SOME RESULTS ON DIRECT SUMS OF BANACH SPACES - A SURVEY

Mikio KATO, Takuya SOBUKAWA ${ }^{\dagger}$ and Takayuki TAMURA ${ }^{\ddagger}$

Abstract

We shall discuss three notions of direct sums of Banach spaces, $Z-, \psi$-, and A-direct sums, which are in fact all isometric. Weak nearly uniform smoothness, uniform non-squareness and uniform non- ℓ_{1}^{n}-ness etc. will be discussed, especially in the general A-direct sum setting. As applications some examples of Banach spaces will be presented concerning FPP as well as super-reflexivity.

1 Introduction Direct sums of Banach spaces have been often treated in the context of geometry of Banach spaces and the fixed point property (e.g. $[2,3,6,7,8,9,10,11,14$, $15,16,21,22,23,25,26,27,28,29,30,32,33,36,40,41,42,43])$. We shall discuss three notions of direct sums of Banach spaces.

It is known that every absolute normalized norm $\|\cdot\|_{A N}$ on \mathbb{R}^{N} corresponds to a unique convex function ψ on the standard simplex in \mathbb{R}^{N-1} (we shall mention it precisely in Section 2). So we shall write $\|\cdot\|_{\psi}$ for $\|\cdot\|_{A N}$ and refer to as a ψ-norm. Let $\|\cdot\|_{Z}$ and $\|\cdot\|_{A}$ be an absolute and an arbitrary norm on \mathbb{R}^{N} respectively, which we shall call a Z-norm and an A-norm.

A Z-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{Z}$ of Banach spaces X_{1}, \ldots, X_{N} is their direct sum equipped with the norm

$$
\left\|\left(x_{1}, \ldots, x_{N}\right)\right\|_{Z}=\left\|\left(\left\|x_{1}\right\|, \ldots,\left\|x_{N}\right\|\right)\right\|_{Z}, \quad\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \oplus \cdots \oplus X_{N}
$$

where the norm $\|\cdot\|_{Z}$ in the right side is an absolute norm on \mathbb{R}^{N}. A ψ-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ and an A-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ are defined in the same way by means of a ψ-norm $\|\cdot\|_{\psi}$ and an A-norm $\|\cdot\|_{A}$.

In Section 2 the correspondence will be mentioned between the set $A N_{N}$ of all absolute normalized norms on \mathbb{R}^{N} and the collection Ψ_{N} of all convex functions satisfying certain conditions on the standard simplex Δ_{N} in \mathbb{R}^{N-1}. A couple of subclasses $\Psi_{N}^{(1)}$ and $\Psi_{N}^{(\infty)}$ of Ψ_{N} will be discussed, which were introduced in Kato and Tamura $[29,30]$ to discuss weak nearly uniform smoothness and uniform non-squareness for direct sums. These classes can be described in terms of Properties T_{1}^{N} and T_{∞}^{N}, which Dowling and Saejung [10] introduced to discuss uniform non-squareness for Z-direct sums.

In Section 3 it will be seen that any A-direct sum is isometrically isomorphic to a ψ-direct sum with some $\psi \in \Psi_{N}([8])$; therefore the direct sums stated above are all isometrically isomorphic and ψ-direct sums are general enough. In Sections 4, 5, and 6 we shall obtain A-direct sum versions of previous results.

Section 4 will deal with weak nearly uniform smoothness (WNUS-ness in short). Every WNUS space has FPP, the fixed point property (for nonexpansive mappings; [15, 14]). A characterization of WNUS-ness for $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ will be presented by means of the class $\Psi_{N}^{(1)}$.

2010 Mathematics Subject Classification. 52A51, 26A51, 47H10, 46B10, 46B20.
Key words and phrases. absolute norm, convex function, Properties T_{1}^{N} and T_{∞}^{N}, direct sum of Banach spaces, weak nearly uniform smoothness, uniform non-squareness, uniform non- ℓ_{1}^{N}-ness, fixed point property.
${ }^{*},{ }^{\dagger}, \ddagger$ The first and third authors, resp. the second author were supported in part by JSPS KAKENHI (C) Grant number JP26400131, resp. JSPS KAKENHI (B) Grant number JP15H03621.

M. Kato, T. Sobukawa, T. Tamura

In Section 5 we shall discuss uniform non-squareness (UNSQ-ness) which has been playing an important roll in geometry of Banach spaces. The starting point of our discussion is the following result in Kato-Saito-Tamura [22]: A ψ-direct sum $X \oplus_{\psi} Y$ is UNSQ if and only if X and Y are UNSQ and $\psi \neq \psi_{1}, \psi_{\infty}$, where ψ_{1} and ψ_{∞} are the corresponding convex functions to the ℓ_{1} - and ℓ_{∞}-norms, respectively. They [22] asked for a characterization for N Banach spaces. We shall present a sequence of partial results by Dowling-Saejung [10], Betiuk-Pilarska and Prus [2], and Dhompongsa-Kato-Tamura [8]. In [10] the following was shown: Under the assumption $\|\cdot\|_{Z}$ is strictly monotone, $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{Z}$ is UNSQ if and only if X_{1}, \ldots, X_{N} are UNSQ and $\|\cdot\|_{z}$ has Properties T_{1}^{N} and T_{∞}^{N}. In the case $N=3$ this assumption was dropped. More precise results are shown in [8] for ψ-direct sums in terms of $\Psi_{N}^{(1)}$, from which the A-direct sum versions are derived. In [2] it was shown that $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{Z}$ is UNSQ if and only if X_{1}, \ldots, X_{N} and $\left(\mathbb{R}^{N},\|\cdot\|\right)$ are UNSQ, where it remains unknown when $\left(\mathbb{R}^{N},\|\cdot\|\right)$ is UNSQ.

Recently Kato-Tamura [30, in preparation] obtained a characterization of UNSQ-ness for $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ as well as A-direct sum without any additional assumption, which covers all the above-mentioned results and explains why the case $N=3$ is successful in [10].

In Section 6 uniform non- ℓ_{1}^{n}-ness will be discussed. When $n=2$, uniform non- ℓ_{1}^{2}-ness coincides with UNSQ-ness. Every uniformly non- ℓ_{1}^{n} space is uniformly non- ℓ_{1}^{n+1}. The above result for UNSQ-ness of $X \oplus_{\psi} Y([22])$ is extended to uniform non- ℓ_{1}^{n}-ness ([23]). The spaces $X \oplus_{1} Y$ and $X \oplus_{\infty} Y$ cannot be UNSQ, while they can be uniformly non- $\ell_{1}^{n}, n \geq 3$. We shall discuss when they are uniformly non- ℓ_{1}^{n}.

In the last Section 7 applications to FPP will be discussed. As UNSQ spaces have FPP ([16]), it is natural to ask whether every uniformly non- ℓ_{1}^{3}-space has FPP. We shall see a plenty of Banach spaces (direct sums) with FPP which is not UNSQ can be constructed. Super-reflexivity will be treated as well.

In the following X, X_{1}, \ldots, X_{N} will stand for Banach spaces. Let S_{X} and B_{X} denote the unit sphere and the closed unit ball of X. Let \mathbb{R}_{+}^{N} denote the set of all points in \mathbb{R}^{N} with nonegative entries.

2 Absolute norms on \mathbb{R}^{N} and convex functions A norm $\|\cdot\|$ on \mathbb{R}^{N} is called absolute if $\left\|\left(a_{1}, \cdots, a_{N}\right)\right\|=\left\|\left(\left|a_{1}\right|, \cdots,\left|a_{N}\right|\right)\right\|$ for all $\left(a_{1}, \cdots, a_{N}\right) \in \mathbb{R}^{N}$, and normalized if $\|(1,0, \cdots, 0)\|=\cdots=\|(0, \cdots, 0,1)\|=1$. A norm $\|\cdot\|$ on \mathbb{R}^{N} is called monotone provided that, if $\left|a_{j}\right| \leq\left|b_{j}\right|$ for $1 \leq j \leq N,\left\|\left(a_{1}, \ldots, a_{N}\right)\right\| \leq\left\|\left(b_{1}, \ldots, b_{N}\right)\right\|$. $\|\cdot\|$ is called strictly monotone provided it is monotone and, if $\left|a_{j}\right|<\left|b_{j}\right|$ for some $1 \leq j \leq N$, $\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|<\left\|\left(b_{1}, \ldots, b_{N}\right)\right\|$. The following is known.
Lemma 2.1 (Bhatia [4], see also [30]) A norm $\|\cdot\|$ on \mathbb{R}^{N} is absolute if and only if it is monotone.

We shall see that for every absolute normalized norm on \mathbb{R}^{N} there corresponds a unique convex function ψ on a certain convex set in $\mathbb{R}^{N-1}([38,5])$.

Lemma 2.2 Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^{N} and define

$$
\begin{equation*}
\psi(s)=\left\|\left(1-\sum_{i=1}^{N-1} s_{i}, s_{1}, \ldots, s_{N-1}\right)\right\|, \quad s=\left(s_{1}, \cdots, s_{N-1}\right) \in \Delta_{N}, \tag{2.1}
\end{equation*}
$$

where $\Delta_{N}=\left\{s=\left(s_{1}, \cdots, s_{N-1}\right) \in \mathbb{R}^{N-1}: \sum_{i=1}^{N-1} s_{i} \leq 1, s_{i} \geq 0\right\}$. Then:
(i) The norm $\|\cdot\|$ is normalized if and only if

$$
\begin{equation*}
\psi(0, \cdots, 0)=\psi(1,0, \cdots, 0)=\cdots=\psi(0, \cdots, 0,1)=1 \tag{0}
\end{equation*}
$$

SOME RESULTS ON DIRECT SUMS OF BANACH SPACES

(ii) For each $1 \leq k \leq N$ the following (a) and (b) are equivalent.
(a) The norm $\|\cdot\|$ is monotone in the k-th entry, that is,

$$
\left|x_{k}\right| \geq\left|y_{k}\right| \Rightarrow\left\|\left(x_{1}, \ldots, \stackrel{k}{x_{k}}, \ldots, x_{N}\right)\right\| \geq\left\|\left(x_{1}, \ldots, \stackrel{\substack{y_{k}}}{ }, \ldots, x_{N}\right)\right\|
$$

(b) The convex function ψ satisfies
$\left(A_{k}\right)$

$$
\psi\left(s_{1}, \ldots, s_{N-1}\right) \geq\left(1-s_{k}\right) \psi\left(\frac{s_{1}}{1-s_{k}}, \ldots, \stackrel{k-1}{0}, \ldots, \frac{s_{N-1}}{1-s_{k}}\right)
$$

In the case $k=1,\left(A_{1}\right)$ should be understood as

$$
\begin{equation*}
\psi\left(s_{1}, \cdots, s_{N-1}\right) \geq\left(1-s_{0}\right) \psi\left(\frac{s_{1}}{1-s_{0}}, \ldots, \frac{s_{N-1}}{1-s_{0}}\right) \tag{1}
\end{equation*}
$$

where $s_{0}=1-\sum_{i=1}^{N-1} s_{i}$.

Let

$$
\begin{aligned}
A N_{N} & =\left\{\text { all absolute normalized norms on } \mathbb{R}^{N}\right\} \\
\Psi_{N} & =\left\{\text { all convex functions } \psi \text { satisfying }\left(A_{k}\right), 0 \leq k \leq N\right\}
\end{aligned}
$$

Theorem 2.3 (Saito-Kato-Takahashi [38]) (i) For any $\|\cdot\| \in A N_{N}$ let

$$
\begin{equation*}
\psi(s)=\left\|\left(1-\sum_{i=1}^{N-1} s_{i}, s_{1}, \ldots, s_{N-1}\right)\right\|, \quad s=\left(s_{1}, \cdots, s_{N-1}\right) \in \Delta_{N} \tag{2.1}
\end{equation*}
$$

Then $\psi \in \Psi_{N}$, that is,

$$
\begin{equation*}
\psi(0, \cdots, 0)=\psi(1,0, \cdots, 0)=\cdots=\psi(0, \cdots, 0,1)=1 \tag{0}
\end{equation*}
$$

and for each $1 \leq k \leq N$

$$
\begin{equation*}
\psi\left(s_{1}, \ldots, s_{N-1}\right) \geq\left(1-s_{k}\right) \psi\left(\frac{s_{1}}{1-s_{k}}, \ldots, \stackrel{k-1}{0}, \ldots, \frac{s_{N-1}}{1-s_{k}}\right) \tag{k}
\end{equation*}
$$

Conversely
(ii) For any $\psi \in \Psi_{N}$ define
$(*)\left\|\left(a_{1}, \cdots, a_{N}\right)\right\|_{\psi}=\left\{\begin{array}{r}\left(\sum_{j=1}^{N}\left|a_{j}\right|\right) \psi\left(\frac{\left|a_{2}\right|}{\sum_{j=1}^{N}\left|a_{j}\right|}, \cdots, \frac{\left|a_{N}\right|}{\sum_{j=1}^{N}\left|a_{j}\right|}\right) \\ 0 \\ \text { if }\left(a_{1}, \cdots, a_{N}\right) \neq(0, \cdots, 0), \\ \text { if }\left(a_{1}, \cdots, a_{N}\right)=(0, \cdots, 0) .\end{array}\right.$
Then $\|\cdot\|_{\psi} \in A N_{N}$ and $\|\cdot\|_{\psi}$ satisfies (2.1).
In fact, since an absolute normalized norm is monotone by Lemma 2.1, the statement (i) is a consequence of Lemma 2.2. For the assertion (ii) we refer the reader to [38]. Thus $A N_{N}$ and Ψ_{N} correspond in a one-to-one way.

Remark 2.4 (i) Let us see why we defined the norm $\|\cdot\|_{\psi}$ by the formula (*) from $\psi \in$ Ψ_{N}. For an arbitrary norm $\|\cdot\|$ on \mathbb{R}^{N} let ψ be a convex function given by (2.1). Then the norm $\|\cdot\|$ is represented by means of ψ as follows. Let $M=\sum_{j=1}^{N}\left|a_{j}\right|$ for nonzero $\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$. Then

$$
\left\|\left(a_{1}, \cdots, a_{N}\right)\right\|=M\left\|\left(a_{1} / M, \cdots, a_{N} / M\right)\right\|=M \psi\left(\frac{\left|a_{2}\right|}{M}, \cdots, \frac{\left|a_{N}\right|}{M}\right)
$$

(ii) In the case $N=2$ a convex funtion ψ on $\Delta_{2}=[0,1]$ belongs to Ψ_{2} if and only if $\max \{1-t, t\} \leq \psi(t) \leq 1$ for $0 \leq t \leq 1$, from which $\psi(0)=\psi(1)=1$ is derived. Thus if we draw the graph of a convex function $\psi \in \Psi_{2}$ in this triangle area we shall obtain an absolute normalized norm $\|\cdot\|_{\psi}$ on \mathbb{R}^{2}.

Example 2.5 The ℓ_{p}-norm on \mathbb{R}^{N},

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{p}= \begin{cases}\left\{\sum_{j=1}^{N}\left|a_{j}\right|^{p}\right\}^{1 / p} & 1 \leq p<\infty \\ \max _{1 \leq j \leq N}\left|a_{j}\right| & p=\infty\end{cases}
$$

is absolute normalized and the corresponding convex function ψ_{p} is given by

$$
\begin{aligned}
\psi_{p}\left(s_{1}, \ldots, s_{N-1}\right) & :=\left\|\left(1-\sum_{i=1}^{N-1} s_{i}, s_{1}, \ldots, s_{N-1}\right)\right\|_{p} \\
& = \begin{cases}\left\{\left(1-\sum_{i=1}^{N-1} s_{i}\right)^{p}+s_{1}^{p}+\cdots+s_{n-1}^{p}\right\}^{1 / p} & \text { if } p<\infty \\
\max \left\{1-\sum_{i=1}^{N-1} s_{i}, s_{1}, \ldots, s_{n-1}\right\} & \text { if } p=\infty\end{cases}
\end{aligned}
$$

In particular $\psi_{1}\left(s_{1}, \ldots, s_{N-1}\right)=1$.
Now, the following subclasses $\Psi_{N}^{(1)}$ and $\Psi_{N}^{(\infty)}$ of Ψ_{N} will play an important role in our later discussion. In the following let T be a nonempty subset of $\{1, \ldots, N\}, \chi_{T}$ the characteristic function of T. For $\boldsymbol{a}=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}_{+}^{N}$ let

$$
\boldsymbol{a}_{T}=\sum_{j \in T} a_{j} \mathbf{e}_{j}=\left(\chi_{T}(1) a_{1}, \ldots, \chi_{T}(N) a_{N}\right)
$$

where $\boldsymbol{e}_{j}=\left(0, \ldots, \int_{1}^{j}, \ldots, 0\right)$.
Definition 2.6 (Kato-Tamura $[27, \mathbf{3 0}]$) (i) Let $\psi \in \Psi_{N}$. We say $\psi \in \Psi_{N}^{(1)}$ if there exists $\boldsymbol{a} \in \mathbb{R}_{+}^{N}$ and $T \subsetneq\{1, \ldots, N\}(T \neq \emptyset)$ such that

$$
\|\mathbf{a}\|_{\psi}=\left\|\mathbf{a}_{T}\right\|_{\psi}+\left\|\mathbf{a}_{T^{c}}\right\|_{\psi}, \quad \text { where }\left\|\mathbf{a}_{T}\right\|_{\psi},\left\|\mathbf{a}_{T^{c}}\right\|_{\psi}>0
$$

(ii) We say $\psi \in \Psi_{N}^{(\infty)}$ if there exists $\boldsymbol{a} \in \mathbb{R}_{+}^{N}$ and $T \subsetneq\{1, \ldots, N\}(T \neq \emptyset)$ such that

$$
\|\mathbf{a}\|_{\psi}=\left\|\mathbf{a}_{T}\right\|_{\psi}=\left\|\mathbf{a}_{T^{c}}\right\|_{\psi}>0
$$

SOME RESULTS ON DIRECT SUMS OF BANACH SPACES

The ℓ_{1}-norm $\|\cdot\|_{1}$ has the above property (i), and the ℓ_{∞}-norm $\|\cdot\|_{\infty}$ has the property (ii) (see the example below). These properties (i) and (ii) are much weaker than ℓ_{1}-norm's and ℓ_{∞}-norm's, respectively. We call, in general, a norm $\|\cdot\|$ on \mathbb{R}^{N} with the properties (i) and (ii) a partial ℓ_{1}-norm and a partial ℓ_{∞}-norm, respectively.
Example $2.7 \psi_{1} \in \Psi_{N}^{(1)}$ and $\psi_{\infty} \in \Psi_{N}^{(\infty)}$ since

$$
\begin{aligned}
\left\|\left(1, \frac{1}{N-1}, \ldots, \frac{1}{N-1}\right)\right\|_{1} & =\|(1,0, \ldots, 0)\|_{1}+\left\|\left(0, \frac{1}{N-1}, \ldots, \frac{1}{N-1}\right)\right\|_{1} \\
\|(1,1, \ldots, 1)\|_{\infty} & =\|(1,0, \ldots, 0)\|_{\infty}=\|(0,1, \ldots, 1)\|_{\infty}
\end{aligned}
$$

where $T=\{1\}$ in both cases.
On the other hand Dowling-Saejung [10] introduced the following notions.
Definition 2.8 For $\boldsymbol{a}=\left(a_{j}\right) \in \mathbb{R}^{N}$ let $\operatorname{supp} \boldsymbol{a}=\left\{j: a_{j} \neq 0\right\}$.
(i) A norm $\|\cdot\|$ on \mathbb{R}^{N} is said to have Property T_{1}^{N} if

$$
\|\boldsymbol{a}\|=\|\boldsymbol{b}\|=\frac{1}{2}\|\boldsymbol{a}+\boldsymbol{b}\|=1, \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{N} \Longrightarrow \operatorname{supp} \boldsymbol{a} \cap \operatorname{supp} \boldsymbol{b} \neq \emptyset
$$

(ii) A norm $\|\cdot\|$ on \mathbb{R}^{N} is said to have Property T_{∞}^{N} if

$$
\|\boldsymbol{a}\|=\|\boldsymbol{b}\|=\|\boldsymbol{a}+\boldsymbol{b}\|=1 \Longrightarrow \operatorname{supp} \boldsymbol{a} \cap \operatorname{supp} \boldsymbol{b} \neq \emptyset
$$

Note that ℓ_{1}-norm $\|\cdot\|_{1}$ and ℓ_{∞}-norm $\|\cdot\|_{\infty}$ do not have Property T_{1}^{N} and Property T_{∞}^{N}, respectively. We have the following.

Theorem 2.9 (Dhompomgsa-Kato-Tamura [8]) Let $\psi \in \Psi_{N}$. Then
(i) $\|\cdot\|_{\psi}$ has Property T_{1}^{N} if and only if $\psi \notin \Psi_{N}^{(1)}$.
(ii) $\|\cdot\|_{\psi}$ has Property T_{∞}^{N} if and only if $\psi \notin \Psi_{N}^{(\infty)}$.

3 Direct sums Let $\|\cdot\|_{Z}$ be an absolute norm on \mathbb{R}^{N}. The Z-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{Z}$ of Banach spaces X_{1}, \ldots, X_{N} is their direct sum equipped with the norm

$$
\left\|\left(x_{1}, \cdots, x_{N}\right)\right\|_{Z}:=\left\|\left(\left\|x_{1}\right\|, \cdots,\left\|x_{N}\right\|\right)\right\|_{Z}, \quad\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \oplus \cdots \oplus X_{N}
$$

(cf. Dowling-Saejung [10]).
Remark 3.1 In the above definition the Z-norm $\|\cdot\|_{Z}$ on \mathbb{R}^{N} is sometimes assumed to be absolute and monotone in \mathbb{R}_{+}^{N} in [10]. But the latter condition can be dropped because of Lemma 2.1.

A direct sum constructed in the same way as above from an absolute normalized norm $\|\cdot\|_{A N}=\|\cdot\|_{\psi}$ on \mathbb{R}^{N} is called a ψ-direct sum and denoted by

$$
\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}
$$

where ψ is the convex function corresponding to the norm $\|\cdot\|_{A N}$ (Kato-Saito-Tamura [21]; cf. [40]).

Let $\|\cdot\|_{A}$ be an arbitrary norm on \mathbb{R}^{N}. The A-direct $\operatorname{sum}\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is the direct sum of X_{1}, \ldots, X_{N} equipped with the norm

$$
\left\|\left(x_{1}, \ldots, x_{N}\right)\right\|_{A}=\left\|\left(\left\|x_{1}\right\|, \ldots,\left\|x_{N}\right\|\right)\right\|_{A}, \quad\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \oplus \cdots \oplus X_{N}
$$

(Dhompongsa-Kato-Tamura [8]). Clearly, a ψ-direct sum is a Z-direct sum, which is an A-direct sum. These notions of direct sums are in fact all isometric.

Theorem 3.2 (Kato-Tamura [30]) Let $\|\cdot\|_{A}$ be an arbitrary norm on \mathbb{R}^{N}. Then there exists $\psi \in \Psi_{N}$ such that $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is isometrically isomorphic to $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$. More precisely

$$
\left\|\left(x_{1}, \ldots, x_{N}\right)\right\|_{A}=\left\|\left(c_{1} x_{1}, \ldots, c_{N} x_{N}\right)\right\|_{\psi}, \quad\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \oplus \cdots \oplus X_{N}
$$

where $c_{k}=\|(0, \ldots, 0, \stackrel{k}{1}, 0, \ldots, 0)\|_{A}(1 \leq k \leq N)$.
Sketch of proof Take $e_{j} \in X_{j}$ with $\left\|e_{j}\right\|=1(1 \leq j \leq N)$ and define a norm $\|\cdot\|_{B}$ on \mathbb{R}^{N} by

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{B}=\left\|\left(a_{1} e_{1}, \ldots, a_{N} e_{N}\right)\right\|_{A}
$$

Then $\|\cdot\|_{B}$ is absolute. Let

$$
\left\|\left(x_{1}, \cdots, x_{N}\right)\right\|_{B}=\left\|\left(\left\|x_{1}\right\|, \cdots,\left\|x_{N}\right\|\right)\right\|_{B}
$$

for $\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \oplus \cdots \oplus X_{N}$. Then

$$
\left\|\left(x_{1}, \ldots, x_{N}\right)\right\|_{A}=\left\|\left(x_{1}, \ldots, x_{N}\right)\right\|_{B}
$$

Thus we may assume that, without loss of generality, the original norm $\|\cdot\|_{A}$ on \mathbb{R}^{N} is absolute to construct the A-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$. Next let $c_{k}=\|\left(0, \ldots, 0, \stackrel{k_{1}}{1}\right.$, $0, \ldots, 0) \|_{B}$ and define a norm $\|\cdot\|_{C}$ on \mathbb{R}^{N} by

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{C}=\left\|\left(a_{1} / c_{1}, \ldots, a_{N} / c_{N}\right)\right\|_{B}
$$

Then $\|\cdot\|_{C}$ is absolute and normalized, and

$$
\left\|\left(a_{1}, \ldots, a_{N}\right)\right\|_{B}=\left\|\left(c_{1} a_{1}, \ldots, c_{N} a_{N}\right)\right\|_{C}
$$

Consequently we have

$$
\left\|\left(x_{1}, \ldots, x_{N}\right)\right\|_{A}=\left\|\left(c_{1} x_{1}, \ldots, c_{N} x_{N}\right)\right\|_{C}
$$

for $\left(x_{1}, \ldots, x_{N}\right) \in X_{1} \oplus \cdots \oplus X_{N}$. Thus $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is isometric to $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{C}=$ $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ with some function $\psi \in \Psi_{N}$.

In particular any Z-direct sum is isometrically isomorphic to a ψ-direct sum. The advantage of the latter is to allow us to use a convex function $\psi \in \Psi_{N}$ in our discussion, especially to construct examples.

We shall see some basic properties for direct sums. A Banach space X is called strictly convex if

$$
x, y \in S_{X}, x \neq y \Longrightarrow\left\|\frac{x+y}{2}\right\|<1
$$

X is called uniformly convex if for any $\varepsilon>0$ there exists $\delta>0$ such that

$$
\|x-y\| \geq \varepsilon, x, y \in S_{X} \Longrightarrow\left\|\frac{x+y}{2}\right\|<1-\delta
$$

Theorem $3.3([21,40])$ A ψ-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is strictly (uniformly) convex if and only if X_{1}, \ldots, X_{N} are strictly (uniformly) convex and ψ is strictly convex.

SOME RESULTS ON DIRECT SUMS OF BANACH SPACES

Now, ψ is strictly convex if and only if $\|\cdot\|_{\psi}$ is strictly convex ([38]), we have the general A-direct sum version of this theorem by Theorem 3.2.

Theorem 3.4 An A-direct sum $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is strictly (uniformly) convex if and only if X_{1}, \ldots, X_{N} are strictly (uniformly) convex and $\|\cdot\|_{A}$ is strictly convex.

For similar results for the dual notions, smoothness and uniform smoothness we refer the reader to Mitani-Oshiro-Saito [33].

4 Weak nearly uniform smoothness A Banach space X is called weakly nearly uniformly smooth (WNUS in short) if X is reflexive and $R(X)<2, R(X)$ is the García-Falset coefficient:

$$
R(X)=\sup \left\{\liminf _{n \rightarrow \infty}\left\|x_{n}+x\right\|\right\}
$$

where the supremum is taken over all weakly null sequences $\left\{x_{n}\right\}$ in B_{X} and all $x \in B_{X}$. (cf. García-Falset [14]; we refer the reader to Kutzarova et al. [31] for the original definition; cf. [27]). A Banach space X is said to have the fixed point property for nonexpansive mappings (FPP in short) provided that for any bounded closed convex subset C of X every nonexpansive self-mapping T on C has a fixed point, where T is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\| \quad \forall x, y \in C
$$

Uniformly convex resp., uniformly smooth spaces are WNUS ([35]). We also have
Theorem 4.1 (García-Falset [15, 14]) Every weakly nearly uniformly smooth space has $F P P$.

For WNUS-ness of direct sums we have the following.
Theorem 4.2 (Kato-Tamura [27]) Let X_{1}, \ldots, X_{N} be of infinite dimension. Let $\psi \in$ Ψ_{N}. Then, the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is WNUS.
(ii) X_{1}, \ldots, X_{N} are $W N U S$ and $\psi \notin \Psi_{N}^{(1)}$.

Remark 4.3 (i) The implication (ii) \Rightarrow (i) is valid without the assumption on the dimension of X_{j} 's.
(ii) For the case some of X_{j} 's are of finite dimension we refer the reader to [30].

If $\psi \in \Psi_{N}$ is strictly convex, $\psi \notin \Psi_{N}^{(1)}([27])$. Therefore, taking Remark 4.3(i) into account, the next previous result is derived from Theorem 4.2.

Corollary 4.4 (Dhompongsa et al. [6]) Let X_{1}, \ldots, X_{N} be arbitrary Banach spaces. Let $\psi \in \Psi_{N}$ be strictly convex. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is WNUS.
(ii) X_{1}, \ldots, X_{N} are $W N U S$.

Recall that $\psi \notin \Psi_{N}^{(1)}$ if and only if $\|\cdot\|_{\psi}$ has Property T_{1}^{N} (Theorem 2.9). Owing to Theorem 3.2, Theorem 4.2 is reformulated in the general A-direct sum setting as follows.

Theorem 4.5 Let X_{1}, \ldots, X_{N} be infinite dimensional. Let $\|\cdot\|_{A}$ be an arbitrary norm on \mathbb{R}^{N}. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is WNUS.
(ii) X_{1}, \ldots, X_{N} are WNUS and $\|\cdot\|_{A}$ has Property T_{1}^{N}.

5 Uniform non-squareness A Banach space X is called uniformly non-square (R . C. James [17]) (UNSQ in short) if there exists a constant $\varepsilon>0$ such that

$$
\min \{\|x+y\|,\|x-y\|\} \leq 2(1-\varepsilon) \quad \text { for all } x, y \in S_{X}
$$

It is immediate to see that uniformly convex spaces are strictly convex and UNSQ, while there is no implication between the latter two notions. The UNSQ-ness has been playing an improtant role in the geometry of Banach spaces and FPP. One of the most remarkable recent results is the following.

Theorem 5.1 (García-Falset et al. [16]) UNSQ spaces have FPP.
An important classical result says that UNSQ spaces are reflexive ([17]); in fact, superreflexive ([18]); we shall mention about super-reflexivity again in Section 7. Thus UNSQ-ness lies between uniform convexity and super-reflexivity, as well as FPP. It is worth stating that some geometric constants have close connections with these notions. In fact UNSQ-ness are characterized by $C_{N J}(X)<2$ and also by $J(X)<2$, where $C_{N J}(X)$ and $J(X)$ are the von Neumann-Jordan and the James constants of a Banach space X ([39, 13]; cf. [24, 20]). Therefore, if $C_{N J}(X)<2$ or $J(X)<2, X$ is reflexive and has FPP. These constants have been calculated for many concrete Banach spaces (we omit precise descriptions).

Theorem 5.2 (Kato-Saito-Tamura [22]) A ψ-direct sum $X \oplus_{\psi} Y$ is uniformly nonsquare if and only if X, Y are uniformly non-square and $\psi \neq \psi_{1}, \psi_{\infty}$, that is, $\|\cdot\|_{\psi} \neq$ $\|\cdot\|_{1},\|\cdot\|_{\infty}$.

In this paper they posed the following problem:
Problem 1. Characterize the uniform non-squareness for $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$.
This problem is quite complicated since in the case $N \geq 3$ we need to remove much more convex functions in Ψ_{N} (norms in $A N_{N}$). Dowling and Saejung [10] presented a partial answer for Z-direct sums, a fortiori, for ψ-direct sums.

Theorem 5.3 (Dowling-Saejung [10]) Assume that Z-norm $\|\cdot\|_{Z}$ or the dual norm $\|\cdot\|_{Z}^{*}$ on \mathbb{R}^{N} is strictly monotone. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{Z}$ is UNSQ.
(ii) X_{1}, \ldots, X_{N} are UNSQ and $\|\cdot\|_{Z}$ has Properties T_{1}^{N} and T_{∞}^{N}.

For the case $N=3$ they dropped the assumption on strict monotonicity, which answers Problem 1 for $N=3$:

Theorem 5.4 (Dowling-Saejung [10]) The following are equivalent.
(i) $\left(X_{1} \oplus X_{2} \oplus X_{3}\right)_{Z}$ is UNSQ.
(ii) X_{1}, X_{2}, X_{3} are $U N S Q$ and $\|\cdot\|_{Z}$ has Properties T_{1}^{3} and T_{∞}^{3}.

Any A-direct sum is isometric to a Z-direct sum, whence we have the following.
Theorem 5.5 Let $\|\cdot\|_{A}$ be an arbitrary norm on \mathbb{R}^{N}. Then the following are equivalent.
(i) $\left(X_{1} \oplus X_{2} \oplus X_{3}\right)_{A}$ is UNSQ.
(ii) X_{1}, X_{2}, X_{3} are UNSQ and $\|\cdot\|_{A}$ has Properties T_{1}^{3} and T_{∞}^{3}.

Remark 5.6 Why did they succeed in the case $N=3$? Later we shall see the reason, which is a quite natural consequence of a recent result by Kato and Tamura [30].

SOME RESULTS ON DIRECT SUMS OF BANACH SPACES

In 2015 Dhompongsa, Kato and Tamura [8] gave more precise results for Theorem 5.3 in the A-direct sum setting.

Theorem 5.7 Let $\|\cdot\|_{A}$ be an arbitrary norm on \mathbb{R}^{N}. Assume that $\|\cdot\|_{A}$ is strictly monotone. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is UNSQ.
(ii) X_{1}, \ldots, X_{N} are $U N S Q$ and the norm $\|\cdot\|_{A}$ has Property T_{1}^{N}.

Theorem 5.8 Let $\|\cdot\|_{A}$ be an arbitrary norm on \mathbb{R}^{N}. Assume that the dual norm $\|\cdot\|_{A}^{*}$ is strictly monotone. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is UNSQ.
(ii) X_{1}, \ldots, X_{N} are $U N S Q$ and the norm $\|\cdot\|_{A}$ has Property T_{∞}^{N}.

If $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is UNSQ, the norm $\|\cdot\|_{A}$ has Properties T_{1}^{N} and T_{∞}^{N}. (This is a corresponding result to Theorem 5.2; cf. [8, Cororally 4.5] and [30]). Therefore from Theorems 5.7 and 5.8 the following A-direct sum version of Theorem 5.3 is derived.

Corollary 5.9 Let $\|\cdot\|_{A}$ be an arbitrary norm on \mathbb{R}^{N}. Assume that $\|\cdot\|_{A}$ or $\|\cdot\|_{A}^{*}$ is strictly monotone. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{A}$ is UNSQ.
(ii) X_{1}, \ldots, X_{N} are UNSQ and $\|\cdot\|_{A}$ has Properties T_{1}^{N} and T_{∞}^{N}.

Remark 5.10 Dhompongsa-Kato-Tamura [8] first proved Theorems 5.7, 5.8, and Corollary 5.9 for ψ-direct sums by means of $\Psi_{N}^{(1)}$ and $\Psi_{N}^{(\infty)}$, and then derived these results for A-direct sums by Theorems 3.2 and 2.9. We shall see below the ψ-direct sum version of Theorem 5.5.

Theorem 5.5' ([8]) Let $\psi \in \Psi_{N}$. Assume that $\|\cdot\|_{\psi}$ is strictly monotone. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is UNSQ.
(ii) X_{1}, \ldots, X_{N} are UNSQ and $\psi \notin \Psi_{N}^{(1)}$.

Now we are in a position to explain why Dowling-Saejung [10] succeeded for the case $N=3$. Very recently by introducing the class $\Psi_{N}^{(m i x)}$ as the class which should be excluded, Kato-Tamura [30, in preparation] answered Problem 1 without the assumption on strict monotonicity:

A ψ-direct $\operatorname{sum}\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is UNSQ if and only if X_{1}, \ldots, X_{N} are UNSQ and $\psi \notin \Psi_{N}^{(m i x)}$.
(This will appear elsewhere.) They showed $\Psi_{3}^{(m i x)}=\Psi_{3}^{(1)} \cup \Psi_{3}^{(\infty)}$ for $N=3$ and obtained the following as a corollary.

Theorem 5.11 Let $\psi \in \Psi_{N}$. Then the following are equivalent.
(i) $\left(X_{1} \oplus X_{2} \oplus X_{3}\right)_{\psi}$ is UNSQ.
(ii) X_{1}, X_{2}, X_{3} are $U N S Q$ and $\psi \notin \Psi_{3}^{(1)} \cup \Psi_{3}^{(\infty)}$.

According to Theorem 2.9, $\psi \notin \Psi_{3}^{(1)} \cup \Psi_{3}^{(\infty)}$ if and only if $\|\cdot\|_{\psi}$ has Properties T_{1}^{3} and T_{∞}^{3}. As any Z-direct sum is isometric to a ψ-direct sum, we have Dowling-Saejung's result for $\left(X_{1} \oplus X_{2} \oplus X_{3}\right)_{Z}$. Theorem 5.3 is also derived from the above-announced result by Kato-Tamura [30].

We shall conclude this section with the following result.

Theorem 5.12 (Betiuk-Pilarska and Prus [2]) The following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{Z}$ is $U N S Q$.
(ii) X_{1}, \ldots, X_{N} are $U N S Q$ and $\left(\mathbb{R}^{N},\|\cdot\|_{Z}\right)$ is $U N S Q$.

Here it remains unknown when the space $\left(\mathbb{R}^{N},\|\cdot\|_{Z}\right)$ is UNSQ. Kato-Tamura [30] answered to this question by introducing Property $T_{m i x}^{N}$ in the A-direct sum setting.

6 Uniform non- ℓ_{1}^{n}-ness A Banach space X is called uniformly non- ℓ_{1}^{n} if there exists $\varepsilon(0<\varepsilon<1)$ for which

$$
\begin{equation*}
\forall x_{1}, \cdots, x_{n} \in S_{X}, \exists \theta=\left(\theta_{j}\right)\left(\theta_{j}= \pm 1\right) \text { s.t. }\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\| \leq n(1-\epsilon) \tag{6.1}
\end{equation*}
$$

When $n=2$ the uniform non- ℓ_{1}^{2}-ness coincides with the uniform non-squareness. For $n=3$ uniformly non- ℓ_{1}^{3} spaces are called uniformly non-octahedral. In the case $n=1$ no Banach space is uniformly non- ℓ_{1}^{1}.

Proposition 6.1 Uniformly non- ℓ_{1}^{n} spaces are uniformly non- ℓ_{1}^{n+1}.
Theorem 5.2 for UNSQ-ness of $X \oplus_{\psi} Y$ is extended to uniform non- ℓ_{1}^{n}-ness.
Theorem 6.2 (Kato-Saito-Tamura [23]) Assume that neither X nor Y is uniformly non- ℓ_{1}^{n-1}. Then the following are equivalent.
(i) $X \oplus_{\psi} Y$ is uniformly non- ℓ_{1}^{n}.
(ii) X and Y are uniformly non- ℓ_{1}^{n} and $\psi \neq \psi_{1}, \psi_{\infty}$.

Remark 6.3 (i) Theorem 6.2 covers Theorem 5.2 as the case $n=2$, since no Banach space is uniformly non- ℓ_{1}^{1}.
(ii) We cannot drop the assumption "neither X nor Y is uniformly non- ℓ_{1}^{n-1} ".
(iii) For the N Banach spaces case some results were obtained under the assumption that the ψ-norm $\|\cdot\|_{\psi}$ is strictly monotone in Kato and Tamura [29].

As before we obtain the A-direct sum version of Theorem 6.2.
Theorem 6.4 Let $\|\cdot\|_{A}$ be an arbitrary norm on \mathbb{R}^{N}. Assume that neither X nor Y is uniformly non- ℓ_{1}^{n-1}. Then the following are equivalent.
(i) $X \oplus_{A} Y$ is uniformly non- ℓ_{1}^{n}.
(ii) X and Y are uniformly non- ℓ_{1}^{n} and $\|\cdot\|_{A} \neq\|\cdot\|_{1},\|\cdot\|_{\infty}$.

Now, we shall look into the extreme cases, ℓ_{1} - and ℓ_{∞}-sums, which were excluded in Theorems 6.2 (and 6.4). According to this theorem, $X \oplus_{1} Y$ and $X \oplus_{\infty} Y$ cannot be UNSQ for all X and Y, while $X \oplus_{1} Y$ and $X \oplus_{\infty} Y$ can be uniformly non- $\ell_{1}^{n}(n \geq 3)$ if either X or Y is uniformly non $-\ell_{1}^{n-1}$. In fact the following are true.
Theorem 6.5 (Kato-Saito-Tamura [23]) The following are equivalent.
(i) $X \oplus_{1} Y$ is uniformly non $-\ell_{1}^{n}, n \geq 3$.
(ii) There exist $n_{1}, n_{2} \in \mathbb{N}$ with $n_{1}+n_{2}=n-1$ such that X is uniformly non- $\ell_{1}^{n_{1}+1}$ and Y is uniformly non- $\ell_{1}^{n_{2}+1}$.

As corollaries the following are obtained.
Corollary 6.6 The following are equivalent.
(i) $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{3}.
(ii) X and Y are $U N S Q$.

Corollary 6.7 The following are equivalent.
(i) $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{4}.
(ii) X is UNSQ and Y is uniformly non-octahedral.

Theorem 6.5 is extended as follows.
Theorem 6.8 The following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{1}$ is uniformly non- ℓ_{1}^{N+1}.
(ii) X_{1}, \ldots, X_{N} are $U N S Q$.

This implies especially that the space ℓ_{1}^{n} is uniformly non- ℓ_{1}^{n+1}. For ℓ_{∞}-sums we have the following.

Theorem 6.9 (Kato-Tamura [26]) Let $n \geq 2$. The following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{2^{n}-1}\right)_{\infty}$ is uniformly non- ℓ_{1}^{n+1}.
(ii) $X_{1}, \ldots, X_{2^{n}-1}$ are $U N S Q$.

Corollary 6.10 The following are equivalent.
(1) $(X \oplus Y \oplus Z)_{\infty}$ is uniformly non- ℓ_{1}^{3}.
(2) X, Y and Z are UNSQ.

Remark 6.11 Recall that the ℓ_{1}-sum $X \oplus_{1} Y$ is uniformly non ℓ_{1}^{3} if and only if X and Y are UNSQ. Contrary to this, if X and Y are $U N S Q$, the $\ell_{\infty}-s u m ~ X \oplus_{\infty} Y$ is uniformly non- ℓ_{1}^{3} ([23, Corollary 5.3bis]), but the converse is not true ([23, Remark 5.5]). We added one more space Z to obtain the equivalence in Corollary 6.9. Compare also Theorems 6.7 and 6.8. These observations show one aspect of the defference between $\ell_{1}-$ and ℓ_{∞}-sums.

7 Applications All UNSQ spaces have FPP. Thus it is natural to ask whether all uniformly non-octahedral spaces have FPP. We have the following.

Theorem 7.1 (Kato-Tamura [26]) Let X be uniformly non-octahedral. If X is isometric to an ℓ_{∞}-sum of 3 Banach spaces, X has FPP, while X is not UNSQ.

More generally we have
Theorem 7.2 Let X be uniformly non- ℓ_{1}^{n+1}. If X is isometric to an ℓ_{∞}-sum of $2^{n}-1$ Banach spaces, X has FPP, while X is not UNSQ.

Example 7.3 Let $1<p<\infty$. Since L_{p} is uniformly convex, it is UNSQ. Therefore the space $X=\left(L_{p} \oplus L_{p} \oplus L_{p}\right)_{\infty}$ is uniformly non-octahedral by Theorem 6.9, and hence X has $F P P$ by Theorem 7.1, while it is not UNSQ since X contains ℓ_{∞}^{3} as a subspace.

In the same way, the ℓ_{∞}-sum of $2^{n}-1 L_{p}$'s is uniformly non- ℓ_{1}^{n+1}, which is weaker than uniform non-octahedralness, has FPP but is not UNSQ.

By using Theorem 4.2 a plenty of Banach spaces with FPP which fail to be UNSQ is constructed.

Example 7.4 (Kato-Tamura [27]) Let $N \geq 3$ and let $\varphi, \psi_{1} \in \Psi_{2}, \varphi \neq \psi_{1}$. Let

$$
\begin{aligned}
& \psi\left(s_{1}, \ldots, s_{N-1}\right) \\
& =\max \left\{\left\|\left(1-\sum_{i=1}^{N-1} s_{i}, s_{1}\right)\right\|_{\varphi},\left\|\left(s_{1}, s_{2}\right)\right\|_{\varphi},\left\|\left(s_{2}, s_{3}\right)\right\|_{\varphi}, \cdots,\left\|\left(s_{N-2}, s_{N-1}\right)\right\|_{\varphi}\right\} \\
& \quad \operatorname{for}\left(s_{1}, \ldots, s_{N-1}\right) \in \Delta_{N}
\end{aligned}
$$

Then $\psi \in \Psi_{N}$ and

$$
\begin{aligned}
\left\|\left(a_{1}, a_{2} \ldots, a_{N}\right)\right\|_{\psi}=\max \left\{\left\|\left(a_{1}, a_{2}\right)\right\|_{\varphi},\left\|\left(a_{2}, a_{3}\right)\right\|_{\varphi}, \ldots,\right. & \left.\left\|\left(a_{N-1}, a_{N}\right)\right\|_{\varphi}\right\} \\
& \text { for }\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}
\end{aligned}
$$

Further, $\psi \notin \Psi_{N}^{(1)}$ and $\|\cdot\|_{\psi}$ is not $U N S Q$.
Since WNUS spaces have FPP, we have the following.
Theorem 7.5 (Kato-Tamura [27]) Let X_{1}, \ldots, X_{N} be WNUS ($N \geq 3$). Let $\psi \in \Psi_{N}$ be as in Example 7.4. Then $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ has FPP, whereas it is not UNSQ.

Indeed, since $\psi \notin \Psi_{N}^{(1)}, X=\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ is WNUS by Theorem 4.2 (with Remark 4.3 (i)) and hence X has FPP. On the other hand, X is not UNSQ as $\left(\mathbb{R}^{N},\|\cdot\|_{\psi}\right)$ is not UNSQ.

Next, as $\psi_{\infty} \notin \Psi_{N}^{(1)}$, we have
Theorem 7.6 Let X_{1}, \ldots, X_{N} be WNUS. Then $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\infty}$ has FPP, whereas it is not UNSQ.
Example 7.7 Let $1<p_{k}<\infty, 1 \leq k \leq N$.
(i) Let $\psi \in \Psi_{N}$ be as in Example 7.4. Since $L_{p_{k}}$ are uniformly convex and hence WNUS, the space $X=\left(L_{p_{1}} \oplus \cdots \oplus L_{p_{N}}\right)_{\psi}$ has FPP, while X is not UNSQ by Theorem 7.6.
(ii) The ℓ_{∞}-sum $X=\left(L_{p_{1}} \oplus \cdots \oplus L_{p_{N}}\right)_{\infty}$ is WNUS and hence has FPP. On the other hand, the space X is not UNSQ.

Finally we shall discuss super-reflexivity. A Banach space Y is said to be finitely representable in X provided for any $\epsilon>0$ and for any finite dimensional subspace F of Y there is a finite dimensional subspace E of X with $\operatorname{dim} F=\operatorname{dim} E$ such that $d(F, E):=$ $\inf \left\{\|T\|\left\|T^{-1}\right\|: T\right.$ is an isomorphism of F onto $\left.E\right\}<1+\epsilon$. A Banach space X is called super-reflexive if every Banach space Y which is finitely representable in X is reflexive ([18]; cf. [1]). The next celebrated result states the connection between super-reflexivity and uniform convexity as well as UNSQ-ness.
Theorem 7.8 (cf. [12, 34, 18]) The following are equivalent.
(i) X is super-reflexive.
(ii) X admits an equivalent uniformly convex norm.
(iii) X admits an equivalent uniformly non-square norm.

UNSQ spaces are super-reflexive ([17]), whereas uniformly non-octahedral spaces are not always reflexive ([19]). For ℓ_{1}-sum spaces we have the following ([26]).
Theorem 7.9 Let X be a uniformly non-octahedral Banach space which is isometric to the ℓ_{1}-sum of 2 Banach spaces. Then X is super-reflexive.

Indeed, if X is isometric to $X_{1} \oplus_{1} X_{2}, X_{1} \oplus_{1} X_{2}$ is uniformly non-octahedral, from which it follows that X_{1} and X_{2} are UNSQ by Corollary 6.5, hence super-reflexive. Consequently the ℓ_{1}-sum, and hence X is super-reflexive.

By Theorem 6.9 we have the similar result for ℓ_{∞}-sum spaces.
Theorem 7.10 Let X be a uniformly non-octahedral Banach space which is isometric to the ℓ_{∞}-sum of 3 Banach spaces. Then X is super-reflexive.

Acknowledgement. The first author would like to thank the organizers of the conference FIM\&ISME2017, especially, Professors J. Watada, Y. Yabuuchi and H. Sakai for their kind invitation and warm hopsitality.

SOME RESULTS ON DIRECT SUMS OF BANACH SPACES

References

[1] B. Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., North-Holland, 1985.
[2] A. Betiuk-Pilarska and S. Prus, Uniform nonsquareness of direct sums Banach spaces, Topol. Methods Nonlinear Anal. 34 (2009), 181-186.
[3] A. Betiuk-Pilarska and S. Prus, Moduli $R W(a, X)$ and $M W(X)$ of direct sums of Banach spaces, J. Nonlinear Convex Anal. 18 (2017), 309-315.
[4] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[5] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10 (1973).
[6] S. Dhompongsa, A. Kaewcharoen and A. Kaewkhao, Fixed point property of direct sums, Nonlinear Anal. 63(2005), e2177-e2188.
[7] S. Dhompongsa, A. Kaewkhao and S. Saejung, Uniform smoothness and U-convexity of ψ direct sums, J. Nonlinear Convex Anal. 6 (2005), 327-338.
[8] S. Dhompongsa, M. Kato and T. Tamura, Uniform non-squareness for A-direct sums of Banach spaces with a strictly monotone norm, Linear Nonlinear Anal. 1 (2015), 247-260.
[9] P. N. Dowling, On convexity properties of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 288 (2003), 540-543.
[10] P. N. Dowling and S. Saejung, Non-squareness and uniform non-squareness of Z-direct sums, J. Math. Anal. Appl. 369 (2010), 53-59.
[11] P. N. Dowling and B. Turett, Complex strict convexity of absolute norms on \mathbb{C}^{n} and direct sums of Banach spaces, J. Math. Anal. Appl. 323 (2006), 930-937.
[12] P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281-288.
[13] J. Gao and K. S. Lau, On two classes of Banach spaces with uniform normal structure, Studia Math. 99 (1991), 41-56.
[14] J. García-Falset, Stability and fixed points for nonexpansive mappings, Houston J. Math. 20 (1994), 495-506.
[15] J. García-Falset, The fixed point property in Banach spaces with the NUS property, J. Math. Anal. Appl. 215 (1997), 532-542.
[16] J. García-Falset, E. Llorens-Fuster and E. M. Mazcuñan-Navarro, Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings, J. Funct. Anal. 233 (2006), 494-514.
[17] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
[18] R. C. James, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904.
[19] R. C. James, A nonreflexive Banach space that is uniformly non-octahedral, Israel J. Math. 18 (1974), 145-155.
[20] M. Kato, L. Maligranda and Y. Takahashi, On James, Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275-295.
[21] M. Kato, K.-S. Saito and T. Tamura, On the ψ-direct sums of Banach spaces and convexity, J. Aust. Math. Soc. 75 (2003), 413-422.
[22] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), 429-437.
[23] M. Kato, K.-S. Saito and T. Tamura, Uniform non- ℓ_{1}^{n}-ness of ψ-direct sums of Banach spaces, J. Nonlinear Convex Anal. 11 (2010), 113-133.

M. Kato, T. Sobukawa, T. Tamura

[24] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 1055-1062.
[25] M. Kato and T. Tamura, Uniform non- ℓ_{1}^{n}-ness of ℓ_{1}-sums of Banach spaces, Comment. Math. Prace Mat. 47 (2007), 161-169.
[26] M. Kato and T. Tamura, Uniform non- ℓ_{1}^{n}-ness of ℓ_{∞}-sums of Banach spaces, Comment. Math. 49 (2009), 179-187.
[27] M. Kato and T. Tamura, Weak nearly uniform smoothness of the ψ-direct sums $\left(X_{1} \oplus \cdots \oplus\right.$ $\left.X_{N}\right)_{\psi}$, Comment. Math. 52 (2012), 171-198.
[28] M. Kato and T. Tamura, Direct sums of Banach spaces with FPP which fail to be uniformly non-square, J. Nonlinear Convex Anal. 16 (2015), 231-241.
[29] M. Kato and T. Tamura, On the uniform non- ℓ_{1}^{n}-ness and new classes of convex functions, J. Nonlinear Convex Anal. 16 (2015), 2225-2241.
[30] M. Kato and T. Tamura, On the uniform non-squareness of direct sums of Banach spaces, in preparation.
[31] D. Kutzarova, S. Prus and B. Sims, Remarks on orthogonal convexity of Banach spaces, Houston J. Math. 19 (1993), 603-614.
[32] J. Markowicz and S. Prus, James constant, García-Falset coefficient and uniform Opial property in direct sums of Banach spaces, J. Nonlinear Convex Anal. 17 (2016), 2237-2253.
[33] K-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ-direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147-157.
[34] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), 326-350.
[35] S. Prus, Nearly uniformly smooth Banach spaces, Boll. U. M. I.(7)3-B (1989), 507-521.
[36] K.-S. Saito and M. Kato, Uniform convexity of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 277 (2003), 1-11.
[37] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000), 515-532.
[38] K.-S. Saito, M. Kato and Y. Takahashi, On absolute norms on \mathbb{C}^{n}, J. Math. Anal. Appl. 252 (2000), 879-905.
[39] Y. Takahashi and M. Kato, Von Neumann-Jordan constant and uniformly non-square Banach spaces, Nihonkai Math. J. 9 (1998), 155-169.
[40] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on \mathbb{C}^{2} and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179-186.
[41] T. Tamura, On Dominguez-Benavides coefficient of ψ-direct sums $\left(X_{1} \oplus \cdots \oplus X_{N}\right)_{\psi}$ of Banach spaces, Linear Nonlinear Anal. 3 (2017), 87-99.
[42] T. Zachariades, On ℓ_{ψ} spaces and infinite ψ-direct sums of Banach spaces, Rocky Mount. J. Math. 41 (2011), 971-997.
[43] A. Wiśnicki, On the fixed points of nonexpansive mappings in direct sums of Banach spaces, Studia Math., 207 (2011), 75-84.
(M. KATO) Faculty of Engineering, Kyushu Institute of Technology, KiTAKYUSHU 804-8550, JAPAN

Email: katom@mns.kyutech.ac.jp
(T. SOBUKAWA) Global education center, Waseda University, Tokyo 1698050, Japan

Email: sobu@waseda.jp
(T. TAMURA) Graduate School of Social Sciences, Chiba University, Chiba 263-8522, JAPAN

Email: ttakayuki@faculty.chiba-u.jp

