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ABSTRACT. In many practical situations, intervals or fuzzy numbers are used to
model imprecise observations derived from uncertain measurements or linguistic
assessments. When using fuzzy numbers the shape of the membership function
is important in modelling. In this paper, we consider the fuzzy numbers whose
membership function is symmetric with respect to a vertical axis. For a € (0, 1]
the a— cuts of such fuzzy numbers will have a constant mid-point and the
upper end of the interval will be a non-increasing function of «, the lower
end will be the image of this function. Hence these symmetric fuzzy numbers
can be fully described by a constant and a non-increasing function. Based on
this description, we define the arithmetic operations and a ranking technique
to order the symmetric fuzzy numbers. We also discuss various properties of
interest. Using Radstorm embedding theorem|5], we conduct a structure study
on symmetric fuzzy numbers.

1 Introduction The operations on the set of fuzzy numbers are usually obtained
by the Zadeh extension principle [7], [8], [6]. These definitions can have some
disadvantages for the applications, both by an algebraic point of view and by logical
and practical aspects. In particular, the shape of fuzzy numbers is not preserved by
multiplication, the indeterminateness of the sum and product is often too increasing.

Dong Qiu et.al. [1] studied the algebraic properties of fuzzy numbers using
equivalence classes on fuzzy numbers and identified the group structure for addition.
In this paper, we are studying a special class of fuzzy numbers, namely the symmetric
fuzzy numbers, whose membership function is symmetric with respect to a vertical
axis, define various arithmetic operations anew to suit our need. Also applying
Radstorm embedding theorem|[5] we are identifying the vector space structure. We
define the arithmetic operations, such as addition, subtraction, scalar multiplication,
product, inverse on symmetric fuzzy numbers in a way that the resultants are also
symmetric fuzzy numbers.

Section 2 introduces symmetric fuzzy numbers, the arithmetic operations and
the ranking technique on them. We also verify various properties of the arithmetic
operations in this section. Based on the properties verified, section 3 gives an
embedding of the class of symmetric fuzzy numbers into a collection of equivalence
classes of symmetric fuzzy numbers which forms a group and a vector space.

2 Symmetric Fuzzy Numbers

Definition 2.1 The characteristic function x4 of a crisp set A C X assigns a value
either 0 or 1 to each member in X. This function can be generalized to a function
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it 5 such that the value assigned to the element of the universal set X fall within a
specified range i.e. pz : X — [0,1]. The assigned value indicates the membership
grade of the element in the set A. The function p ; is called the membership function
and the set A = {(z, uz(x)) : x € X} is called a fuzzy set.

Definition 2.2 A fuzzy set A, defined on the universal set of real numbers R, is said
to be a fuzzy number if its membership function has the following characteristics:

i. A is convex ie. pi(Azy + (1 — M) > min(pg(zy), pi(x2)) V¥ 21,29 €
R, VA e0,1]

ii. A is normal i.e. 3z € R such that p;(z) = 1

1il. 7 1s plecewise continuous

The height of a fuzzy set A € F(X), is the value hgt(A) = sup,¢cx pa(z). From
the definition of a fuzzy set it is immediate that hgt(A) < 1. If there exists xy € X
such that hgt(A) = pa(xg) = 1, then the fuzzy set A is called normal.

The core of a fuzzy set A € F(X) is denoted with core(A) and it is given by
core(A) = {x € X | ua(z) = 1}. The support of a fuzzy set A € F(X) is denoted
with supp(A) and represents the set of all elements of X with a nonzero degree of
membership, that is supp(A) = {z € X | pua(x) > 0}

For a € [0, 1], the a-cut of a fuzzy set A € F(X) denoted by [A4], and is given by
[Ale = {z € X | pa(x) > a}. It is clear that [A]p = X and [A]; = core(A).

Remark 2.1. For a fuzzy number, the a—cut will be a closed interval.

Definition 2.3 Let [A], = [a$, a$] be the a—cut of the fuzzy number A, then A is

: . : . ey tay .
said to be symmetric if the mid-point m,(A) = — 5 2 is constant Yo € [0, 1].
ay — af

~ a
Remark 2.2. The spread S,(A4) = L is non-negative and a non-increasing

function of «. It is the factor that determines the fuzziness of the quantity measured.
As a particular case, when the spread is zero, the quantity reduces to a crisp quantity.

Remark 2.3. The a—cut [A], = [a$,a$] of the symmetric fuzzy numbers A can
also be represented as [A], = l ;az + 22 ; l [—1,1].

2.1 Ranking Technique For two symmetric fuzzy numbers A and B with a—cuts
~ . ~ ~ « «a b he
[A]lo = [af,a$] and [B], = [bS,b5], define A < B if either 4 —;—az < - —5 2 or

af + a5 _ by + b3 and ay — af bg‘—bf“ It af + a3 _ by + bg and ag —af _
ba2ba 2 2 2 2 2 2
2 L then A= B

2.2 Arithmetic Operations

Definition 2.4 Let A and B be two symmetric fuzzy numbers with a—cuts [A], =
[af, as], [Bla = [b7,05] and A € R, then the a—cut of the arithmetic operations are
defined as follows:

Sum

[[1+B]a:a1;a2 +b1J2rb2 + (GQ gal % ;bl) [—1,1] (2.1)



Difference

~ ~ a +ay b+ by ay —as by — ¢
Ai_p =% 2 U1 2 2 1 2 L) 1211 99
A= Bl =" G = = IR

Scalar Multiplication

_ STRU&HQ_REGSTU O&‘aSX TRIC FUZZY NUMBERS
A, = + (WS L (23)
Product
4B, = 4 ‘2”‘2 b 262 + (2.4)
ag —af | by + bg af + ay bg—b‘f‘_'_ag“—a?bg‘—b? 11
2 2 2 2 2 2
Inverse
[1}_ 2 +1(1_1)[_11] (25)
Al, aftas 2 ag )t '

here either af > 0 or a3 < 0

Proposition 2.1. Let A be a symmteric fuzzy number with a—cut [A], = [a$, a],
then for a < B, [af,a3] 2 [a7, a3].

Proof. Ais a symmetric fuzzy number = the mid-point my(A) is constant and
the spread S, (A) is a non-increasing function of a.
a a B B a _ o B_ B
a1+a2:a1+a2 anda2 alzaz ay
2 2 2 2
= [af,05] 2 [f, 03] =

Thus a < f =

Remark 2.4. Proposition 2.1 proves that the symmetric fuzzy number is convex.
Proposition 2.2. ]ffl and B are symmetric fuzzy numbers, then so are A+ B, A—
~ o~ 1
B, MA(M € R), A.B, Y

Proof. Let the a—cuts of A and B be [A], = [a¢, a$] and [B]a = [b2, bS] respectively,
then we know that for o < o/,
the mid-points

1o «a o o
ay + ay ai + ay

= 2.6
5 5 (2.6)
bS + by b+ by’
2 1 72 2.7
the spreads
ay —ay ag’ —af’
1 s 2.8
5 > 5 (2.8)



Rosy JOSEPH AND DHANALAKSHMI V

_ _ « a e he a L« be — po
Sum [A+ B, = L1 % 2% 2+(“2 =+ 2 1)[—1 1]

2 2 2

Adding equations 2.6 and 2.7, we get the mid-point of A+ B to be constant
and adding 2.8 and 2.9 we see the spread of A+ B to be non-increasing. Thus
A+ B is symmetric.

5 5 e a b he a __ « he — pe
Difference [A—B]Oé:al—;a2 — 1;— 2 +(a2 2a1 + =2 5 1)[—1,1]

Subtracting equations 2.6 and 2.7, we get the mid-point of A — B to be constant
and adding 2.8 and 2.9 we see the spread of A — B to be non-increasing. Thus
A — B is symmetric.

Scalar Multiplication [\A], )\al —;% <|)\]a2 gal) [—1,1]
By the definition, it is clear that AA is a symmetric fuzzy number.

a(f‘+a5‘ b‘f‘+bg‘+

Product [A. B]
ag — ba~|—b°‘ af + ay bg—b?_i_ag‘—a?bg—bff —1,1]
2 2 2 2 2 2 ’

Product of two constants is also a constant = the mid-point of A.B =
af + a§ by + b§

1s constant.

2 2
For a < o/,
S(AB) _ a§ — af [by + b3 af +a§ | b — by  a§ —af by —b¢
o 2 2 2 2 2 2
_ag—af [by + | |af +ag | by — 0 ag —af b§ — bf
2 2 2 2 2 2
using 2.6 and 2.7
> ag/ . a(]?él b(]?/ + bg/ a(]?é, + a/(ZX/ bg, o b?/ ag/ . a/?/ bg/ o b(lll
- 2 2 2 2 2 2
. ag/ . atll/ bg/ . b?/
using 2.8 and 2.9 and the fact that 5 5

are non-negative

= S.(A.B)
Thus A.B is symmetric.

1 2 1 /1 1
Inverse |=| = +-|=-—=)[-11]
Al, af+ay 2 \af af

1 1
It is clear that m,, <Z> is constant. To prove S, (Z) is non-increasing.

Let o < o, then
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_ Sald) (2.10)
apasg

/ / . 1. . / /
We halve af <aff <ag <aj. Since A is symmetric, af —af = a§—a$ = k(say),
let a§ —af =c, ie
2 1 ’

ai = af+k
af = aS+k+c
a; = af +k+c+k
Thus afay — a%'as = a$(af +k+c+k) — (a4 k)(aS 4+ k + ¢)

= —k*—kc
< Qask>0,c>0

al — > a,l v (2.11)

ayas ay as
A is symmetric = S,(A) > Su(A) (2.12)

From the definition of the inverse all the terms appearing in equations 2.11 and
2.12 are positive, hence multiplying equations 2.11 and 2.12 and applying it in

1 1
equation 2.10, we get S, (—~> > S (—~)
A A

1
Thus yi is symmetric.

O

Theorem 2.1. [Properties of Arithmetic Operators] Let A, B,C be symmetric fuzzy
numbers, then the following properties hold:

1. A+ B =B+ A (commutative)
A.B = B.A (commutative)

A+ B)+C=A+(B+C) (associative)

= A (identity)
Al=1.A=A (identity)

A+B=A+C = B=C (cancellation)
AB=AC = B=C (cancellation)

© X RS> & e
i
+
(@)
I
(@)
+

Scalar multiplication by non-negative real scalars satisfies:
(a) \(A+ B) =) A+ \B
(b) A+ u)A = A+ uA
(¢) (M)A = A(pA)
10. A.” (B +C") = A "B +A. "~ C (sub-distributive)
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11. (A+B) —C=A+(B-0)

12 (A+B)-B+A

13 A<Cand B=<D =— A+B<C+DandA—-B=<C—-D (inclusion
monotonicity)

Proof. Let the a—cut of the given symmetric fuzzy numbers be [Al, = [a%, ag],

[B]a = [b3, b3, [é]a = [¢%, 5] and [0], = [0,0], [1]o = [1,1] and thus in the mid-point
and spread notation

« e} (67 (e}
ay +ay  ay; —aj

A, = -1,1
Al == 7 b
B ba+ba ba_ba
Blo = 22+ 21,1
(Bl = =5+ 25 L
. cf+c§ oy —cf
Ca: 1 2 2 1_11
Cla == .
1. Toprove A+ B=B+ A
L a® +ad  bY 4+ b2 ay —ay by —b¢
Ap B, = Gt  brtb 2~ =Ygy
[A+ B] 2 2 2 )
bty af ey, (B8 -BY L ag -l
2 2 2 2
= [B+ AL
2. To prove A.B = B.A
AB at +ay bi + by
Dy 2 : 9
a; —af [B+b5| | |ab+ag b b af—aRbs b,
2 2 2 2 2 2 |
b+ b3 af + a
= 1287
b —bf |af +ag|  |bit5af—a b5 —bpaz—ap), |
2 2 2 2 2 2 |
_ [BAL
3. Toprove(A+B)+é:A+(B+é)
(A4 B 40, — (Grad W+l d+d
2 2 2
ag —ai U5 -bF\ g -
1,1
(7555

B a?+a§‘+ by + 0§ cf + ¢S
N 2 2 2
ay — ay by — by g —cf
-1.1
A (AT fe
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4. To prove (A.B).C = A.(B.C)

(A.B).C)a
af + ag b + by
{ 2 T2
ag —af |by + 05| | |af +ag | by —bY | a§ —af by — bg
~1,1
< 2 2 2 5 T3 ;)

4 % o — o

ai +a§ b + b9 cf +c§
2 2 2

+{<a§“—a‘f b + b3 af + a$ bg“—bf‘+a§“—a‘fb§‘—b‘f) e+
2 2 2 2 2 2 2
af +a§ b + 05| c§ —cf
2 ' 2 2
n ag —af | by + bg af + a§ | b — bY
2 2 2 2
a§ —af b — by c§ — cf
-1,1
+ 2 2 2 [=1.1]
_ af +a§ [ bf + 05 cf + c5
2 2 2
. a§ —af |bF + b5 || cf +c5 af +a$ | b — b§ cff + 5
2 2 2 2 2 2
ag —af by — bf |cf + 5 af +a$ | |0 + 05| c§ —cf
2 2 2 2 2 2
a§ —af [bY +b5 | c§ —cf af + a5 | bg — b c§ —cff
2 2 2 2 2 2
ay —af by —bf ¢§ —f
—1,1
= 5 5 [—1,1]
af +a§ (b + b5 cf + 5
2 2 2
+{a§‘—aff b + b ¢ + ¢§
2 2 2
af +as | (b — b |cf + ¢S b + b5 | c5 —cf b —bf c§ — cf
2 2 2 2 2 2 2
+ag‘—a% b — b |cf + c§ by + b3 cg‘—cf‘_'_bg‘—b(fcg‘—c%
2 2 2 2 2 2 2
[_171]
— [A(B.O).

2 2 2 ’
af +as5  ag —af
—1.1
2 2 [ Y ]
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Similarly, 0 + A = A.
6. Toprove Al=1.A=A4

af +ay 1+1
2 2
as — af 1-1

+(2 1 5

af + a$
2

2
af + a$
2

«

1+1
|

_a?

2

ay

[_171]

=

= |

Similarly, 1.4
+

A
7. A+ B=A+C = B = C (cancellation)
[A+ Bl,=[A+C].

a$ + as w+@+(

2 2
cf + 5

:a?—l—ag‘
2
—i—bg‘_

o o
Ay — 4

2

as —ay
(54,

o [e% (o7 (o4
ay +ay ]+

Q

by — b0
—-1,1
# )
cg —cf

L)

+

2

(6% (0% (6%
af +ay 0§

l

2

2

«
_al

2

by —bf a

2
(07 (0%
Co

(a7

a
d 2
an 5

by +by

I

(0%
Cq

2

(e}
+ c5

2

(0} (67

2

2

Il

b
[

.
)

e

[

o [e% (07 Q
_a1+a2 ¢+ ¢y
2 2
(07 a
ay + ay
2
e} «
aj + ag
2

2
_alll
2
_ay —af
2
DY+ b5 o+
2 2

(0%
as

by — bf

2

5 —cf
2

(6% (e Ne (6%
ay —af by — 0
2 2
(e} (67N o
Ay — a7 Gy — €1
2 2

by + bg

2

cf + c§
2

(7 (e}
ay + ay
2
(67 o
ay + ag

2

(0% o

by — bf
2

(07 (e}

Co — O

2

(e} (0% (07 (6
ay — af by — bf
2 2
(7 (07 (07 (e}

2 2

and
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(e} « «
ai + as asy

Co

a_

(

2

—ai) (g - bF
2 2

(07 (0% (07 (0%
by — b} G =G

2 2

«

(e}
Qo

2

af + as
2
— A=0

as

= 0 would mean

« o
ay + ay

2

51
=0
)

(el
Q

9. Scalar multiplication by non-negative real scalars satisfies:

(a) MA+ B) = A+ \B fo

(6%
ap

rA>0

+a§“+b‘f‘+b§

MA+B)a = A {

2

2

- )\{a?
+{|Ar

2

—l—ag‘_l_bf‘—;—bg‘}

ajO&
+(2

ay —ay b —
(5

_ {)\a?—l—ag

+ (1

= A
2

+A

a?+a§‘+ (|)\|a§‘—a

+A
2
ay — agy

2

by + b
e (

= [M], + [ABla
(b) A+ p)A=X A+ pAfor \,up>0

2

+ A

2

A=
2

2
b‘f+bg}

«

bg — bo

2

1

—ay | by —bY
-1,1

S

by — b?)
)
)L

[_171]

Ol = 0+ { S (
= (i 2+(
_ /\a?+ag‘ af +ag
2 2
a® — q a
)\ 2 1 2
# (S
= 12 AN=2—1 ) [-1,1
o (W)
af + a3 ay —a
e 2+(Iu| e
= [AA]Q_F[IMA]Q
() (M)A = A(pA) for A, >0
Ol = oS (2
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Oc+ e} a o]
— )\{M¥+<Ma2 2a1>[—1,1]} as A >0

= Ao

—

C' (sub-distributive)
+ a$ ag‘—a?[_l 1]} {bff‘+b‘§“+c?~l—c§
2 ’ '

2 2
by —bF G —cF
-1,1

_aftay (b?+bg%_q*+cg)

2 2 2
ag —af [by +b5  cf + 5
+{ 2 2 + 2
af + a5

by —bf g —cf
2 ( > T2

ay —af (b5 —0F c§ —cf
-1.1
(S b

ad +ay b + b5 af +ag cf + 5

- 2 2 2 2
ag —af [by + b3 agy —af [ + 5
2 2 2 2
af +a$ | by — by af +a3|cy —cf
2 2 2 2
ag —ay by — b af —afc§ —cf
—-1.1
+ 2 2 2 2 }[ 1]
_af tag b + by ag —af [by + b3 af +a$ | by — by
N 2 2 2 2 2 2
agy —af b§ — b¢
—-1,1
af + a§ cff + ¢ as —af |cf +c5 af + a5 | cg —cf
2 2 2 2 2 2
ay —ay g —cf
—-1,1
= [Aé]a"i‘[;lé]a

[(A—I—B)—C’]a _ {a1+a2+bl+b2+(a2;a1_{_bz;bl)[_l’”}

cf + ¢y c§ —cf
- -1,1

__(ﬂ+ﬁ+w+®>_ﬁ+@

2 2 2

ay —af by — by c§ — cf
—1,1
AT ) At
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_ a?+ag+(b?+bg_c?+cg>

2 2 2
g—ap | (B-b G-
—1,1
A (e
= [A+ (B0

2 2 2

by +bg (b3 — b
— —-1,1
{EE8 4 ()

(S tag BBy b4l
2 2 2

ag —ad b — b\ by — b
—1.1
+{( LU )+ AR

a + ag ay — af
- el oy

KA+®—Bh::{%+%+ﬁfw2+cﬁ_%+%;“>p¢u}

2
# Al
A<Cand B<D —= A4+ B=<C+D (inclusion monotonicity)
lij(i::>7mJA)<7mxé)orme~):7m40)amiSJA)§£L«%
Similarly,

B:ﬁD:zé7mJB)<7me)orPmAB)ZmeD)amiﬁxB)géhﬂx]

Case i n}a( :) < My, :) and ma~(B) < ma~(l~)) 3 o
Ma(A+ B) = ma(A) + ma(B) < ma(C) + ma(D) = ma(C + D)
= A+B=<C+D

Case iii: [ma(A) = mqo(C) and S,(A) < Sa(é)] and m(B) < ma(D)
Similar to Case ii

Case iv: [ma(fl) =my(C) and S,(A) < Sa(C’)} and [ma(B) = my(D) and

AT L (~ )+ma~(é):mq(~)+mg<[)):n}a( :"D)
= A+B=C+D
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3 Embedding To extend the concepts of coherent prevision and probability in
a fuzzy ambit, it is necessary to obtain a structure of vector space based on fuzzy
numbers. But, whatever definition of sum is utilized, the sum of two fuzzy numbers
has left and right spreads greater than the spreads of the individual fuzzy numbers.
Then we cannot have the additive inverse of a non degenerate fuzzy number and fuzzy
numbers are neither a group nor a vector space.

In this section we prove that we can overcome this obstacle by introducing a
suitable equivalence relation ~ on the set SF of fuzzy numbers and by considering
the quotient set SF/ ~ and the induced structures. In fact, in this case we obtain a
vector space.

Theorem 3.1. /5]

A. Let M be a commutative semigroup in which the law of cancellation holds. That
is, For A,B,C € M, if
1. ( A+ B)+C=A+(B+C)
2. A+ B=B+ A
then M can be embedded in a group N. Furthermore N can be chosen so as to be

mainimal in the following sense: If G is any group in which M is embedded, then
N is isomorphic to a subgroup of G containing M.

B. If a multiplication by non-negative real scalars satisfying:

4. MA+B) =) A+ \B

5 (M +X)A=XMA+ XA
6. M(A)A = M\ AA

7. 1A=A

is defined on M, then a multiplication be real scalars can be defined on N so as to
make N a vector space and so that for A > 0 and A € M the product NA coincides
with the one given on M.

Theorem 2.1 shows that the collection of symmetric fuzzy numbers SF satisfy
conditions 1 to 7 of theorem 3.1. Hence SF can be embedded into SFN which will
be a group and a vector space. According to the proof of theorem 3.1 in [5], the
class SFN consists of equivalence classes of pairs. (A, B) of elements of SF. The
equivalence relation, ~ is defined by (A B)~ (C,D)ifand only if A+ D=B+C
ie. mo(A+ D) = ma(B +C) and So(A + D) = S,(B + C). The equivalence class
containing the pair (A, B) is denoted by [A, B].

Define addition on SFN as

[A,B]+[C,D|=[A+C,B+ D]
and scalar multiplication as

5 = [cA cB] ifceR,
4, B] _{ [—cB, —cA] otherwise
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and the order relation may be defined on SFA as [A, B] < [C,D]if A+ D<B+C
holds.

The zero element in SFN will be [0,0] and the inverse of [A, B] will be [B, A].

The element A € SF will be identified with the class [4,0] € SFN, where 0 is the
zero element in SF.

4 Conclusion In this paper, a special class of fuzzy numbers is considered, the
symmetric fuzzy numbers whose shape is symmetric with respect to a vertical line.
We introduced the necessary arithmetic operations on these numbers and also verified
that they belong to the same class. When studying the structure of the class, we
see that it forms a commutative semi-group with the cancellation property. Also
it satisfies certain other properties that are required in the Radstorm embedding
theorem. Hence using Radstorm embedding theorem, the class of symmetric fuzzy
numbers are embedded into a class of equivalent pairs of symmetric fuzzy numbers
which form a group and a vector space.
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