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SOME RESULTS ON DIRECT SUMS OF BANACH SPACES — A SURVEY

Mikio KATO∗, Takuya SOBUKAWA† and Takayuki TAMURA‡

Abstract. We shall discuss three notions of direct sums of Banach spaces, Z-, ψ-,
and A-direct sums, which are in fact all isometric. Weak nearly uniform smoothness,
uniform non-squareness and uniform non-`n

1 -ness etc. will be discussed, especially in
the general A-direct sum setting. As applications some examples of Banach spaces will
be presented concerning FPP as well as super-reflexivity.

1 Introduction Direct sums of Banach spaces have been often treated in the context of
geometry of Banach spaces and the fixed point property (e.g. [2, 3, 6, 7, 8, 9, 10, 11, 14,
15, 16, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 36, 40, 41, 42, 43]). We shall discuss three
notions of direct sums of Banach spaces.

It is known that every absolute normalized norm ‖ · ‖AN on RN corresponds to a unique
convex function ψ on the standard simplex in RN−1 (we shall mention it precisely in Section
2). So we shall write ‖ · ‖ψ for ‖ · ‖AN and refer to as a ψ-norm. Let ‖ · ‖Z and ‖ · ‖A be an
absolute and an arbitrary norm on RN respectively, which we shall call a Z-norm and an
A-norm.

A Z-direct sum (X1 ⊕ · · · ⊕ XN )Z of Banach spaces X1, . . . , XN is their direct sum
equipped with the norm

‖(x1, . . . , xN )‖Z = ‖(‖x1‖, . . . , ‖xN‖)‖Z , (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕ XN ,

where the norm ‖ · ‖Z in the right side is an absolute norm on RN . A ψ-direct sum
(X1 ⊕ · · · ⊕ XN )ψ and an A-direct sum (X1 ⊕ · · · ⊕ XN )A are defined in the same way by
means of a ψ-norm ‖ · ‖ψ and an A-norm ‖ · ‖A.

In Section 2 the correspondence will be mentioned between the set ANN of all absolute
normalized norms on RN and the collection ΨN of all convex functions satisfying certain
conditions on the standard simplex ∆N in RN−1. A couple of subclasses Ψ(1)

N and Ψ(∞)
N of

ΨN will be discussed, which were introduced in Kato and Tamura [29, 30] to discuss weak
nearly uniform smoothness and uniform non-squareness for direct sums. These classes can
be described in terms of Properties TN

1 and TN
∞ , which Dowling and Saejung [10] introduced

to discuss uniform non-squareness for Z-direct sums.
In Section 3 it will be seen that any A-direct sum is isometrically isomorphic to a ψ-direct

sum with some ψ ∈ ΨN ([8]); therefore the direct sums stated above are all isometrically
isomorphic and ψ-direct sums are general enough. In Sections 4, 5, and 6 we shall obtain
A-direct sum versions of previous results.

Section 4 will deal with weak nearly uniform smoothness (WNUS-ness in short). Every
WNUS space has FPP, the fixed point property (for nonexpansive mappings; [15, 14]). A
characterization of WNUS-ness for (X1⊕· · ·⊕XN )ψ will be presented by means of the class
Ψ(1)

N .
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In Section 5 we shall discuss uniform non-squareness (UNSQ-ness) which has been play-
ing an important roll in geometry of Banach spaces. The starting point of our discussion
is the following result in Kato-Saito-Tamura [22]: A ψ-direct sum X ⊕ψ Y is UNSQ if and
only if X and Y are UNSQ and ψ 6= ψ1, ψ∞, where ψ1 and ψ∞ are the corresponding convex
functions to the `1- and `∞-norms, respectively. They [22] asked for a characterization for
N Banach spaces. We shall present a sequence of partial results by Dowling-Saejung [10],
Betiuk-Pilarska and Prus [2], and Dhompongsa-Kato-Tamura [8]. In [10] the following was
shown: Under the assumption ‖ · ‖Z is strictly monotone, (X1⊕· · ·⊕XN )Z is UNSQ if and
only if X1, . . . , XN are UNSQ and ‖ · ‖Z has Properties TN

1 and TN
∞ . In the case N = 3

this assumption was dropped. More precise results are shown in [8] for ψ-direct sums in
terms of Ψ(1)

N , from which the A-direct sum versions are derived. In [2] it was shown that
(X1 ⊕ · · · ⊕ XN )Z is UNSQ if and only if X1, . . . , XN and (RN , ‖ · ‖) are UNSQ, where it
remains unknown when (RN , ‖ · ‖) is UNSQ.

Recently Kato-Tamura [30, in preparation] obtained a characterization of UNSQ-ness
for (X1 ⊕ · · · ⊕ XN )ψ as well as A-direct sum without any additional assumption, which
covers all the above-mentioned results and explains why the case N = 3 is successful in [10].

In Section 6 uniform non-`n
1 -ness will be discussed. When n = 2, uniform non-`21-ness

coincides with UNSQ-ness. Every uniformly non-`n
1 space is uniformly non-`n+1

1 . The above
result for UNSQ-ness of X⊕ψ Y ([22]) is extended to uniform non-`n

1 -ness ([23]). The spaces
X ⊕1 Y and X ⊕∞ Y cannot be UNSQ, while they can be uniformly non-`n

1 , n ≥ 3. We
shall discuss when they are uniformly non-`n

1 .
In the last Section 7 applications to FPP will be discussed. As UNSQ spaces have FPP

([16]), it is natural to ask whether every uniformly non-`31-space has FPP. We shall see a
plenty of Banach spaces (direct sums) with FPP which is not UNSQ can be constructed.
Super-reflexivity will be treated as well.

In the following X,X1, . . . , XN will stand for Banach spaces. Let SX and BX denote
the unit sphere and the closed unit ball of X. Let RN

+ denote the set of all points in RN

with nonegative entries.

2 Absolute norms on RN and convex functions A norm ‖ · ‖ on RN is called ab-
solute if ‖(a1, · · · , aN )‖ = ‖(|a1|, · · · , |aN |)‖ for all (a1, · · · , aN ) ∈ RN , and normalized
if ‖(1, 0, · · · , 0)‖ = · · · = ‖(0, · · · , 0, 1)‖ = 1. A norm ‖ · ‖ on RN is called monotone
provided that, if |aj | ≤ |bj | for 1 ≤ j ≤ N , ‖(a1, . . . , aN )‖ ≤ ‖(b1, . . . , bN )‖. ‖ · ‖ is
called strictly monotone provided it is monotone and, if |aj | < |bj | for some 1 ≤ j ≤ N ,
‖(a1, . . . , aN )‖ < ‖(b1, . . . , bN )‖. The following is known.

Lemma 2.1 (Bhatia [4], see also [30]) A norm ‖ · ‖ on RN is absolute if and only if it
is monotone.

We shall see that for every absolute normalized norm on RN there corresponds a unique
convex function ψ on a certain convex set in RN−1 ([38, 5]).

Lemma 2.2 Let ‖ · ‖ be an arbitrary norm on RN and define

(2.1) ψ(s) =
∥∥∥∥(1 −

N−1∑
i=1

si, s1, . . . , sN−1)
∥∥∥∥, s = (s1, · · · , sN−1) ∈ ∆N ,

where ∆N = {s = (s1, · · · , sN−1) ∈ RN−1 :
∑N−1

i=1 si ≤ 1, si ≥ 0}. Then:
(i) The norm ‖ · ‖ is normalized if and only if

(A0) ψ(0, · · · , 0) = ψ(1, 0, · · · , 0) = · · · = ψ(0, · · · , 0, 1) = 1.
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(ii) For each 1 ≤ k ≤ N the following (a) and (b) are equivalent.
(a) The norm ‖ · ‖ is monotone in the k-th entry, that is,

|xk| ≥ |yk| ⇒ ‖(x1, ...,
k
^
xk, ..., xN )‖ ≥ ‖(x1, ...,

k
^
yk, ..., xN )‖

(b) The convex function ψ satisfies

(Ak) ψ(s1, . . . , sN−1) ≥ (1 − sk)ψ
(

s1

1 − sk
, . . . ,

k−1
^
0 , . . . ,

sN−1

1 − sk

)
In the case k = 1, (A1) should be understood as

(A1) ψ(s1, · · · , sN−1) ≥ (1 − s0)ψ
(

s1

1 − s0
, . . . ,

sN−1

1 − s0

)
,

where s0 = 1 −
∑N−1

i=1 si.

Let

ANN = {all absolute normalized norms on RN},
ΨN = {all convex functions ψ satisfying (Ak), 0 ≤ k ≤ N}.

Theorem 2.3 (Saito-Kato-Takahashi [38]) (i) For any ‖ · ‖ ∈ ANN let

(2.1) ψ(s) =
∥∥∥∥(1 −

N−1∑
i=1

si, s1, . . . , sN−1)
∥∥∥∥, s = (s1, · · · , sN−1) ∈ ∆N .

Then ψ ∈ ΨN , that is,

(A0) ψ(0, · · · , 0) = ψ(1, 0, · · · , 0) = · · · = ψ(0, · · · , 0, 1) = 1;

and for each 1 ≤ k ≤ N

(Ak) ψ(s1, . . . , sN−1) ≥ (1 − sk)ψ
(

s1

1 − sk
, . . . ,

k−1
^
0 , . . . ,

sN−1

1 − sk

)
.

Conversely
(ii) For any ψ ∈ ΨN define

(∗) ‖(a1, · · · , aN )‖ψ =



(∑N
j=1 |aj |

)
ψ

(
|a2|∑N

j=1 |aj |
, · · · ,

|aN |∑N
j=1 |aj |

)
if (a1, · · · , aN ) 6= (0, · · · , 0),

0 if (a1, · · · , aN ) = (0, · · · , 0).

Then ‖ · ‖ψ ∈ ANN and ‖ · ‖ψ satisfies (2.1).

In fact, since an absolute normalized norm is monotone by Lemma 2.1, the statement
(i) is a consequence of Lemma 2.2. For the assertion (ii) we refer the reader to [38]. Thus
ANN and ΨN correspond in a one-to-one way.
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Remark 2.4 (i) Let us see why we defined the norm ‖ · ‖ψ by the formula (∗) from ψ ∈
ΨN . For an arbitrary norm ‖ · ‖ on RN let ψ be a convex function given by (2.1). Then
the norm ‖ · ‖ is represented by means of ψ as follows. Let M =

∑N
j=1 |aj | for nonzero

(a1, . . . , aN ) ∈ RN . Then

‖(a1, · · · , aN )‖ = M‖(a1/M, · · · , aN/M)‖ = Mψ

(
|a2|
M

, · · · ,
|aN |
M

)
.

(ii) In the case N = 2 a convex funtion ψ on ∆2 = [0, 1] belongs to Ψ2 if and only if
max{1− t, t} ≤ ψ(t) ≤ 1 for 0 ≤ t ≤ 1, from which ψ(0) = ψ(1) = 1 is derived. Thus if we
draw the graph of a convex function ψ ∈ Ψ2 in this triangle area we shall obtain an absolute
normalized norm ‖ · ‖ψ on R2.

Example 2.5 The `p-norm on RN ,

‖(a1, . . . , aN )‖p =

 {
∑N

j=1 |aj |p}1/p 1 ≤ p < ∞,

max1≤j≤N |aj | p = ∞

is absolute normalized and the corresponding convex function ψp is given by

ψp(s1, . . . , sN−1) := ‖(1 −
N−1∑
i=1

si, s1, . . . , sN−1)‖p

=



{(
1 −

N−1∑
i=1

si

)p

+ sp
1 + · · · + sp

n−1

}1/p

if p < ∞,

max
{

1 −
N−1∑
i=1

si, s1, . . . , sn−1

}
if p = ∞.

In particular ψ1(s1, . . . , sN−1) = 1.

Now, the following subclasses Ψ(1)
N and Ψ(∞)

N of ΨN will play an important role in
our later discussion. In the following let T be a nonempty subset of {1, . . . , N}, χT the
characteristic function of T . For a = (a1, . . . , aN ) ∈ RN

+ let

aT =
∑
j∈T

ajej = (χT (1)a1, . . . , χT (N)aN ),

where ej = (0, . . . ,

j
^
1 , . . . , 0).

Definition 2.6 (Kato-Tamura [27, 30]) (i) Let ψ ∈ ΨN . We say ψ ∈ Ψ(1)
N if there

exists a ∈ RN
+ and T ( {1, . . . , N} (T 6= ∅) such that

‖a‖ψ = ‖aT ‖ψ + ‖aT c‖ψ, where ‖aT ‖ψ, ‖aT c‖ψ > 0.

(ii) We say ψ ∈ Ψ(∞)
N if there exists a ∈ RN

+ and T ( {1, . . . , N} (T 6= ∅) such that

‖a‖ψ = ‖aT ‖ψ = ‖aT c‖ψ > 0.



SOME RESULTS ON DIRECT SUMS OF BANACH SPACES

The `1-norm ‖ · ‖1 has the above property (i), and the `∞-norm ‖ · ‖∞ has the property
(ii) (see the example below). These properties (i) and (ii) are much weaker than `1-norm’s
and `∞-norm’s, respectively. We call, in general, a norm ‖ · ‖ on RN with the properties (i)
and (ii) a partial `1-norm and a partial `∞-norm, respectively.

Example 2.7 ψ1 ∈ Ψ(1)
N and ψ∞ ∈ Ψ(∞)

N since∥∥∥∥(1,
1

N − 1
, . . . ,

1
N − 1

)
∥∥∥∥

1

= ‖(1, 0, . . . , 0)‖1 +
∥∥∥∥(0,

1
N − 1

, . . . ,
1

N − 1
)
∥∥∥∥

1

,

‖(1, 1, . . . , 1)‖∞ = ‖(1, 0, . . . , 0)‖∞ = ‖(0, 1, . . . , 1)‖∞,

where T = {1} in both cases.

On the other hand Dowling-Saejung [10] introduced the following notions.

Definition 2.8 For a = (aj) ∈ RN let supp a = {j : aj 6= 0}.
(i) A norm ‖ · ‖ on RN is said to have Property TN

1 if

‖a‖ = ‖b‖ =
1
2
‖a + b‖ = 1, a, b ∈ RN =⇒ supp a ∩ supp b 6= ∅.

(ii) A norm ‖ · ‖ on RN is said to have Property TN
∞ if

‖a‖ = ‖b‖ = ‖a + b‖ = 1 =⇒ supp a ∩ supp b 6= ∅.

Note that `1-norm ‖ · ‖1 and `∞-norm ‖ · ‖∞ do not have Property TN
1 and Property

TN
∞ , respectively. We have the following.

Theorem 2.9 (Dhompomgsa-Kato-Tamura [8]) Let ψ ∈ ΨN . Then
(i) ‖ · ‖ψ has Property TN

1 if and only if ψ 6∈ Ψ(1)
N .

(ii) ‖ · ‖ψ has Property TN
∞ if and only if ψ 6∈ Ψ(∞)

N .

3 Direct sums Let ‖·‖Z be an absolute norm on RN . The Z-direct sum (X1⊕· · ·⊕XN )Z

of Banach spaces X1, . . . , XN is their direct sum equipped with the norm

‖(x1, · · · , xN )‖Z := ‖(‖x1‖, · · · , ‖xN‖)‖Z , (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕ XN

(cf. Dowling-Saejung [10]).

Remark 3.1 In the above definition the Z-norm ‖ · ‖Z on RN is sometimes assumed to be
absolute and monotone in RN

+ in [10]. But the latter condition can be dropped because of
Lemma 2.1.

A direct sum constructed in the same way as above from an absolute normalized norm
‖ · ‖AN = ‖ · ‖ψ on RN is called a ψ-direct sum and denoted by

(X1 ⊕ · · · ⊕ XN )ψ,

where ψ is the convex function corresponding to the norm ‖ · ‖AN (Kato-Saito-Tamura [21];
cf. [40]).

Let ‖ · ‖A be an arbitrary norm on RN . The A-direct sum (X1 ⊕· · ·⊕XN )A is the direct
sum of X1, . . . , XN equipped with the norm

‖(x1, . . . , xN )‖A = ‖(‖x1‖, . . . , ‖xN‖)‖A, (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕ XN

(Dhompongsa-Kato-Tamura [8]). Clearly, a ψ-direct sum is a Z-direct sum, which is an
A-direct sum. These notions of direct sums are in fact all isometric.
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Theorem 3.2 (Kato-Tamura [30]) Let ‖ · ‖A be an arbitrary norm on RN . Then there
exists ψ ∈ ΨN such that (X1 ⊕· · ·⊕XN )A is isometrically isomorphic to (X1 ⊕· · ·⊕XN )ψ.
More precisely

‖(x1, . . . , xN )‖A = ‖(c1x1, . . . , cNxN )‖ψ, (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕ XN ,

where ck = ‖(0, . . . , 0,

k
^
1 , 0, . . . , 0)‖A (1 ≤ k ≤ N).

Sketch of proof Take ej ∈ Xj with ‖ej‖ = 1 (1 ≤ j ≤ N) and define a norm ‖ · ‖B on RN

by
‖(a1, . . . , aN )‖B = ‖(a1e1, . . . , aNeN )‖A.

Then ‖ · ‖B is absolute. Let

‖(x1, · · · , xN )‖B = ‖(‖x1‖, · · · , ‖xN‖)‖B

for (x1, . . . , xN ) ∈ X1 ⊕ · · · ⊕ XN . Then

‖(x1, . . . , xN )‖A = ‖(x1, . . . , xN )‖B ,

Thus we may assume that, without loss of generality, the original norm ‖ · ‖A on RN is

absolute to construct the A-direct sum (X1 ⊕ · · · ⊕ XN )A. Next let ck = ‖(0, . . . , 0,

k
^
1,

0, . . . , 0)‖B and define a norm ‖ · ‖C on RN by

‖(a1, . . . , aN )‖C = ‖(a1/c1, . . . , aN/cN )‖B .

Then ‖ · ‖C is absolute and normalized, and

‖(a1, . . . , aN )‖B = ‖(c1a1, . . . , cNaN )‖C

Consequently we have

‖(x1, . . . , xN )‖A = ‖(c1x1, . . . , cNxN )‖C

for (x1, . . . , xN ) ∈ X1⊕· · ·⊕XN . Thus (X1⊕· · ·⊕XN )A is isometric to (X1⊕· · ·⊕XN )C =
(X1 ⊕ · · · ⊕ XN )ψ with some function ψ ∈ ΨN .

In particular any Z-direct sum is isometrically isomorphic to a ψ-direct sum. The
advantage of the latter is to allow us to use a convex function ψ ∈ ΨN in our discussion,
especially to construct examples.

We shall see some basic properties for direct sums. A Banach space X is called strictly
convex if

x, y ∈ SX , x 6= y =⇒
∥∥∥∥x + y

2

∥∥∥∥ < 1.

X is called uniformly convex if for any ε > 0 there exists δ > 0 such that

‖x − y‖ ≥ ε, x, y ∈ SX =⇒
∥∥∥∥x + y

2

∥∥∥∥ < 1 − δ.

Theorem 3.3 ([21, 40]) A ψ-direct sum (X1 ⊕ · · · ⊕ XN )ψ is strictly (uniformly) convex
if and only if X1, . . . , XN are strictly (uniformly) convex and ψ is strictly convex.
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Now, ψ is strictly convex if and only if ‖·‖ψ is strictly convex ([38]), we have the general
A-direct sum version of this theorem by Theorem 3.2.

Theorem 3.4 An A-direct sum (X1⊕· · ·⊕XN )A is strictly (uniformly) convex if and only
if X1, . . . , XN are strictly (uniformly) convex and ‖ · ‖A is strictly convex.

For similar results for the dual notions, smoothness and uniform smoothness we refer
the reader to Mitani-Oshiro-Saito [33].

4 Weak nearly uniform smoothness A Banach space X is called weakly nearly uni-
formly smooth (WNUS in short) if X is reflexive and R(X) < 2, R(X) is the Garćıa-Falset
coefficient:

R(X) = sup{lim inf
n→∞

‖xn + x‖},

where the supremum is taken over all weakly null sequences {xn} in BX and all x ∈ BX . (cf.
Garćıa-Falset [14]; we refer the reader to Kutzarova et al. [31] for the original definition;
cf. [27]). A Banach space X is said to have the fixed point property for nonexpansive
mappings (FPP in short) provided that for any bounded closed convex subset C of X every
nonexpansive self-mapping T on C has a fixed point, where T is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C.

Uniformly convex resp., uniformly smooth spaces are WNUS ([35]). We also have

Theorem 4.1 (Garćıa-Falset [15, 14]) Every weakly nearly uniformly smooth space has
FPP.

For WNUS-ness of direct sums we have the following.

Theorem 4.2 (Kato-Tamura [27]) Let X1, . . . , XN be of infinite dimension. Let ψ ∈
ΨN . Then, the following are equivalent.

(i) (X1 ⊕ · · · ⊕ XN )ψ is WNUS.
(ii) X1, . . . , XN are WNUS and ψ 6∈ Ψ(1)

N .

Remark 4.3 (i) The implication (ii) ⇒ (i) is valid without the assumption on the dimen-
sion of Xj’s.

(ii) For the case some of Xj’s are of finite dimension we refer the reader to [30].

If ψ ∈ ΨN is strictly convex, ψ 6∈ Ψ(1)
N ([27]). Therefore, taking Remark 4.3(i) into

account, the next previous result is derived from Theorem 4.2.

Corollary 4.4 (Dhompongsa et al. [6]) Let X1, . . . , XN be arbitrary Banach spaces. Let
ψ ∈ ΨN be strictly convex. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕ XN )ψ is WNUS.
(ii) X1, . . . , XN are WNUS.

Recall that ψ 6∈ Ψ(1)
N if and only if ‖ · ‖ψ has Property TN

1 (Theorem 2.9). Owing to
Theorem 3.2, Theorem 4.2 is reformulated in the general A-direct sum setting as follows.

Theorem 4.5 Let X1, . . . , XN be infinite dimensional. Let ‖ · ‖A be an arbitrary norm on
RN . Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕ XN )A is WNUS.
(ii) X1, . . . , XN are WNUS and ‖ · ‖A has Property TN

1 .
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5 Uniform non-squareness A Banach space X is called uniformly non-square (R. C.
James [17]) (UNSQ in short) if there exists a constant ε > 0 such that

min{‖x + y‖, ‖x − y‖} ≤ 2(1 − ε) for all x, y ∈ SX .

It is immediate to see that uniformly convex spaces are strictly convex and UNSQ, while
there is no implication between the latter two notions. The UNSQ-ness has been playing
an improtant role in the geometry of Banach spaces and FPP. One of the most remarkable
recent results is the following.

Theorem 5.1 (Garćıa-Falset et al. [16]) UNSQ spaces have FPP.

An important classical result says that UNSQ spaces are reflexive ([17]); in fact, super-
reflexive ([18]); we shall mention about super-reflexivity again in Section 7. Thus UNSQ-ness
lies between uniform convexity and super-reflexivity, as well as FPP. It is worth stating that
some geometric constants have close connections with these notions. In fact UNSQ-ness are
characterized by CNJ(X) < 2 and also by J(X) < 2, where CNJ(X) and J(X) are the
von Neumann-Jordan and the James constants of a Banach space X ([39, 13]; cf. [24, 20]).
Therefore, if CNJ(X) < 2 or J(X) < 2, X is reflexive and has FPP. These constants have
been calculated for many concrete Banach spaces (we omit precise descriptions).

Theorem 5.2 (Kato-Saito-Tamura [22]) A ψ-direct sum X ⊕ψ Y is uniformly non-
square if and only if X,Y are uniformly non-square and ψ 6= ψ1, ψ∞, that is, ‖ · ‖ψ 6=
‖ · ‖1, ‖ · ‖∞.

In this paper they posed the following problem:

Problem 1. Characterize the uniform non-squareness for (X1 ⊕ · · · ⊕ XN )ψ.
This problem is quite complicated since in the case N ≥ 3 we need to remove much

more convex functions in ΨN (norms in ANN ). Dowling and Saejung [10] presented a
partial answer for Z-direct sums, a fortiori, for ψ-direct sums.

Theorem 5.3 (Dowling-Saejung [10]) Assume that Z-norm ‖ · ‖Z or the dual norm
‖ · ‖∗Z on RN is strictly monotone. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕ XN )Z is UNSQ.
(ii) X1, . . . , XN are UNSQ and ‖ · ‖Z has Properties TN

1 and TN
∞ .

For the case N = 3 they dropped the assumption on strict monotonicity, which answers
Problem 1 for N = 3:

Theorem 5.4 (Dowling-Saejung [10]) The following are equivalent.
(i) (X1 ⊕ X2 ⊕ X3)Z is UNSQ.
(ii) X1, X2, X3 are UNSQ and ‖ · ‖Z has Properties T 3

1 and T 3
∞.

Any A-direct sum is isometric to a Z-direct sum, whence we have the following.

Theorem 5.5 Let ‖ · ‖A be an arbitrary norm on RN . Then the following are equivalent.
(i) (X1 ⊕ X2 ⊕ X3)A is UNSQ.
(ii) X1, X2, X3 are UNSQ and ‖ · ‖A has Properties T 3

1 and T 3
∞.

Remark 5.6 Why did they succeed in the case N = 3? Later we shall see the reason, which
is a quite natural consequence of a recent result by Kato and Tamura [30].
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In 2015 Dhompongsa, Kato and Tamura [8] gave more precise results for Theorem 5.3
in the A-direct sum setting.

Theorem 5.7 Let ‖ · ‖A be an arbitrary norm on RN . Assume that ‖ · ‖A is strictly
monotone. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕ XN )A is UNSQ.
(ii) X1, . . . , XN are UNSQ and the norm ‖ · ‖A has Property TN

1 .

Theorem 5.8 Let ‖ · ‖A be an arbitrary norm on RN . Assume that the dual norm ‖ · ‖∗A
is strictly monotone. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕ XN )A is UNSQ.
(ii) X1, . . . , XN are UNSQ and the norm ‖ · ‖A has Property TN

∞ .

If (X1 ⊕ · · · ⊕ XN )A is UNSQ, the norm ‖ · ‖A has Properties TN
1 and TN

∞ . (This is
a corresponding result to Theorem 5.2; cf. [8, Cororally 4.5] and [30]). Therefore from
Theorems 5.7 and 5.8 the following A-direct sum version of Theorem 5.3 is derived.

Corollary 5.9 Let ‖ · ‖A be an arbitrary norm on RN . Assume that ‖ · ‖A or ‖ · ‖∗A is
strictly monotone. Then the following are equivalent.

(i) (X1 ⊕ · · · ⊕ XN )A is UNSQ.
(ii) X1, . . . , XN are UNSQ and ‖ · ‖A has Properties TN

1 and TN
∞ .

Remark 5.10 Dhompongsa-Kato-Tamura [8] first proved Theorems 5.7, 5.8, and Corollary
5.9 for ψ-direct sums by means of Ψ(1)

N and Ψ(∞)
N , and then derived these results for A-direct

sums by Theorems 3.2 and 2.9. We shall see below the ψ-direct sum version of Theorem
5.5.

Theorem 5.5′ ([8]) Let ψ ∈ ΨN . Assume that ‖ · ‖ψ is strictly monotone. Then the
following are equivalent.

(i) (X1 ⊕ · · · ⊕ XN )ψ is UNSQ.
(ii) X1, . . . , XN are UNSQ and ψ 6∈ Ψ(1)

N .

Now we are in a position to explain why Dowling-Saejung [10] succeeded for the case
N = 3. Very recently by introducing the class Ψ(mix)

N as the class which should be excluded,
Kato-Tamura [30, in preparation] answered Problem 1 without the assumption on strict
monotonicity:

A ψ-direct sum (X1 ⊕ · · · ⊕ XN )ψ is UNSQ if and only if X1, . . . , XN are UNSQ and
ψ 6∈ Ψ(mix)

N .

(This will appear elsewhere.) They showed Ψ(mix)
3 = Ψ(1)

3 ∪ Ψ(∞)
3 for N = 3 and obtained

the following as a corollary.

Theorem 5.11 Let ψ ∈ ΨN . Then the following are equivalent.
(i) (X1 ⊕ X2 ⊕ X3)ψ is UNSQ.
(ii) X1, X2, X3 are UNSQ and ψ 6∈ Ψ(1)

3 ∪ Ψ(∞)
3 .

According to Theorem 2.9, ψ 6∈ Ψ(1)
3 ∪ Ψ(∞)

3 if and only if ‖ · ‖ψ has Properties T 3
1 and

T 3
∞. As any Z-direct sum is isometric to a ψ-direct sum, we have Dowling-Saejung’s result

for (X1 ⊕ X2 ⊕ X3)Z . Theorem 5.3 is also derived from the above-announced result by
Kato-Tamura [30].

We shall conclude this section with the following result.



M. Kato, T. Sobukawa, T. Tamura

Theorem 5.12 (Betiuk-Pilarska and Prus [2]) The following are equivalent.
(i) (X1 ⊕ · · · ⊕ XN )Z is UNSQ.
(ii) X1, . . . , XN are UNSQ and (RN , ‖ · ‖Z) is UNSQ.

Here it remains unknown when the space (RN , ‖ ·‖Z) is UNSQ. Kato-Tamura [30] answered
to this question by introducing Property TN

mix in the A-direct sum setting.

6 Uniform non-`n
1 -ness A Banach space X is called uniformly non-`n

1 if there exists
ε (0 < ε < 1) for which

(6.1) ∀x1, · · · , xn ∈ SX , ∃θ = (θj) (θj = ±1) s.t.

∥∥∥∥ n∑
j=1

θjxj

∥∥∥∥ ≤ n(1 − ε).

When n = 2 the uniform non-`21-ness coincides with the uniform non-squareness. For n = 3
uniformly non-`31 spaces are called uniformly non-octahedral. In the case n = 1 no Banach
space is uniformly non-`11.

Proposition 6.1 Uniformly non-`n
1 spaces are uniformly non-`n+1

1 .

Theorem 5.2 for UNSQ-ness of X ⊕ψ Y is extended to uniform non-`n
1 -ness.

Theorem 6.2 (Kato-Saito-Tamura [23]) Assume that neither X nor Y is uniformly
non-`n−1

1 . Then the following are equivalent.
(i) X ⊕ψ Y is uniformly non-`n

1 .
(ii) X and Y are uniformly non-`n

1 and ψ 6= ψ1, ψ∞.

Remark 6.3 (i) Theorem 6.2 covers Theorem 5.2 as the case n = 2, since no Banach
space is uniformly non-`11.

(ii) We cannot drop the assumption ”neither X nor Y is uniformly non-`n−1
1 ”.

(iii) For the N Banach spaces case some results were obtained under the assumption
that the ψ-norm ‖ · ‖ψ is strictly monotone in Kato and Tamura [29].

As before we obtain the A-direct sum version of Theorem 6.2.

Theorem 6.4 Let ‖ · ‖A be an arbitrary norm on RN . Assume that neither X nor Y is
uniformly non-`n−1

1 . Then the following are equivalent.
(i) X ⊕A Y is uniformly non-`n

1 .
(ii) X and Y are uniformly non-`n

1 and ‖ · ‖A 6= ‖ · ‖1, ‖ · ‖∞.

Now, we shall look into the extreme cases, `1- and `∞-sums, which were excluded in
Theorems 6.2 (and 6.4). According to this theorem, X ⊕1 Y and X ⊕∞ Y cannot be UNSQ
for all X and Y , while X ⊕1 Y and X ⊕∞ Y can be uniformly non-`n

1 (n ≥ 3) if either X
or Y is uniformly non-`n−1

1 . In fact the following are true.

Theorem 6.5 (Kato-Saito-Tamura [23]) The following are equivalent.
(i) X ⊕1 Y is uniformly non-`n

1 , n ≥ 3.
(ii) There exist n1, n2 ∈ N with n1 + n2 = n − 1 such that X is uniformly non-`n1+1

1

and Y is uniformly non-`n2+1
1 .

As corollaries the following are obtained.

Corollary 6.6 The following are equivalent.
(i) X ⊕1 Y is uniformly non-`31.
(ii) X and Y are UNSQ.
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Corollary 6.7 The following are equivalent.
(i) X ⊕1 Y is uniformly non-`41.
(ii) X is UNSQ and Y is uniformly non-octahedral.

Theorem 6.5 is extended as follows.

Theorem 6.8 The following are equivalent.
(i) (X1 ⊕ · · · ⊕ XN )1 is uniformly non-`N+1

1 .
(ii) X1, . . . , XN are UNSQ.

This implies especially that the space `n
1 is uniformly non-`n+1

1 . For `∞-sums we have the
following.

Theorem 6.9 (Kato-Tamura [26]) Let n ≥ 2. The following are equivalent.
(i) (X1 ⊕ · · · ⊕ X2n−1)∞ is uniformly non-`n+1

1 .
(ii) X1, . . . , X2n−1 are UNSQ.

Corollary 6.10 The following are equivalent.
(1) (X ⊕ Y ⊕ Z)∞ is uniformly non-`31.
(2) X, Y and Z are UNSQ.

Remark 6.11 Recall that the `1-sum X ⊕1 Y is uniformly non-`31 if and only if X and
Y are UNSQ. Contrary to this, if X and Y are UNSQ, the `∞-sum X ⊕∞ Y is uniformly
non-`31 ([23, Corollary 5.3bis]), but the converse is not true ([23, Remark 5.5]). We added
one more space Z to obtain the equivalence in Corollary 6.9. Compare also Theorems 6.7
and 6.8. These observations show one aspect of the defference between `1- and `∞-sums.

7 Applications All UNSQ spaces have FPP. Thus it is natural to ask whether all uni-
formly non-octahedral spaces have FPP. We have the following.

Theorem 7.1 (Kato-Tamura [26]) Let X be uniformly non-octahedral. If X is isometric
to an `∞-sum of 3 Banach spaces, X has FPP, while X is not UNSQ.

More generally we have

Theorem 7.2 Let X be uniformly non-`n+1
1 . If X is isometric to an `∞-sum of 2n − 1

Banach spaces, X has FPP, while X is not UNSQ.

Example 7.3 Let 1 < p < ∞. Since Lp is uniformly convex, it is UNSQ. Therefore the
space X = (Lp ⊕Lp ⊕Lp)∞ is uniformly non-octahedral by Theorem 6.9, and hence X has
FPP by Theorem 7.1, while it is not UNSQ since X contains `3∞ as a subspace.

In the same way, the `∞-sum of 2n − 1 Lp’s is uniformly non-`n+1
1 , which is weaker

than uniform non-octahedralness, has FPP but is not UNSQ.

By using Theorem 4.2 a plenty of Banach spaces with FPP which fail to be UNSQ is
constructed.

Example 7.4 (Kato-Tamura [27]) Let N ≥ 3 and let ϕ,ψ1 ∈ Ψ2, ϕ 6= ψ1. Let

ψ(s1, . . . , sN−1)

= max
{
‖(1 −

N−1∑
i=1

si, s1)‖ϕ, ‖(s1, s2)‖ϕ, ‖(s2, s3)‖ϕ, · · · , ‖(sN−2, sN−1)‖ϕ

}
for (s1, . . . , sN−1) ∈ ∆N .
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Then ψ ∈ ΨN and

‖(a1, a2 . . . , aN )‖ψ = max{‖(a1, a2)‖ϕ, ‖(a2, a3)‖ϕ, . . . , ‖(aN−1, aN )‖ϕ}
for (a1, . . . , aN ) ∈ RN .

Further, ψ 6∈ Ψ(1)
N and ‖ · ‖ψ is not UNSQ.

Since WNUS spaces have FPP, we have the following.

Theorem 7.5 (Kato-Tamura [27]) Let X1, . . . , XN be WNUS (N ≥ 3). Let ψ ∈ ΨN be
as in Example 7.4. Then (X1 ⊕ · · · ⊕ XN )ψ has FPP, whereas it is not UNSQ.

Indeed, since ψ 6∈ Ψ(1)
N , X = (X1 ⊕ · · · ⊕XN )ψ is WNUS by Theorem 4.2 (with Remark

4.3 (i)) and hence X has FPP. On the other hand, X is not UNSQ as (RN , ‖ · ‖ψ) is not
UNSQ.

Next, as ψ∞ 6∈ Ψ(1)
N , we have

Theorem 7.6 Let X1, . . . , XN be WNUS. Then (X1 ⊕ · · · ⊕XN )∞ has FPP, whereas it is
not UNSQ.

Example 7.7 Let 1 < pk < ∞, 1 ≤ k ≤ N .
(i) Let ψ ∈ ΨN be as in Example 7.4. Since Lpk

are uniformly convex and hence
WNUS, the space X = (Lp1 ⊕· · ·⊕LpN

)ψ has FPP, while X is not UNSQ by Theorem 7.6.
(ii) The `∞-sum X = (Lp1 ⊕ · · · ⊕LpN

)∞ is WNUS and hence has FPP. On the other
hand, the space X is not UNSQ.

Finally we shall discuss super-reflexivity. A Banach space Y is said to be finitely rep-
resentable in X provided for any ε > 0 and for any finite dimensional subspace F of Y
there is a finite dimensional subspace E of X with dimF = dimE such that d(F,E) :=
inf{‖T‖‖T−1‖ : T is an isomorphism of F onto E} < 1 + ε. A Banach space X is called
super-reflexive if every Banach space Y which is finitely representable in X is reflexive ([18];
cf. [1]). The next celebrated result states the connection between super-reflexivity and
uniform convexity as well as UNSQ-ness.

Theorem 7.8 (cf. [12, 34, 18]) The following are equivalent.
(i) X is super-reflexive.
(ii) X admits an equivalent uniformly convex norm.
(iii) X admits an equivalent uniformly non-square norm.

UNSQ spaces are super-reflexive ([17]), whereas uniformly non-octahedral spaces are not
always reflexive ([19]). For `1-sum spaces we have the following ([26]).

Theorem 7.9 Let X be a uniformly non-octahedral Banach space which is isometric to the
`1-sum of 2 Banach spaces. Then X is super-reflexive.

Indeed, if X is isometric to X1⊕1 X2, X1⊕1 X2 is uniformly non-octahedral, from which
it follows that X1 and X2 are UNSQ by Corollary 6.5, hence super-reflexive. Consequently
the `1-sum, and hence X is super-reflexive.

By Theorem 6.9 we have the similar result for `∞-sum spaces.

Theorem 7.10 Let X be a uniformly non-octahedral Banach space which is isometric to
the `∞-sum of 3 Banach spaces. Then X is super-reflexive.
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