A VANISHING THEOREM OF ADDITIVE HIGHER CHOW GROUPS

TOSHIRO HIRANOUCHI

ABSTRACT. We show that the additive higher Chow group of the form $\operatorname{TCH}^{\dim(X)+q}(X,q;m)$ becomes 0 for some scheme X over a perfect field of positive characteristic and for $q \ge 2$. This is an analogy of Akhtar's theorem on the higher Chow groups: $\operatorname{CH}^{\dim(X)+q}(X,q) = 0$ for $q \ge 2$.

1 Introduction As a continuation¹ of [5], we study an analogy between

$$\operatorname{CH}^{a}(X, b) \longleftrightarrow \operatorname{TCH}^{a}(X, b; m).$$

Here, $CH^a(X, b)$ is the higher Chow group of an appropriate scheme X over a field k and $TCH^a(X, b; m)$ is the additive higher Chow group of X (see Sect. 2 for the definitions). An objective of this note is to show the following theorem:

Theorem 1.1 (Thm. 3.5). Let X be a projective smooth variety over a perfect field k with positive characteristic. Then, for $q \ge 2$,

$$\mathrm{TCH}^{d+q}(X,q;m) = 0,$$

where $d = \dim(X)$ is the dimension of X.

This is an additive version of Akhtar's theorem ([1], Cor. 7.1) on the higher Chow group: For $q \ge 2$,

$$\operatorname{CH}^{d+q}(X,q) = 0,$$

when X is a smooth quasi-projective variety of $d = \dim(X)$ over a finite field.

Our motivation is to define an additive variant of Somekawa type K-groups. Recall that a Mackey functor over a field k is a contravariant functor from the category of étale schemes over k to that of abelian groups equipped with a covariant structure for finite morphisms satisfying some conditions (for the precise definition, see Def. 3.1). The higher Chow group $CH^a(X, b)$ defines a Mackey functor

$$\mathscr{C}\mathrm{H}^{a}(X,b): k'/k \mapsto \mathrm{CH}^{a}(X_{k'},b),$$

where k' is a finite field extension of k and $X_{k'} = X \otimes_k k'$. For some schemes X, X' over k with $d = \dim(X)$ and $d' = \dim(X')$, the Milnor type K-group

$$K(k; \mathscr{C}\mathrm{H}^{d+a}(X, a), \mathscr{C}\mathrm{H}^{d'+a'}(X', a'))$$

introduced by Raskind and Spiess ([12], Def. 2.1.1, see also Rem. 2.4.2) is defined by the quotient

(1)
$$\left(\bigoplus_{k'/k: \text{ finite}} \mathscr{C}\mathrm{H}^{d+a}(X,a)(k') \otimes_{\mathbb{Z}} \mathscr{C}\mathrm{H}^{d'+a'}(X',a')(k')\right) \middle/ (\mathbf{PF}) \& (\mathbf{Rec}).$$

where "(**PF**) & (**Rec**)" stands for the subgroup generated by elements of the following form: Put $\mathscr{M} := \mathscr{C}\mathrm{H}^{d+a}(X, a)$ and $\mathscr{M}' := \mathscr{C}\mathrm{H}^{d'+a'}(X', a')$.

²⁰¹⁰ Mathematics Subject Classification. 19D45, 14C25.

Key words and phrases. additive higher Chow groups, Milnor K-groups.

¹ This short note is taken from the preprint [4], Sect. 5 which has been deleted before publication ([5]).

(**PF**) Let $k \subset k_1 \subset k_2$ be finite field extensions and $j = j_{k_2/k_1} : \operatorname{Spec}(k_2) \to \operatorname{Spec}(k_1)$ the canonical map. The elements are of the form

$$j^*(x) \otimes x' - x \otimes j_*(x')$$
 for $x \in \mathcal{M}(k_2)$ and $x' \in \mathcal{M}'(k_1)$, and $x \otimes j^*(x') - j_*(x) \otimes x'$ for $x \in \mathcal{M}(k_1)$ and $x' \in \mathcal{M}'(k_2)$.

(**Rec**) Let F be a function field in one variable over k and $f \in F^{\times}, g \in \mathcal{M}(F), g' \in \mathcal{M}'(F)$. The required elements are of the form

$$\sum_{v} \partial_v (f \otimes g \otimes g'),$$

where the sum is taken over all places v of F/k, and

$$\partial_v: F^{\times} \otimes_{\mathbb{Z}} \mathscr{M}(F) \otimes_{\mathbb{Z}} \mathscr{M}'(F) \to \mathscr{M}(k(v)) \otimes_{\mathbb{Z}} \mathscr{M}'(k(v))$$

is the *local symbol*. This is given by using the connecting map in the localization sequence of higher Chow groups².

Using this, it is known the following expressions:

• $K(k; \mathscr{C}\mathrm{H}^{1}(k, 1), \mathscr{C}\mathrm{H}^{1}(k, 1)) \simeq K(k; \mathbb{G}_{\mathrm{m}}, \mathbb{G}_{\mathrm{m}})$, where the right side is Somekawa's K-group associated to the multiplicative groups \mathbb{G}_{m} [14], and

$$\simeq K(k; \mathscr{C}\mathrm{H}^{d+a}(X, a), \mathscr{C}\mathrm{H}^{d'+a'}(X', a')) \simeq \mathrm{C}\mathrm{H}^{d+d'+a+a'}(X \times X', a+a') \ (cf. \text{ Thm. 3.3}).$$

In our previous work [4], we introduced an additive variant of Somekawa's K-group of the form

$$K(k; \mathbb{W}_m, \mathbb{G}_m),$$

where \mathbb{W}_m is the Witt group scheme of lenth $m \in \mathbb{Z}_{>0}$. We *expect* to define the group of the form

$$K(k; \mathscr{T}\mathrm{CH}^{d+a}(X, a; m), \mathscr{C}\mathrm{H}^{d'+a'}(X', a'))$$

which gives

$$\circ K(k; \mathscr{T}\mathrm{CH}^{1}(k, 1; m), \mathscr{C}\mathrm{H}^{1}(k, 1)) \simeq K(k; \mathbb{W}_{m}, \mathbb{G}_{m}), \text{ and}$$

$$\circ K(k; \mathscr{T}\mathrm{CH}^{d+a}(X, a; m), \mathscr{C}\mathrm{H}^{d'+a'}(X', a') \simeq \mathrm{T}\mathrm{CH}^{d+d'+a+a'}(X \times X', a+a'; m).$$

However, the localization property to define the condition corresponding to (**Rec**) above is not known on the additive higher Chow groups (due to lack of homotopy invariance). Instead of Somekawa type K-group, we consider the Mackey product

$$\left(\mathscr{T}\mathrm{CH}^{d+a}(X,a;m) \overset{M}{\otimes} \mathscr{C}\mathrm{H}^{d'+a'}(X',a')\right)(k)$$

which is defined using the "projection formula" only as follows:

$$\left(\bigoplus_{k'/k} \mathscr{T}\mathrm{CH}^{d+a}(X,a;m)(k') \otimes_{\mathbb{Z}} \mathscr{C}\mathrm{H}^{d'+a'}(X',a')(k')\right) \middle/ (\mathbf{PF}),$$

where (\mathbf{PF}) is the subgroup defined similarly as in (1) (for the precise definition, see Def. 3.2). In this note, we present the following surjective homomorphism on 0-cycles (Thm. 3.4):

$$\left(\mathscr{T}\mathrm{CH}^{d+a}(X,a;m) \overset{M}{\otimes} \mathscr{C}\mathrm{H}^{d'+a'}(X',a')\right)(k) \twoheadrightarrow \mathrm{T}\mathrm{CH}^{d+d'+a+a'}(X \times X',a+a';m).$$

It is easy to show that the Mackey product on the left hand side becomes trivial when k has positive characteristic so that we obtain the main theorem noted above (Thm. 3.5).

² Although the precise definition of **(Rec)** is not given in [12], but we do not mention about the local symbol more on this. About this topic, see [6] and [1].

Notation In this note, a variety over a field k we mean an integral and separated scheme of finite type over Spec(k). For a field k, we use

• $\operatorname{char}(k)$: the characteristic of k.

For varieties X and Y over a field k, we denote by

- $\dim(X)$: the dimension of X,
- $X_{k'} := X \otimes_k k' := X \times_{\text{Spec}(k)} \text{Spec}(k')$: the base change of X for an extension field k'/k, and
- $X \times Y := X \times_{\operatorname{Spec}(k)} Y.$

Acknowledgments This work was supported by KAKENHI 17K05174.

2 (Additive) higher Chow groups of schemes In this section, we recall the definitions of (additive) higher Chow groups following [2],[10], and [3]. Throughout this section, we use the following notation:

- k: a field as a base field,
- $\square^q := (\mathbb{P}^1 \setminus \{1\})^q$ and we use the coordinates (y_1, \ldots, y_q) on \square^q , and
- X: a scheme of finite type over k.

Higher Chow groups The subscheme of \Box^q defined by equations $y_{i_1} = \varepsilon_1, \ldots, y_{i_s} = \varepsilon_s$ for $\varepsilon_j \in \{0, \infty\}$ is called a **face** of \Box^q . For $\varepsilon \in \{0, \infty\}$ and $i = 1, \ldots, q-1$, let $\iota_{q,i,\varepsilon} : \Box^{q-1} \to \Box^q$ be the inclusion defined by $(y_1, \ldots, y_{q-1}) \mapsto (y_1, \ldots, y_{i-1}, \varepsilon, y_i, \ldots, y_{q-1})$.

Definition 2.1. Let $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{\geq 0}$.

(i) We denote by $\underline{z}_p(X,q)$ the free abelian group on integral closed subschemes Z of $X \times \square^q$ of dimension p + q that intersect all faces of \square^q properly.

(ii) For each $1 \leq i \leq q$ and $\varepsilon \in \{0, \infty\}$, let $\partial_i^{\varepsilon} := \operatorname{Id}_X \times \iota_{q,i,\varepsilon}^*$, where $\operatorname{Id}_X : X \to X$ is the identity morphism. The abelian groups $\underline{z}_p(X, \bullet) = \{\underline{z}_p(X, q)\}_{q \geq 0}$ form a complex with boundary map

$$\sum_{i=1}^{q} (-1)^{i} (\partial_{i}^{\infty} - \partial_{i}^{0}) : \underline{z}_{p}(X, q) \to \underline{z}_{p}(X, q-1).$$

The higher Chow complex $z_p(X, \bullet)$ is $\underline{z}_p(X, \bullet)$ modulo the complex consists of the degenerate cycles, that is, the cycles on $X \times \Box^q$ pulled back from cycles on $X \times \Box^{q-1}$ by a projection $X \times \Box^q \to X \times \Box^{q-1}$ of the form $(x, y_1, \ldots, y_q) \mapsto (x, y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_q)$ for some index j. The homology group

$$CH_p(X,q) := H_q(\mathbf{z}_p(X,\bullet))$$

is called the **higher Chow group** of X.

If the scheme X is equidimensional of $d = \dim(X)$ over k, we write

$$z^{p}(X,q) := z_{d-p}(X,q), \text{ and } CH^{p}(X,q) := H_{q}(z^{p}(X,\bullet)) = CH_{d-p}(X,q).$$

The higher Chow groups have functorial properties induced from the proper push-forward, and the flat pull-back of cycles. In particular, for a finite field extension k'/k, the projection $j = j_{k'/k} : X_{k'} = X \otimes_k k' \to X$ induces

(2)
$$N_{k'/k} := j_* : \operatorname{CH}^p(X_{k'}, q) \to \operatorname{CH}^p(X, q).$$

These functorial properties enable us to give the structure of $CH^p(X,q)$ a Mackey functor as follows:

(3)
$$\mathscr{C}\mathrm{H}^p(X,q): k' \mapsto \mathrm{C}\mathrm{H}^p(X_{k'},q),$$

where $X_{k'} = X \otimes_k k'$, for a finite field extension k' of k. For two schemes X, Y of finite type over k, one can construct

$$\boxtimes : \mathbf{z}_p(X, \bullet) \otimes_{\mathbb{Z}} \mathbf{z}_r(Y, \bullet) \to \mathbf{z}_{p+r}(X \times Y, \bullet).$$

On integral cycles, it is defined by $Z \boxtimes W := \tau_*(Z \times W)$, where $\tau : X \times \square^p \times Y \times \square^r \to X \times Y \times \square^{p+r}$ is the exchange of factors (*cf.* [8], Sect. 1.3). On homology groups, \boxtimes induces the **external product**

(4)
$$\boxtimes : \operatorname{CH}_p(X, q) \otimes_{\mathbb{Z}} \operatorname{CH}_r(Y, s) \to \operatorname{CH}_{p+r}(X \times Y, q+s).$$

If X is smooth over k, then pulling back of \boxtimes along the diagonal $\Delta : X \to X \times X$, we have the **intersection product**

(5)
$$\cap : \operatorname{CH}^p(X,q) \otimes_{\mathbb{Z}} \operatorname{CH}^r(X,s) \to \operatorname{CH}^{p+r}(X,q+s).$$

We list some relevant calculations of higher Chow groups: There is a natural isomorphism $\operatorname{CH}^p(X,0) \simeq \operatorname{CH}^p(X)$, where the latter is the ordinary Chow group. In the case of p = q, we have the following theorem:

Theorem 2.2 ([11], [15]). There is a canonical isomorphism

$$\phi: \mathrm{CH}^q(k,q) \xrightarrow{\simeq} K^M_q(k).$$

where the latter group is the Milnor K-group of the field k.

In particular, in the case of q = 1, we have

$$\operatorname{CH}^{1}(k,1) \simeq k^{\times} = \mathbb{G}_{\mathrm{m}}(k),$$

where \mathbb{G}_{m} is the multiplicative group scheme. This extends to an isomorphism

(6)
$$\mathscr{C}\mathrm{H}^1(k,1) \simeq \mathbb{G}_\mathrm{m}$$

of Mackey functors. Here, we refer the construction of the map ϕ in Thm. 2.2. By the very definition, $CH^q(k,q)$ is generated by classes [P] represented by a closed point P: Spec $k(P) \to \Box^q$. It is determined by the maps $y_i(P) : \operatorname{Spec} k(P) \to \Box^q \xrightarrow{y_i} \Box$ for $i = 1, \ldots, q$ and they give $y_i(P) \in k(P)^{\times}$ for each i. The map ϕ is defined by

$$\phi([P]) := N_{k(P)/k} \{ y_1(P), \dots, y_q(P) \},\$$

where $N_{k(P)/k} : K_q^M(k(P)) \to K_q^M(k)$ is the norm map of the Milnor K-groups and $\{y_1(P), \ldots, y_q(P)\}$ is the element in $K_q^M(k(P))$ represented by $y_1(P) \otimes \cdots \otimes y_q(P) \in k(P)^{\times} \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} k(P)^{\times}$.

Additive higher Chow groups The additive higher Chow groups are defined similarly to the higher Chow groups using B_q below instead of cubes \Box^q . Let

- $B_q := \mathbb{A}^1 \times \square^{q-1}$, and
- $\overline{B}_q := \mathbb{A}^1 \times (\mathbb{P}^1)^{q-1} \supset B_q$. We use the coordinates $(t, y_1, \ldots, y_{q-1})$ on \overline{B}_q .

The subscheme of B_q defined by equations $y_{i_1} = \varepsilon_1, \ldots, y_{i_s} = \varepsilon_s$ for $\varepsilon_j \in \{0, \infty\}$ is called a **face** of B_q . For $\varepsilon \in \{0, \infty\}$ and $i = 1, \ldots, q - 1$, let $\iota_{q,i,\varepsilon} : B_{q-1} \to B_q$ be the inclusion defined by $(t, y_1, \ldots, y_{q-2}) \mapsto (t, y_1, \ldots, y_{i-1}, \varepsilon, y_i, \ldots, y_{q-2})$. On \overline{B}_q , let $F_{q,i}^1$ be the Cartier divisor defined by $y_i = 1$ and $F_{q,0}$ the Cartier divisor defined by t = 0.

Definition 2.3. Let $p \in \mathbb{Z}$, and $q, m \in \mathbb{Z}_{>0}$.

(i) Define $\underline{\operatorname{Tz}}_p(X, 1; m)$ to be the free abelian group on integral closed subschemes Z of $X \times \mathbb{A}^1$ of dimension p satisfying $Z \cap (X \times \{0\}) = \emptyset$ and the modulus condition defined below. For the integer q > 1, $\underline{\operatorname{Tz}}_p(X, q; m)$ is the free abelian group on integral closed subschemes Z of $X \times B_q$ of dimension p + q - 1 satisfying the following two conditions: (Good position) For each face F of B_q , Z intersects $X \times F$ properly.

(GOOD position) for each face T of D_q , Z intersects $X \times T$ property.

(Modulus condition) Let $\pi : \overline{Z}^N \to Z \subset X \times \overline{B}_q$ be the normalization of the closure \overline{Z} of Z in $X \times \overline{B}_q$. Then

$$(m+1)\pi^*(X \times F_{q,0}) \leq \pi^*(X \times F_q^1)$$

as Weil divisors, where $F_q^1 := \sum_{i=1}^{q-1} F_{q,i}$.

(Here, we adapt the modulus condition M_{sum} in Def. 2.1 in [9]. For the other similar conditions on modulus and their relations, see [9], Sect. 2).

(ii) For each $1 \leq i \leq q-1$ and $\varepsilon \in \{0, \infty\}$, let $\partial_i^{\varepsilon} := \operatorname{Id}_X \times \iota_{q,i,\varepsilon}^*$. The boundary map of $\underline{\operatorname{Tz}}_p(X, \bullet; m)$ is given by

$$\sum_{i=1}^{q-1} (-1)^i (\partial_i^{\infty} - \partial_i^0) : \underline{\mathrm{Tz}}_p(X, q; m) \to \underline{\mathrm{Tz}}_p(X, q-1; m).$$

The additive cycle complex $\text{Tz}_p(X, \bullet; m)$ is the nondegenerate complex associated to $\underline{\text{Tz}}_p(X, \bullet; m)$. Its homology group

$$\operatorname{TCH}_p(X,q;m) := H_q(\operatorname{Tz}_p(X,\bullet;m))$$

is called the **additive higher Chow group** of X with modulus m.

If the scheme X is equidimensional of $d = \dim(X)$ over k, we write

$$\operatorname{Tz}^{p}(X,q;m) := \operatorname{Tz}_{d+1-p}(X,q;m), \text{ and } \operatorname{TCH}^{p}(X,q;m) := H_{q}(\operatorname{Tz}^{p}(X,\bullet;m)).$$

The additive higher Chow groups have also functorial properties as projective push-forward, and the flat pull-back. For a finite field extension k'/k with the projection $j = j_{k'/k} : X_{k'} := X \otimes_k k' \to X$, we have

(7)
$$\operatorname{Tr}_{k'/k} := j_* : \operatorname{TCH}^p(X_{k'}, q; m) \to \operatorname{TCH}^p(X, q; m)$$

The assignment

(8)
$$\mathscr{T}CH^{p}(X,q;m): k' \mapsto TCH^{p}(X \otimes_{k} k',q;m)$$

gives a structure of Mackey functors.

For two equidimensional schemes X, Y of finite type over k, one can construct the product

$$\boxtimes : \mathbf{z}_p(X, \bullet) \otimes_{\mathbb{Z}} \mathrm{Tz}_r(Y, \bullet; m) \to \mathrm{Tz}_{p+r}(X \times Y, \bullet; m).$$

On integral cycles it is defined by $Z \boxtimes W := \tau_*(Z \times W)$ where $\tau : X \times \square^p \times Y \times B_r \to X \times Y \times B_{p+r}$ is the exchange of factors (*cf.* [8], Sect. 4.1). On homology groups, \boxtimes induces the **external product**

$$\boxtimes : \operatorname{CH}_p(X, q) \otimes_{\mathbb{Z}} \operatorname{TCH}_r(Y, s; m) \to \operatorname{TCH}_{p+r}(X \times Y, q+s; m).$$

If we assume that X is a *smooth and projective* variety over k, we obtain the **intersection product**

(9)
$$\cap : \operatorname{CH}_p(X, q) \otimes_{\mathbb{Z}} \operatorname{TCH}_r(X, s; m) \to \operatorname{TCH}_{p+r}(X, q+s; m).$$

Essentially, this product is defined by the pullback of \boxtimes along the diagonal map $\Delta : X \to X \times X$ (see [8], Thm. 4.10 for the precise construction). The intersection product is natural with flat pull-back, and satisfying the projection formula:

(10)
$$f_*(f^*(x) \cap y) = x \cap f_*(y)$$

for a morphism $f: X \to Y$ of smooth projective varieties over k. If f is flat, we also have

(11)
$$f_*(x \cap f^*(y)) = f_*(x) \cap y.$$

Putting $TCH^{p}(k,q;m) := TCH^{p}(Spec(k),q;m)$ we also have the following theorem:

Theorem 2.4 ([13], Thm. 3.20). For a field k with characteristic $\neq 2$, there is a canonical isomorphism

$$\phi : \mathrm{TCH}^q(k,q;m) \xrightarrow{\simeq} \mathbb{W}_m \Omega_k^{q-1},$$

where the latter group is the generalized de Rham-Witt group.

In particular, in the case of q = 1, we have

(12)
$$\operatorname{TCH}^{1}(k,1;m) \simeq \mathbb{W}_{m}(k)$$
, and hence $\mathscr{T}\mathrm{CH}^{1}(k,1;m) \simeq \mathbb{W}_{m}$,

where \mathbb{W}_m is the Witt group scheme. Recall the construction of the map ϕ in Thm. 2.4. The additive higher Chow group $\operatorname{TCH}^q(k,q;m)$ is generated by classes [P] represented by a closed point $P : \operatorname{Spec} k(P) \to B_q$. It is determined by the maps $t(P) : \operatorname{Spec} k(P) \to B_q \xrightarrow{t} \mathbb{A}^1$ and $y_i(P) : \operatorname{Spec} k(P) \to \Box^q \xrightarrow{y_i} \Box$. They give $t(P) \in k(P), y_i(P) \in k(P)^{\times}$. The map ϕ is defined by

$$\phi([P]) := \operatorname{Tr}_{k(P)/k}\left([t(P)^{-1}]\operatorname{dlog}[y_1(P)]\cdots\operatorname{dlog}[y_{q-1}(P)]\right),$$

where [-] is the Teichmüller lift. Note that the modulus condition assures $t(P) \neq 0$.

3 Mackey product and additive higher Chow groups In this section, we assume

• k: a *perfect* field.

A VANISHING THEOREM OF ADDITIVE HIGHER CHOW GROUPS

Mackey product We recall the definition of the Mackey functor.

Definition 3.1 (*cf.* [12], Sect. 3). A **Mackey functor** \mathscr{A} (over k) is a contravariant functor from the category of étale schemes over k to the category of abelian groups equipped with a covariant structure for finite morphisms such that $\mathscr{A}(X_1 \sqcup X_2) = \mathscr{A}(X_1) \oplus \mathscr{A}(X_2)$ and if

is a Cartesian diagram, then the induced diagram

$$\begin{array}{c} \mathscr{A}(X') \xrightarrow{g'_{*}} \mathscr{A}(X) \\ f'^{*} & \uparrow & \uparrow f^{*} \\ \mathscr{A}(Y') \xrightarrow{g_{*}} \mathscr{A}(Y) \end{array}$$

commutes.

For a Mackey functor \mathscr{A} , we denote by $\mathscr{A}(k')$ its value $\mathscr{A}(\operatorname{Spec}(k'))$ for a field extension k' of k.

Definition 3.2 (cf. [7]). For Mackey functors $\mathscr{A}_1, \ldots, \mathscr{A}_q$, their **Mackey product** $\mathscr{A}_1 \overset{M}{\otimes} \cdots \overset{M}{\otimes} \mathscr{A}_q$ is defined as follows: For any finite field extension k'/k,

(13)
$$\left(\mathscr{A}_1 \overset{M}{\otimes} \cdots \overset{M}{\otimes} \mathscr{A}_q\right)(k') := \left(\bigoplus_{k''/k': \text{ finite}} \mathscr{A}_1(k'') \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} \mathscr{A}_q(k'')\right)/R,$$

where R is the subgroup generated by elements of the following form:

(**PF**) For finite field extensions $k' \subset k'_1 \subset k'_2$, and if $x_{i_0} \in \mathscr{A}_{i_0}(k'_2)$ and $x_i \in \mathscr{A}_i(k'_1)$ for all $i \neq i_0$, then

$$j^*(x_1) \otimes \cdots \otimes x_{i_0} \otimes \cdots \otimes j^*(x_q) - x_1 \otimes \cdots \otimes j_*(x_{i_0}) \otimes \cdots \otimes x_q$$

where $j = j_{k'_2/k'_1} : \operatorname{Spec}(k'_2) \to \operatorname{Spec}(k'_1)$ is the canonical map.

For the Mackey product $\mathscr{A}_1 \overset{M}{\otimes} \cdots \overset{M}{\otimes} \mathscr{A}_q$, we write $\{x_1, \ldots, x_q\}_{k'/k}$ for the image of $x_1 \otimes \cdots \otimes x_q \in \mathscr{A}_1(k') \otimes \cdots \otimes \mathscr{A}_q(k')$ in the product $\left(\mathscr{A}_1 \overset{M}{\otimes} \cdots \overset{M}{\otimes} \mathscr{A}_q\right)(k)$. For any field extension k'/k, the canonical map $j = j_{k'/k}$: Spec $(k') \to$ Spec(k) induces the pull-back

$$\operatorname{Res}_{k'/k} := j^* : \left(\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_q\right)(k) \longrightarrow \left(\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_q\right)(k').$$

If the extension k'/k is finite, then the push-forward

(14)
$$N_{k'/k} := j_* : \left(\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_q\right)(k') \longrightarrow \left(\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_q\right)(k)$$

is given by $N_{k'/k}(\{x_1, \ldots, x_q\}_{k''/k'}) = \{x_1, \ldots, x_q\}_{k''/k}$.

Main theorem In the rest of this section, we use

- X, X': smooth projective varieties over k, and
- $d = \dim(X), d' = \dim(X').$

Theorem 3.3 ([12], Thm. 2.2, (2.4.4)). For $a, a' \in \mathbb{Z}_{\geq 0}$, we have

$$\psi: K(k; \mathscr{C}\mathrm{H}^{d+a}(X, a), \mathscr{C}\mathrm{H}^{d'+a'}(X', a')) \xrightarrow{\simeq} \mathrm{C}\mathrm{H}^{d+d'+a+a'}(X \times X', a+a').$$

Recall the definition of ψ . We denote by $\{x, x'\}_{k'/k}$ the image of $x \otimes x' \in CH^{d+a}(X_{k'}, a) \otimes_{\mathbb{Z}} CH^{d'+a'}(X_{k'}, a)$ in $K(k; \mathscr{C}H^{d+a}(X_{k'}, a), \mathscr{C}H^{d'+a'}(X_{k'}, a))$ (cf. (1)). Define

$$\psi(\{x, x'\}_{k'/k}) := N_{k'/k}(p^*(x) \cap (p')^*(x')),$$

where \cap is the intersection product (5), $N_{k'/k} = j_*$ is the push-forward along $X_{k'} \to X$ (cf. (2)), and $p: (X \times X')_{k'} \to X_{k'}$ and $p': (X \times X')_{k'} \to (X')_{k'}$ are the projections.

As we explained in Introduction, for $a, m \in \mathbb{Z}_{>0}, a' \in \mathbb{Z}_{\geq 0}$, we consider the Mackey product (*cf.* Def. 3.2)

$$\left(\mathscr{T}C\mathrm{H}^{d+a}(X,a;m) \overset{M}{\otimes} \mathscr{C}\mathrm{H}^{d'+a'}(X',a';m)\right)(k)$$

Define a homomorphism

$$\psi: \left(\mathscr{T}\mathrm{CH}^{d+a}(X,a;m) \overset{M}{\otimes} \mathscr{C}\mathrm{H}^{d'+a'}(X',a';m)\right)(k) \to \mathrm{T}\mathrm{CH}^{d+d'+a+a'}(X \times X',a+a';m)$$

by the intersection product (9) (cf. [12], Proof of Thm. 2.2) as

$$\psi(\{x, x'\}_{k'/k}) := \operatorname{Tr}_{k'/k}((p')^*(x') \cap p^*(x)),$$

for any finite extension field k'/k, where $\operatorname{Tr}_{k'/k} = j_*$ is the push-forward along $j : \operatorname{Spec}(k') \to \operatorname{Spec}(k)$ and $p : (X \times X')_{k'} \to X_{k'}$ and $p' : (X \times X')_{k'} \to (X')_{k'}$ are the projections. From the projection formula of the intersection product ((10) and (11)), the map ψ is well-defined.

Theorem 3.4. For $a, m \in \mathbb{Z}_{>0}, a' \in \mathbb{Z}_{\geq 0}$, the map

$$\psi: \left(\mathscr{T}\mathrm{CH}^{d+a}(X,a;m) \overset{M}{\otimes} \mathscr{C}\mathrm{H}^{d'+a'}(X',a')\right)(k) \to \mathrm{T}\mathrm{CH}^{d+d'+a+a'}(X \times X',a+a';m)$$

 $is \ surjective.$

Proof. Put

 $\circ \ \mathscr{X} := X \times X',$

 $\circ \alpha = a + a'$, and

 $\circ \ \delta = d + d'.$

By the very definition (Def. 2.3), the group $\operatorname{TCH}^{\delta+\alpha}(\mathscr{X},\alpha;m)$ consists of 0-cycles on $\mathscr{X} \times B_{\alpha}$. Take a closed point $P : \operatorname{Spec}(k(P)) \to \mathscr{X} \times B_{\alpha}$ as a generator and it is enough to show the cycle [P] associated to P is in the image of ψ . By the definition of ψ , the trace map on the additive Chow groups and the norm map on the Mackey products are compatible as in the following commutative diagram:

A VANISHING THEOREM OF ADDITIVE HIGHER CHOW GROUPS

Thus, to show the assertion that [P] is in the image of ψ we may assume that P is a krational point, that is, k(P) = k. The point P is determined by the maps $P_X : \operatorname{Spec}(k) \to X \times B_a$ and $P_{X'} : \operatorname{Spec}(k) \to X' \times \square^{a'}$ satisfying $\tau_*(P_X \times P_{X'}) = P$, where $\tau : (X \times B_a) \times (X' \times \square^{a'}) \to \mathscr{X} \times B_\alpha$ is the exchange of factors. This gives cycles $[P_X]$ on $\operatorname{TCH}^{d+a}(X, a; m)$ and $[P_{X'}]$ on $\operatorname{CH}^{d'+a'}(X', a')$. Therefore, denoting by $p : \mathscr{X} \to X$ and $p' : \mathscr{X} \to X'$ the projection maps, we have

$$\psi(\{[P_X], [P_{X'}]\}_{k/k}) = (p')^*([P_{X'}]) \cap p^*([P_X]) = [P],$$

where the last equality follows from the very definition of the intersection product. The assertion follows from this. $\hfill \Box$

Theorem 3.5. Let X be a projective smooth variety of dimension d over a perfect field k with char(k) > 0. Then,

$$\operatorname{TCH}^{d+q}(X,q;m) = 0, \quad \text{for } q \ge 2.$$

Proof. There are isomorphisms $\mathscr{C}\mathrm{H}^1(k,1) \simeq \mathbb{G}_{\mathrm{m}}$ (from (6)) and $\mathscr{T}\mathrm{CH}^1(k,1;m) \simeq \mathbb{W}_m$ (from (12)) as Mackey functors. By Theorem 3.3 and Theorem 3.4, we have surjective homomorphisms

$$\left(\mathbb{W}_{m} \overset{M}{\otimes} \overbrace{\mathbb{G}_{m} \overset{M}{\otimes} \cdots \overset{M}{\otimes} \mathbb{G}_{m}}^{q-1} \overset{M}{\otimes} \mathscr{C} \mathrm{H}^{d}(X)\right)(k) \twoheadrightarrow \left(\mathscr{T} \mathrm{CH}^{1}(k, 1; m) \overset{M}{\otimes} \mathscr{C} \mathrm{H}^{d+q-1}(X, q-1)\right)(k) \overset{\psi}{\twoheadrightarrow} \mathrm{T} \mathrm{CH}^{d+q}(X, q; m)$$

for $q \ge 2$. The far left vanishes from the lemma below and the assertion follows.

Lemma 3.6 ([5], Lem. 2.2). Let G be a unipotent smooth and commutative algebraic group over a field F and A a semi-abelian variety over F. If F is a perfect field of char(F) > 0, we have $G \bigotimes^M A = 0$.

References

- [1] R. Akhtar, Milnor K-theory of smooth varieties, K-Theory 32 (2004), no. 3, 269–291. 1, 2
- [2] S. Bloch, Algebraic cycles and the Lie algebra of mixed Tate motives, J. Amer. Math. Soc. 4 (1991), no. 4, 771–791. 3
- [3] S. Bloch and H. Esnault, An additive version of higher Chow groups, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 3, 463–477. 3
- [4] T. Hiranouchi, Somekawa's K-groups and additive higher Chow groups, arXiv:1208.6455v2. 1, 2
- [5] _____, An additive variant of Somekawa's K-groups and Kähler differentials, J. K-Theory 13 (2014), no. 3, 481–516. 1, 9
- [6] F. Ivorra and K. Rülling, K-groups of reciprocity functors, J. Algebraic Geom. 26 (2017), no. 2, 199–278. 2
- B. Kahn, The decomposable part of motivic cohomology and bijectivity of the norm residue homomorphism, Algebraic K-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 79–87.
- [8] A. Krishna and M. Levine, Additive higher Chow groups of schemes, J. Reine Angew. Math. 619 (2008), 75–140. 4, 6

- [9] A. Krishna and J. Park, DGA-structure on additive higher Chow groups, Int. Math. Res. Not. IMRN (2015), no. 1, 1–54. 5
- M. Levine, Bloch's higher Chow groups revisited, Astérisque (1994), no. 226, 10, 235–320, K-theory (Strasbourg, 1992).
- [11] Y. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring, and Milnor's K-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 121–146. 4
- [12] W. Raskind and M. Spiess, Milnor K-groups and zero-cycles on products of curves over p-adic fields, Compositio Math. 121 (2000), 1–33. 1, 2, 7, 8
- [13] K. Rülling, The generalized de Rham-Witt complex over a field is a complex of zero-cycles, J. Algebraic Geom. 16 (2007), no. 1, 109–169. 6
- M. Somekawa, On Milnor K-groups attached to semi-abelian varieties, K-Theory 4 (1990), 105–119. 2
- B. Totaro, Milnor K-theory is the simplest part of algebraic K-theory, K-Theory 6 (1992), no. 2, 177–189. 4

Department of Basic Sciences Graduate School of Engineering Kyushu Institute of Technology 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550 JAPAN email: hira@mns.kyutech.ac.jp