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for a ∈ H2
0 . Thus ‖ · ‖Np

+
is a norm on Np

+ ∩ H2
0 .

The space Np
+ has the following properties like Mp too.

Proposition 3.4. 1. For 1 < p < ∞ and 1
p + 1

q = 1, ‖ · ‖Np
+

= ‖ · ‖Nq
+

and Np
+ = Nq

+.

2. For 1 < p ≤ r ≤ 2, ‖ · ‖N2
+
≤ ‖ · ‖Nr

+
≤ ‖ · ‖Np

+
and Np

+ ⊂ Nr
+ ⊂ N2

+.

3. For 1 < p < ∞, Np
+ ∩H2

0 is isomorphic to the subspace of BMOA as normed spaces,
via the isomorphism :

a 7−→ χ−1a

.

4. ‖ · ‖M2
+

= ‖ · ‖N2
+

and M2
+ = N2

+.

5. M2
+ ∩ H2

0 is isomorphic to the subspace of BMOA as normed spaces.

6. For 1 ≤ p < ∞, Mp
+ ∩ H2

0 is a Banach space with respect to ‖ · ‖Mp
+
.

Proof. 1. The proof is the same as that of Proposition 3.2.2.
2. The proof is the same as that of Proposition 3.2.3.
3. The statement is the known fact by the proof of the Nehari Theorem (cf. [1], [5]).
4. A unitary operator

U : H2 −→ `2+ :
∑
n≥0

ϕnχn 7−→ {ϕn}n≥0

implies the conclusion.
5. 3 and 4 imply the conclusion.
6. For 1 < p < ∞, 3, 4 and Proposition 3.2.3 show the statement. For p = 1, Proposition

2.1.5 and Proposition 3.2.1 show the statement too.

In Section 5, we will prove that Mp and Mp
+ ∩ H2

0 are not only Banach spaces but also
dual spaces of some spaces.

Let c0 and c0
+ be subspaces of `∞ given by

c0 :=
{
{ϕn}n∈Z | ‖ϕ‖c0 := supn∈Z|ϕn| < ∞, limn→±∞ϕn = 0

}
and

c0
+ :=

{
ϕ ∈ c0 | ϕn = 0 for n < 0

}
,

respectively. For two sequences ϕ and ψ, we define a sequence ϕ ∗ ψ by

ϕ ∗ ψ :=

{∑
k∈Z

ϕj−kψk

}
j∈Z

,

whenever the sequence ϕ ∗ ψ can be defined.
We show the following norm estimates of Mp

+ ∩ H2
0 and Mp.

Proposition 3.5. Let 1 ≤ p < ∞, and a ∈ L1.

1. ‖a‖Mp
+

= sup
{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖`p

+
, ‖ψ‖`q

+
≤ 1

}
holds. When p = 1, we

replace `q
+ with c0

+ in the right-hand side.
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2. ‖a‖Mp = sup
{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖`p , ‖ψ‖`q ≤ 1

}
holds. When p = 1, we re-

place `q with c0 in the right-hand side.

Proof. 1. Let 1 < p ≤ 2. For ϕ ∈ `p
+ with ‖ϕ‖`p

+
≤ 1, a linear mapping

Dϕ : `q
+ −→ C : ψ 7−→ 〈ψ, a ¯ ϕ〉R

satisfies

‖a ¯ ϕ‖`p
+

= ‖Dϕ‖(`q
+)∗

= sup
{
|〈ψ, a ¯ ϕ〉R| | ‖ψ‖`q

+
≤ 1

}
≤ sup

{
|〈a ¯ ϕ,ψ〉R| | ‖ϕ‖`p

+
, ‖ψ‖`q

+
≤ 1

}
= sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖`p

+
, ‖ψ‖`q

+
≤ 1

}
.

It implies

‖a‖Mp
+

= sup
{
‖a ¯ ϕ‖`p

+
| ‖ϕ‖`p

+
≤ 1

}
≤ sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖`p

+
, ‖ψ‖`q

+
≤ 1

}
.

Conversely,

‖a‖Mp
+

= ‖H(a)‖B(`p
+)

≥ sup
{
|G(H(a)ϕ)| | ‖ϕ‖`p

+
, ‖G‖(`p

+)∗ ≤ 1
}

= sup
{
|〈H(a)ϕ, g〉R| | ‖ϕ‖`p

+
, ‖g‖`q

+
≤ 1

}
= sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ g〉R| | ‖ϕ‖`p

+
, ‖g‖`q

+
≤ 1

}
.

Now let p = 1. ‖a‖M1
+
≤ sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖`1+

, ‖ψ‖c0
+
≤ 1

}
holds from

as above. Conversely,

‖a‖M1
+

= ‖H(a)‖B(`1+)

≥ sup
{
|G(H(a)ϕ)| | ‖ϕ‖`1+

, ‖G‖(`1+)∗ ≤ 1
}

= sup
{
|〈H(a)ϕ, g〉R| | ‖ϕ‖`1+

, ‖g‖`∞+
≤ 1

}
≥ sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ g〉R| | ‖ϕ‖`1+

, ‖g‖c0
+
≤ 1

}
.

When 2 < p < ∞, Proposition 3.2.2 leads the conclusion.
2. For ϕ = {ϕn}n∈Z ∈ `∞, we define ϕb as ϕb := {ϕ−n}n∈Z.
Let 1 < p ≤ 2. For ϕ ∈ `p with ‖ϕ‖`p ≤ 1, a linear mapping

Dϕ : `q −→ C : ψ 7−→ 〈ψ, a ∗ ϕ〉R

satisfies

‖a ∗ ϕ‖`p = ‖Dϕ‖(`q)∗

= sup {|〈ψ, a ∗ ϕ〉R| | ‖ψ‖`q ≤ 1}
≤ sup {|〈a ∗ ϕ,ψ〉R| | ‖ϕ‖`p , ‖ψ‖`q ≤ 1}
= sup

{
|〈{(a)n}n∈Z , ϕb ∗ ψ〉R| | ‖ϕ‖`p , ‖ψ‖`q ≤ 1

}
= sup

{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖`p , ‖ψ‖`q ≤ 1

}
.
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It implies

‖a‖Mp = sup {‖a ∗ ϕ‖`p | ‖ϕ‖`p ≤ 1}
≤ sup

{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖`p , ‖ψ‖`q ≤ 1

}
.

Conversely,

‖a‖Mp = ‖M(a)‖B(`p)

≥ sup
{
|G(M(a)ϕ)| | ‖ϕ‖`p , ‖G‖(`p)∗ ≤ 1

}
= sup {|〈M(a)ϕ, g〉R| | ‖ϕ‖`p , ‖g‖`q ≤ 1}
= sup

{
|〈{(a)n}n∈Z , ϕ ∗ g〉R| | ‖ϕ‖`p , ‖g‖`q ≤ 1

}
.

Hence ‖a‖Mp = sup
{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖`p , ‖ψ‖`q ≤ 1

}
.

Now let p = 1. ‖a‖M1 ≤ sup
{
|〈{(a)n}n∈Z , ϕ ∗ ψ〉R| | ‖ϕ‖`1 , ‖ψ‖c0 ≤ 1

}
from as above.

Conversely,

‖a‖M1 = ‖M(a)‖B(`1)

≥ sup
{
|G(M(a)ϕ)| | ‖ϕ‖`1 , ‖G‖(`1)∗ ≤ 1

}
= sup {|〈M(a)ϕ, g〉R| | ‖ϕ‖`1 , ‖g‖`∞ ≤ 1}
≥ sup

{
|〈{(a)n}n∈Z , ϕ ∗ g〉R| | ‖ϕ‖`1 , ‖g‖c0 ≤ 1

}
.

When 2 < p < ∞, Proposition 2.1.1 leads the conclusion.

4 Some spaces of sequences. In this section, we show some properties of spaces which
are linearization of sets of all ϕ ∗ ψ. Namely,

Definition 4.1. For 1 ≤ p ≤ ∞, we define V p
+ and V p as

V p
+ :=

{
ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn | n ∈ N, ϕ1, · · · , ϕn ∈ `p

+, ψ1, · · · , ψn ∈ `q
+

}
,

and

V p :=
{
ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn | n ∈ N, ϕ1, · · · , ϕn ∈ `p, ψ1, · · · , ψn ∈ `q

}
.

When p = 1, we replace `q
+ and `q with c0

+ and c0 in the right-hand side, respectively. When
p = ∞, we also replace `p

+ and `p with c0
+ and c0 in the right-hand side, respectively.

If f = ϕ1 ∗ψ1 + · · ·+ ϕn ∗ψn and g = Φ1 ∗Ψ1 + · · ·+ Φm ∗Ψm belong to each of above
sets, then

f + g = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn + Φ1 ∗ Ψ1 + · · · + Φm ∗ Ψm

belongs to the same sets. Thus it is easy to see that V p
+ and V p are vector spaces, respec-

tively.

Definition 4.2. For f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn ∈ V p
+, we define ‖f‖V p

+
as

‖f‖V p
+

:= inf

 ∑
1≤j≤n

‖ϕj‖`p
+
‖ψj‖`q

+
| representations of f in V p

+

 .

For f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn ∈ V p, we define ‖f‖V p as

‖f‖V p := inf

 ∑
1≤j≤n

‖ϕj‖`p‖ψj‖`q | representations of f in V p

 .
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These spaces have the following properties.

Proposition 4.3. 1. For ϕ ∈ `p
+ and ψ ∈ `q

+, there are Φ ∈ `p
+ and Ψ ∈ `q

+ with
ϕ ∗ ψ = Φ ∗ Ψ and ‖Φ‖`p

+
= ‖Ψ‖`q

+
.

2. For f ∈ V p
+, supj≥0|fj | ≤ ‖f‖V p

+
.

3. V p
+ ⊂ c0

+.

4. For f ∈ `q
+, ‖f‖V p

+
≤ ‖f‖`q

+
.

5. ‖ · ‖V 1
+

= ‖ · ‖c0
+

and V 1
+ = c0

+.

6. ‖ · ‖V p
+

= ‖ · ‖V q
+

and V p
+ = V q

+.

7. V 2
+ and H1 are isometrically isomorphic via the isomorphism :

{(f)j}j≥0 ←→ f whose Fourier coefficients are {(f)j}j≥0 .

Proof. 1. If we set Φ :=
√

‖ψ‖q

‖ϕ‖p
ϕ and Ψ :=

√
‖ϕ‖p

‖ψ‖q
ψ, then ϕ ∗ ψ = Φ ∗ Ψ and ‖Φ‖p =√

‖ϕ‖p‖ψ‖q = ‖Ψ‖q.
2. Take f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn ∈ V p

+. By the Hölder’s inequality,

|fj | ≤ |(ϕ1 ∗ ψ1)j | + · · · + |(ϕn ∗ ψn)j |
≤ ‖ϕ1‖`p

+
‖ψ1‖`q

+
+ · · · + ‖ϕn‖`p

+
‖ψn‖`q

+

for j ≥ 0. Thus supj≥0|fj | ≤ ‖f‖V p
+
.

3. For any ε > 0, ϕ = {ϕj}j≥0 ∈ `p
+, ψ = {ψj}j≥0 ∈ `q

+, there is an N ∈ N such that
‖ {ϕj}j≥N ‖p < ε

2‖ψ‖q
and ‖ {ψj}j≥N ‖q < ε

2‖ϕ‖p
. By the Hölder’s inequality,

|(ϕ ∗ ψ)j | = |
∑
k≥0

ϕj−N+kψN−k +
∑
k≥1

ϕj−N−kψN+k|

≤ |
∑
k≥0

ϕj−N+kψN−k| + |
∑
k≥1

ϕj−N−kψN+k|

≤ ‖ {ϕj−N+k}k≥0 ‖p‖ {ψN−k}k≥0 ‖q + ‖ {ϕj−N−k}k≥1 ‖p‖ {ψN+k}k≥1 ‖q

<
ε

2‖ψ‖q
‖ψ‖q + ‖ϕ‖p

ε

2‖ϕ‖p
= ε

hold for any j ≥ 2N .
Thus, for any ε > 0, f = ϕ1∗ψ1+· · ·+ϕm∗ψm ∈ V p

+, if we put εn := ε
(n+1)2 (1 ≤ n ≤ m),

then there exist N1, · · · , Nm ∈ N such that

|fj | ≤ |(ϕ1 ∗ ψ1)j | + · · · + |(ϕn ∗ ψn)j |
< ε1 + · · · + εm < ε

for any j ≥ 2max1≤n≤m Nn. This and 2 mean the conclusion.
4. Let f ∈ `q

+. We regard f as e0 ∗ f , and therefore ‖f‖V p
+
≤ ‖e0‖`p

+
‖f‖`q

+
= ‖f‖`q

+
.

5. By 3 and 4, it is immediately seen.
6. By ϕ ∗ ψ = ψ ∗ ϕ, it is easy to see.
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7. Since `2+ and H2 are isometrically isomorphic via the isomorphism : {(ϕ)j}j≥0 ←→
ϕ =

∑
j≥0(ϕ)jχj , we can see easily that V 2

+ and{
ϕ1ψ1 + · · · + ϕnψn | n ∈ N, ϕ1, · · · , ϕn ∈ H2, ψ1, · · · , ψn ∈ H2

}
are isometrically isomorphic, whenever a norm of the space of the right-hand side is defined
by

‖f‖ := inf
{
‖ϕ1‖H2‖ψ1‖H2 + · · · + ‖ϕn‖H2‖ψn‖H2 | representations of f

}
.

We show that this normed space is equal to H1. By the Hölder’s inequality,∫
|ϕ1ψ1 + · · · + ϕnψn| dθ

2π
≤

∫
|ϕ1ψ1| dθ

2π
+ · · · +

∫
|ϕnψn| dθ

2π

≤ ‖ϕ1‖H2‖ψ1‖H2 + · · · + ‖ϕn‖H2‖ψn‖H2 ,

therefore ‖ · ‖H1 ≤ ‖ · ‖. Conversely, let f ∈ H1. By the inner-outer factorization theorem,
there are an inner function g ∈ H∞ and an outer function h ∈ H1 satisfying f = gh. If we
set ϕ := gh

1
2 ∈ H2 and ψ := h

1
2 ∈ H2, then f = gh = ϕψ and ‖f‖ ≤ ‖ϕ‖H2‖ψ‖H2 = ‖f‖H1 .

Consequently, V 2
+ and H1 are isometrically isomorphic.

Proposition 4.4. 1. For ϕ ∈ `p and ψ ∈ `q, there are Φ ∈ `p and Ψ ∈ `q with ϕ ∗ ψ =
Φ ∗ Ψ and ‖Φ‖`p = ‖Ψ‖`q .

2. For f ∈ V p, supj∈Z|fj | ≤ ‖f‖V p .

3. V p ⊂ c0.

4. For f ∈ `q, ‖f‖V p ≤ ‖f‖`q .

5. ‖ · ‖V 1 = ‖ · ‖c0 and V 1 = c0.

6. ‖ · ‖V p = ‖ · ‖V q and V p = V q.

7. V 2 and L1 are isometrically isomorphic via the isomorphism :

{(f)j}j∈Z ←→ f whose Fourier coefficients are {(f)j}j∈Z .

Proof. The proof is the same as that of Proposition 4.3.

Remark 4.5. By Proposition 4.3.2 and Proposition 4.4.2, it is seen that ‖ · ‖V p
+

and ‖ · ‖V p

are norms on V p
+ and V p, respectively.

Now, we consider what representations of an element of these spaces we can take. In
general, it doesn’t say that a representation ϕ1 ∗ψ1 + · · ·+ϕn ∗ψn of an element f satisfies

‖ϕ1‖p‖ψ1‖q ; · · · ; ‖ϕn‖p‖ψn‖q.

However, the following result says that there is such a representation for all f .

Theorem 4.6. Let ε, ε′ > 0.

1. For f ∈ V p
+, there is a representation of f , f = Φ1 ∗ Ψ1 + · · · + ΦN ∗ ΨN such that

‖f‖V
p
+
−ε′

N < ‖Φj‖2
`p
+

<
‖f‖V

p
+

+ε

N and ‖Φj‖`p
+

= ‖Ψj‖`q
+

for 1 ≤ j ≤ N .
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2. For f ∈ V p, there is a representation of f , f = Φ1 ∗ Ψ1 + · · · + ΦN ∗ ΨN such that
‖f‖V p−ε′

N < ‖Φj‖2
`p < ‖f‖V p+ε

N and ‖Φj‖`p = ‖Ψj‖`q for 1 ≤ j ≤ N .

Proof. 1. If we take an f ∈ V p
+, then by Proposition 4.3.1, there is a representation of f ,

f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn such that

‖f‖V p
+
≤ ‖ϕ1‖2

p + · · · + ‖ϕn‖2
p < ‖f‖V p

+
+ ε

and ‖ϕj‖p = ‖ψj‖q for 1 ≤ j ≤ n.
Assume n ≥ 2 and ‖ϕ1‖2

p ≤ · · · ≤ ‖ϕn‖2
p.

We show that it may assume ‖ϕ1‖2
p > 0 without loss of generality. Indeed, assume

‖ϕn‖2
p > 0 and ‖ϕ1‖2

p = 0. We take 2 ≤ k ≤ n with ‖ϕk‖2
p > 0 and ‖ϕk−1‖2

p = 0. If we set

Φi :=

{
ϕk

√
k
, 1 ≤ i ≤ k

ϕi, k + 1 ≤ i ≤ n
and Ψi :=

{
ψk

√
k
, 1 ≤ i ≤ k

ψi, k + 1 ≤ i ≤ n,

then f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn = Φ1 ∗ Ψ1 + · · · + Φn ∗ Ψn and 0 < ‖Φ1‖2
p ≤ · · · ≤ ‖Φn‖2

p.

When ‖f‖V p
+

> ε′, if we take an ε′′ with 0 < ε′′ ≤
‖f‖V

p
+

‖f‖V
p
+
−ε′ − 1, then we can take rj ∈ Q

satisfying

‖ϕj‖2
p ≤ rj < min

{
‖ϕj‖2

p(‖f‖V p
+

+ ε)

‖ϕ1‖2
p + · · · + ‖ϕn‖2

p

, ‖ϕj‖2
p(1 + ε′′)

}
for 1 ≤ j ≤ n, and take kj ∈ N satisfying the ratio

r1 : · · · : rn = k1 : · · · : kn

for 1 ≤ j ≤ n.
Let k0 := 0 and N :=

∑
0≤`≤n k`. If we set Φj := ϕi

√
ki

and Ψj := ψi

√
ki

for 1 ≤ i ≤ n and∑
0≤`≤i−1 k` + 1 ≤ j ≤

∑
0≤`≤i−1 k` + ki, then we see that

f = ϕ1 ∗ ψ1 + · · · + ϕn ∗ ψn = Φ1 ∗ Ψ1 + · · · + ΦN ∗ ΨN

and
‖f‖V

p
+
−ε′

N < ‖Φj‖2
p = ‖Ψj‖2

q <
‖f‖V

p
+

+ε

N for 1 ≤ j ≤ N . Indeed, for 1 ≤ i ≤ n and∑
0≤`≤i−1 k` + 1 ≤ j ≤

∑
0≤`≤i−1 k` + ki,

‖Φj‖2
p = ‖ ϕi

√
ki

‖2
p =

‖ϕi‖2
p

ri
· ri

ki
=

‖ϕi‖2
p

ri
· r1 + · · · + rn

k1 + · · · + kn
=

‖ϕi‖2
p

ri
· r1 + · · · + rn

N
,

and

‖f‖V p
+
− ε′

N
≤

‖f‖V p
+

N(1 + ε′′)

≤
‖ϕ1‖2

p + · · · + ‖ϕn‖2
p

N(1 + ε′′)

≤ r1 + · · · + rn

N(1 + ε′′)

<
‖ϕi‖2

p

ri
· r1 + · · · + rn

N

≤ r1 + · · · + rn

N

<
‖f‖V p

+
+ ε

N
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hold.
When ‖f‖V p

+
≤ ε′, we can take rj ∈ Q satisfying

‖ϕj‖2
p ≤ rj <

‖ϕj‖2
p(‖f‖V p

+
+ ε)

‖ϕ1‖2
p + · · · + ‖ϕn‖2

p

for 1 ≤ j ≤ n, and take kj ∈ N satisfying the ratio

r1 : · · · : rn = k1 : · · · : kn

for 1 ≤ j ≤ n.
Let k0 := 0 and N :=

∑
0≤`≤n k`. If we set Φj := ϕi

√
ki

and Ψj := ψi

√
ki

, then we see that

‖f‖V p
+
− ε′

N
≤ 0

< ‖Φj‖2
p

=
‖ϕi‖2

p

ri
· r1 + · · · + rn

N

≤ r1 + · · · + rn

N

<
‖f‖V p

+
+ ε

N

hold for 1 ≤ i ≤ n and
∑

0≤`≤i−1 k` +1 ≤ j ≤
∑

0≤`≤i−1 k` + ki. This leads the conclusion.
2. The proof is the same as that of 1.

Remark 4.7. The auther generalized Theorem 4.6 to Theorem 2.2 of [4] after this paper
submitted.

5 Duality theorems. Here, we extend Proposition 3.5 to V p
+ and V p.

Proposition 5.1. Let 1 ≤ p < ∞, and a ∈ L1.

1. ‖a‖Mp
+

= sup
{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
holds.

2. ‖a‖Mp = sup
{
|〈{(a)k}k∈Z , f〉R| | ‖f‖V p ≤ 1

}
holds.

Proof. 1. Since
{

ϕ ∗ ψ | ‖ϕ‖`p
+
, ‖ψ‖`q

+
≤ 1

}
⊂

{
f ∈ V p

+ | ‖f‖V p
+
≤ 1

}
,

‖a‖Mp
+

= sup
{
|〈{(a)k+1}k≥0 , ϕ ∗ ψ〉R| | ‖ϕ‖`p

+
, ‖ψ‖`q

+
≤ 1

}
≤ sup

{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
hold by Proposition 3.5.1.

Conversely, for any ε, ε′ > 0, f ∈ V p
+, there is a representation of f in V p

+, f =∑
1≤j≤n φj ∗ ψj such that

‖f‖V
p
+
−ε′

n < ‖φj‖2
`p = ‖ψj‖2

`q <
‖f‖V

p
+

+ε

n for all 1 ≤ j ≤ n by



ON A DUALITY BETWEEN THE OPERATORS AND THE SPACE OF SEQUENCES 13

Theorem 4.6.1. Thus

|〈{(a)k+1}k≥0 , f〉R| ≤
∑

1≤j≤n

|〈{(a)k+1}k≥0 , ϕj ∗ ψj〉R|

≤
∑

1≤j≤n

sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | (ϕ,ψ) ∈ Ep

+, ‖ϕ‖`p , ‖ψ‖`q ≤
‖f‖V p

+
+ ε

n

}

= n ·
‖f‖V p

+
+ ε

n
sup

{
|〈{(a)n+1}n≥0 , ϕ ∗ ψ〉R| | (ϕ,ψ) ∈ Ep

+, ‖ϕ‖`p , ‖ψ‖`q ≤ 1
}

= (‖f‖V p
+

+ ε)‖a‖Mp
+

hold by Proposition 3.5.1. Hence,

sup
{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
≤ ‖a‖Mp

+
.

2. The proof is the same as that of 1.

Finally, we show the main results.

Theorem 5.2. Let 1 ≤ p < ∞.

1. Mp
+ ∩ H2

0 and (V p
+)∗ are isometrically isomorphic as normed spaces.

2. Mp and (V p)∗ are isometrically isomorphic as normed spaces.

Proof. 1. Let a ∈ Mp
+ ∩ H2

0 . By Proposition 5.1.1,

D : V p
+ −→ C : f 7−→ 〈f, {(a)n+1}n≥0〉R

satisfies ‖D‖(V p
+)∗ = sup

{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
= ‖a‖Mp

+
and D ∈ (V p

+)∗.

Coversely, let D ∈ (V p
+)∗ and let an+1 := D(en) n ≥ 0.

When 1 < p ≤ 2, since

D(f) =
∑
n≥0

fnD(en) =
∑
n≥0

fnan+1 = 〈f, {an+1}n≥0〉R

holds for f =
∑

n≥0 fnen ∈ V p
+,

∞ > ‖D‖(V p
+)∗ = sup

{
|〈f, {an+1}n≥0〉R| | ‖f‖V p

+
≤ 1

}
≥ sup

{
|〈f, {an+1}n≥0〉R| | ‖f‖`q

+
≤ 1

}
.

This implies {an+1}n≥0 ∈ (`q
+)∗ ∼= `p

+ ⊂ `2+
∼= H2 and a :=

∑
n≥1 anχn ∈ H2

0 . Thus,

by Proposition 5.1.1, ‖a‖Mp
+

= sup
{
|〈{(a)k+1}k≥0 , f〉R| | ‖f‖V p

+
≤ 1

}
= ‖D‖(V p

+)∗ and

a ∈ Mp
+.

When p = 1, we replace `q
+ with c0

+. When 2 < p < ∞, it is soon from Mp
+ ∩ H2

0 =
Mq

+ ∩ H2
0 and V p

+ = V q
+.

2. Let a ∈ Mp. By Proposition 5.1.2,

D : V p −→ C : f 7−→ 〈f, {(a)n}n∈Z〉R
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satisfies ‖D‖(V p)∗ = sup
{
|〈{(a)k}k∈Z , f〉R| | ‖f‖V p ≤ 1

}
= ‖a‖Mp and D ∈ (V p)∗.

Coversely, let D ∈ (V p)∗ and let an := D(en) n ∈ Z.
When 1 < p ≤ 2, since

D(f) =
∑
n∈Z

fnD(en) =
∑
n∈Z

fnan = 〈f, {an}n∈Z〉R

holds for f =
∑

n∈Z fnen ∈ V p,

∞ > ‖D‖(V p)∗ = sup
{
|〈f, {an}n∈Z〉R| | ‖f‖V p ≤ 1

}
≥ sup

{
|〈f, {an}n∈Z〉R| | ‖f‖`q ≤ 1

}
.

This implies {an}n∈Z ∈ (`q)∗ ∼= `p ⊂ `2 ∼= L2 and a :=
∑

n∈Z anχn ∈ L2. Thus, by
Proposition 5.1.2, ‖a‖Mp = sup

{
|〈{(a)k}k∈Z , f〉R| | ‖f‖V p ≤ 1

}
= ‖D‖(V p)∗ and a ∈ Mp.

When p = 1, we replace `q with c0. When 2 < p < ∞, it is soon from Mp = Mq and
V p = V q.

Remark 5.3. Theorem 5.2.1 is the modification of the H1-BMOA duality because of Propo-
sition 3.4.5 and Proposition 4.3.7. Also Theorem 5.2.2 is the modification of the classical
L1-L∞ duality because of Proposition 2.1.2 and Proposition 4.4.7.
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