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Abstract. In this note we provide complete metrics for a large class of fuzzy sets on
R which may not have bounded support and which may not even be measurable.

1 Introduction This note, a sequel to [9], continues to explore the problem of enlarging
the scope of fuzzy numbers. Kaleva [6] consolidated the approach of Goetschel and Voxmax
[5] in metrizing a larger class of fuzzy numbers, introduced by Dubois and Prade [3]. The
monograph by Diamond and Kloeden [2] elaborates the contributions of Kaleva as well as
their applications to differential equations besides other metrice on fuzzy sets. In the earlier
publication [9], the author modified Kaleva’s approach to metrize a class of fuzzy numbers
that may not have bounded supports. The present note provides a method of metrizing all
functions mapping R, the real number system into [0,1], generalizing the work of Congxin
Wu and Li [1].

2 A General Representation Theorem for Fuzzy Sets A general representation
theorem for fuzzy subsets of an arbitrary nonvoid set is described below. Unlike in other
representation theorems no assumptions involving either topology or convexity is made in
the following.

Proposition 2.1. Let X be a nonvoid set and u : X → [0, 1], a function such that u(x) = 1
for some x ∈ X. Let Cα = [u]α = {x ∈ X : u(x) ≥ α} for each α ∈ [0, 1]. Then

(i) for each α ∈ I, Cα is a nonempty subset of X;

(ii) Cβ ⊆ Cα for 0 ≤ α ≤ β ≤ 1;

(iii) Cα =
∞∩

i=1

Cαi for each sequence {αi} ↑ α in I.

Conversely if for a nonempty set X, there is a family of nonempty sets Cα, α ∈ [0, 1]
satisfying the properties (i), (ii) and (iii) above, then there is a unique function u : X →
[0, 1], viz. a fuzzy subset u of X such that [u]α = Cα for each α ∈ [0, 1] with u(x) = 1 for
some x ∈ X.

Proof. Since C1 6= φ, (i) and (ii) are clear. Let α ∈ [0, 1] and αi ↑ α. Then Cαi ⊇ Cα for

each i. So
∞∩

i=1

Cαi ⊇ Cα. If x ∈ Cαi , then u(x) ≥ αi for each i. So u(x) ≥ limαi = α. Thus

∞∩
i=1

Cαi ⊆ [u]α = Cα. Thus
∞∩

i=1

Cαi = Cα. If α = 0, and αi(∈ [0, 1]) ↑ α, then αi = 0. In

this case also (iii) is true.
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To prove the converse, define u : X → I by u(x) = sup{α ∈ I : x ∈ Cα}. Since C0 = X,
u(x) is well-defined for each x ∈ X. u(x) = 1 for some x as C1 is nonempty. If x ∈ [u]α, then
u(x) ≥ α. Define Ix = {β ∈ I : x ∈ Cβ}. Let α′ = sup Ix. So α′ = u(x) ≥ α. By assumption
(ii) Cα′ ⊆ Cα. Thus [u]α ⊆ Cα. On the other hand for x ∈ Cα, u(x) = sup Iα = α′ ≥ α
and so x ∈ [u]α. Thus Cα ⊆ [u]α and so [u]α = Cα for each α ∈ I. If for some v : X → I,
[v]α = Cα for each α ∈ I, then v(x) = u(x). Without loss of generality let v(x) = r > u(x).
Then [v]r = Cr 6= [u]r, a contradiction. So u : X → I is uniquely defined.

We have a more general representation theorem.

Theorem 2.2. Let X =
∞∪

n=1

Xn be a set where X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ Xn+1 ⊆ · · · and

each Xi is nonempty. Let u : X → [0, 1] be a function such that u[1] = {x ∈ X : u(x) ≥
1} ∩ X1 6= φ. Then

(i) for each n, Cα,n = [u]α ∩ Xn 6= φ for all α ∈ [0, 1]: and [u]α =
∞∪

n=1

Cα,n;

(ii) Cβ,n ⊆ Cα,n for all 0 ≤ α ≤ β ≤ 1 for all n;

(iii) for αi ∈ [0, 1] and {αi} ↑ α ∈ [0, 1], Cα,n =
∞∩

i=1

Cαi,n for each n ∈ N.

Conversely if X is the countable union of an increasing sequence of nonempty sets (Xn)
and {Cα,n : α ∈ [0, 1], n ∈ N} is a family of nonempty subsets satisfying (i), (ii) and (iii)
above then there exists a unique u : X → [0, 1] such that for each α ∈ I and n ∈ N.
[u]α ∩ Xn = Cα,n.

Proof. The proof of (i), (ii) and (iii) is easy and omitted.
For the proof of the converse define u : X → [0, 1] by u(x) = sup{α ∈ [0, 1] : x ∈

Cα,n for the smallest n ∈ N}. Since x ∈ X =
∞∪

n=1

Xn, x ∈ Xn0 for the least n0 ∈ N. Let

u(x) = α0. Then x ∈ Cα0,n0 . Further [u]α =
∪
n∈N

Cα,n. Since C1,1 is nonempty [u]1 6= φ and

for 0 ≤ α ≤ β ≤ 1. [u]β ⊆ [u]α as Cβ,n ⊆ Cα,n for all n ∈ N. If αi ↑ α αi, α ∈ [0, 1], then

by (iii) Cα,n =
∞∩

i=1

Cαi,n for each n ∈ N. So [u]α =
∪
n∈N

Cα,n =
∞∩

i=1

∪
n∈N

Cαi,n =
∞∩

i=1

[u]αi .

If u 6= v, then for some x0 u(x0) > v(x0) without loss of generality. So for some r,
u(x0) > r > v(x0). Or [u]r =

∪
n∈N

Cr,n 6= [v]r as x0 ∈ [u]r, though x0 6∈ [v]r. Thus u is

uniquely defined.

3 Outer Measure Spaces Let X be a nonvoid set with a hereditary σ-algebra S . Let
µ∗ : S → [0,∞] be a nonnegative extended valued countably subadditive (set) function such
that µ(φ) = 0. Such a (set) function is called an outer measure and the triple (X, S , µ∗)

is known as an outer measure space. An outer measure µ∗ is called σ-finite if X =
∞∪

n=1

Xn

where Xn ∈ S , µ∗(Xn) is finite for each n ∈ N.
It is known that an outer measure for which µ∗(X) < +∞ induces metrics naturally. The

following theorem is esentially due to Frechet [5] and rediscovered by Meyer and Sprinkle
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[8] (see MR 0104211 21 # 2968 for [8] by F.B. Jones). Since it is not widely known, both
the statement and the proof are presented here for the sake of completeness.

Theorem 3.1. Let (X, S , µ∗) be an outer measure space for which µ∗(X) < +∞, S being
a hereditary σ-algebra on a nonvoid set X. The functions ρ and δ defined on S by

ρ(A,B) = µ∗(A − B) + µ∗(B − A)
δ(A,B) = µ∗[(A − B) ∪ (B − A)]

for A,B ∈ S define pseudometrics on S . Further ρ and δ are complete pseudometrics.
By defining equivalence relations A ∼ B in S if ρ(A,B) = 0 or δ(A, B) = 0 the set of all
equivalence classes in S becomes a complete metric space under ρ or δ. Also ρ(A,B) = 0
or δ(A,B) = 0 if and only if A ∪ Z1 = B ∪ Z2 where µ∗(Zi) = 0 for i = 1, 2.

Proof. Clearly ρ(A, A) and δ(A,A) = 0 for all A ∈ S . Further ρ(A,B) = ρ(B,A) and
δ(A,B) = δ(B,A) for all A, B ∈ S , ρ(A,B) = 0 implies µ∗(A − B) = µ∗(B − A) = 0. So
A∪B = A∪B−A = A∪Z1 with µ∗(Z1) = µ∗(B−A) = 0 and A∪B = B∪A−B = B∪Z2

with Z2 = A − B and µ∗(Z2) = 0. This is true for δ as well, for δ(A,B) = 0 implies
µ∗(A − B ∪ B − A) = 0 leading to A ∪ B = A ∪ Z1 = A ∪ B − A = B ∪ Z2 = B ∪ A − B
with µ∗(Zi) = 0, i = 1, 2 as before. If A ∪ Z1 = B ∪ Z2 where m∗(Zi) = 0 for i = 1, 2,
m∗(A − B) ≤ m∗(B ∪ Z2 − B) = m∗(B ∩ Bc ∪ Bc ∩ Z2) ≤ m∗(Z2) = 0. Similarly
m∗(B−A) ≤ m∗(A∪Z1−A) ≤ m∗(A∩Ac∪Z1∩Ac) ≤ m∗(Z1) = 0. So ρ(A,B) = m∗(A−
B)+m∗(B−A) = 0. Similarly δ(A,B) = m∗(A−B∪B−A) ≤ m∗(A−B)+m∗(B−A) = 0.

For A,B,C ∈ S

ρ(A,B) = m∗(A − B) + m∗(B − A)
≤ m∗(A − C ∪ C − B) + m∗(B − C ∪ C − A)
≤ m∗(A − C) + m∗(C − B) + m∗(B − C) + m∗(C − A)
= ρ(A,C) + ρ(C,B)

Similarly

δ(A,B) = m∗(A − B ∪ B − A)
≤ m∗(A − C ∪ C − B ∪ B − C ∪ C − A)
≤ m∗(A − C ∪ C − A) + m∗(C − B ∪ B − C)
= δ(A, C) + δ(C,B)

Thus both ρ and δ are pseudometrics on S .
We now prove that (S , ρ) as well as (S , δ) are both complete. Let (Cn) be a sequence

of sets in S . Suppose it is Cauchy in (S , ρ). It suffices to show that a subsequence of (Cn)
converges to an element C in S . Choose a subsequence Cni of Cn such that ρ(Cni , Cnj ) < 1

2i

for i ∈ N and j > i.

Define Dk =
∞∩

i=k

Cni , Ek =
∞∪

i=k

Cni for k ∈ N, D =
∞∪

k=1

Dk =
∞∪

k=1

∞∩
i=k

Cni = limCni and

E =
∞∪

k=1

Ek =
∞∩

k=1

∞∪
i=k

Cni = limCni . As S is a σ-algebra, D,E,Dk and Ek ∈ S . For each

k ∈ N, Dk ⊆ D ⊆ E ⊆ Ek.
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Now

m∗(Ek − Cnk
) = m∗

( ∞∪
i=1

Cni − Cnk

)

≤
∞∑

i=k

m∗(Cni − Cnk
)

≤ 1
2k−1

.

So ρ(Ek, Cnk
) = m∗(Ek − Cnk

) → 0 as k → ∞.

m∗(Cnk
− Dk) = m∗

(
Cnk

∩

( ∞∪
i=k

Cc
ni

))

≤
∞∑

i=k

m∗(Cnk
− Cni) ≤

∞∑
i=k

ρ(Cnk
, Cni)

≤ 1
2k−1

So ρ(Cnk
, Dk) = m∗(Cnk

− Dk) → 0, as k → ∞.
Since ρ(Ek, Dk) ≤ ρ(Ek, Cnk

) + ρ(Cnk
, Dk)

lim
k→∞

ρ(Ek, Dk) = 0

Since ρ(E,D) ≤ ρ(Ek, Dk) as
Dk ⊆ D ⊆ E ⊆ Ek for all k, ρ(E,D) = 0
Thus limCni = limCni = E or D and ρ(E,Cnk

) → 0 as k → ∞.
So (Cnk

) converges to E(= D) in (S , ρ) and hence (Cn) converges to E(= D) in (S , ρ)
and hence (Cn) converges to E(= D) in (S , ρ). Thus (S , ρ) is complete.

If (Cn) is Cauchy in (S , δ) as before choose a subseqeunce (Cni) of (Cn) such that
δ(Cni , Ck) < 1

2c for all k ≥ ni.

δ(Ek − Cnk
) = m∗

( ∞∪
i=k

Cni − Cnk

)

≤
∞∑

i=k

m∗(Cni − Cnk
)

≤ 1
2k−1

.

So lim
k→∞

δ(Ek, Cnk
) = 0

Also

δ(Cnk
, Dk) = m∗

(
Cnk

∩

( ∞∪
i=k

Cc
ni

))

≤
∞∑

i=k

m∗(Cnk
− Cni)

≤
∞∑

i=k

δ(Cnk
, Cni)

≤ 1
2k−1
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Thus lim
k→∞

δ(Cnk
, Dk) = 0. Now as δ(Dk, Ek) ≤ δ(Dk, Cnk

) + δ(Cnk
, Ek), lim

k→∞
δ(Dk, Ek) =

0. Since δ(E,D) = m∗(E−D) ≤ m∗(Ek−Dk) = δ(Ek, Dk) for all k, δ(E,D) = 0 or E−D.
Thus Cnk

converges to E = limCni = limCni = D. So δ(E(= D), Cn) → 0 as n → ∞.
Thus (S , δ) is complete.

Considering the set of all equivalence classes of sets in S induced by the equivalence
relation A ∼ B if and only if ρ(A,B)′ = 0 or δ(A,B) = 0 the metric induced by ρ or δ is
complete.

In this context we recall the following definition (see Dugundji [4]).

Definition 3.2. Let D = {Dλ : λ ∈ Λ} be a family of pseudometrics on a nonvoid set X.
The topology τ(D) with the subbase {B(x; dλ, ε)(= {y ∈ X : dλ(x, y) < ε}} where ε > 0 and
dλ, a pseudometric on X is called a gauge space, the family D being a gauge. The gauge is
called separating if for x, y ∈ X x 6= y, there exists λ0 ∈ Λ such that dλ0(x, y) > 0. (Clearly
a gauge is separating if and only if the topology is Hausdorff).

Definition 3.3. Let (X,D) be a gauge space. A sequence (xn) is called Cauchy if dλ(xm, xn) →
0 as m,n → ∞ for each λ ∈ Λ. The gauge space is said to be sequentially complete if every
Cauchy sequence in X is convergent.

Remark 3.4. A topological space is a gauge space if and only if it is a Tychonoff space.
A necessary and sufficient condition for a gauge space to be metrizable is that it has a
countable gauge. For these and related results Dugundji [4] may be referred.

We have the following theorems whose straight-forward proofs are left as exercises.

Theorem 3.5. Let (X, S , µ∗) be an outer measure space with a hereditary σ-algebra S .

Suppose X =
∞∪

n=1

Xn where X1 ⊆ X2 · · · ⊆ Xn ⊆ Xn+1 ⊆ · · · with µ∗(Xn) < +∞ for

all n. Then (S , D)((S , D′)) is a Hausdorff complete metrizable gauge space. Here D =
{ρn : n ∈ N}, D′ = {δn : n ∈ N} where ρn(A,B) = ρ(A ∩ Xn, B ∩ Xn) and δn(A, B) =
δ(A ∩ Xn, B ∩ Xn) for n ∈ N, ρ and δ being the metrics defined in Theorem 3.1. Also
A,B ∈ S for which ρn(A,B) = 0 (δn(A,B) = 0) for all n are identified as equal.

Theorem 3.6. Let (X, S , µ) be a complete measure space. Suppose X =
∞∪

n=1

Xn where

X1 ⊆ X2 · · · ⊆ Xn ⊆ Xn+1 ⊆ · · · with µ(Xn) < +∞ for all n ∈ N. Then (S , D)((S , D′))
is a Hausdorff complete metrizable gauge space. Here D = {ρn : n ∈ N} and D′ = {δn : n ∈
N} where ρn(A,B) = µ(Xn ∩ (A − B)) + µ(Xn ∩ (B − A)) and δn(A,B) = µ{Xn ∩ ((A −
B) ∪ (B − A))} for each n ∈ N. In S sets A,B with ρn(A,B) = 0 (δn(A, B) = 0) for all
n ∈ N are treated equivalent.

4 Fuzzy Subsets of an Outer Measure Space In this section we provide a metrical
structure for a class of fuzzy subsets of an outer measure space (X, S , µ∗) defined on a
hereditary σ-algebra S . This is described in Theorem 4.1 and Theorem 4.2 and Corollary
4.3 point out how a wide class of fuzzy subsets of Rn or R can be endowed with a complete
metric.

Theorem 4.1. Let (X, S , µ∗) be an outer measure space, S being a hereditary σ-algebra

with X =
∞∪

n=1

Xn, where X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ Xn+1 ⊆ · · · and µ∗(Xn) < +∞ for all n ∈

N. Let F 1
A(x) be the set of all functions u : X → [0, 1] such that {x ∈ X : u(x) ≥ α} ∈ S for
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each α ∈ [0, 1] and u and v for which µ∗{x : u(x) 6= v(x)} = 0 are treated as equal in F 1
A(x).

Further suppose there exists A ∈ S with A ⊆ {x : u(x) ≥ 1} ⊆ X1 for all u in F 1
A(X) and

µ∗(A) > 0. Define ∆n, ∆′
n : F 1

A(X) × F 1
A(X) → R+ by ∆n(u, v) = sup

0≤α≤1
ρ([u]α, [v]α) and

∆′
n(u, v) = sup

0≤α≤1
δ([u]α, [v]α). Then {F 1

A(X), ∆n : n ∈ N} and {F 1
A(X), ∆′

n : n ∈ N} are

Hausdorff, gauge spaces which are complete metrizable spaces.

Proof. Since ∆n(u, v) = ∆n(v, u) and ∆n(u, v) ≤ ∆n(u,w) + ∆n(w, v) for all n each ∆n

is a pseudometric on F 1
A(X). Further for ∆n(u, v) = 0 for all n [u]α = [v]α on X for

all α ∈ [0, 1]. Since [u]r = [v]r for all rationals in [0, 1] it follows that u = v almost
everywhere on X with respect to µ∗. Thus {F ′(U),∆n : n ∈ N} is a Hausdorff gauge
space. Let un be a Cauchy sequence in {F 1

A(U), ∆n}. Since sup
α∈I

ρ(Xn ∩ [up]α, Xn ∩ [uq]α) is

Cauchy in (X, ρ), there exists Cα
n such that sup

α∈I
ρ(Xn ∩ [um]α, Cα

n ) → 0 as m → ∞. Define

Cα =
∞∪

n=1

Cα
n . Clearly Cα ∈ S for each α ∈ [0, 1]. Since [um]β for β ≥ α, α, β ∈ [0, 1],

for each n ∈ N Xn ∩ [um]β ⊆ Xn ∩ [um]α. As m → ∞, since [um]β → Cβ = lim[um]β .
Xn ∩ Cβ ⊆ Xn ∩ lim[um]α = Xn ∩ Cα. If αi ↑ α in [0, 1], lim

i→∞
[um]αi ∩ Xn = [um]α ∩ Xn.

ρ([um]αi∩Xn, Cαi
n ) < ε for all m ≥ m0 for all α. Now as αi ↑ α, P ([um]αi∩Xn, [um]α∩Xn) <

ε for i ≥ i0. So ρ([um]αi ∩Xn, Cα
n ) ≤ ρ([um]αi ∩Xn, [um]α ∩Xn)+ ρ([um]α ∩Xn, Cα

n ) < 2ε.
So as m → ∞ ρ(Cαi

n , Cα
n ) ≤ 2ε for i ≥ i0

Hence Cαi
n → Cα

n as lim Cαi
n =

∞∩
i=1

Cαi
n . Also [un]1 ⊇ A for all n. So lim

n→∞
[un]1 =

C1 ⊇ A. Thus {F 1(X),∆n : n ∈ N} is a Hausdorff countable gauge space which is
sequentially complete. So it is metrizable and complete. One can generate the gauge

topology using the metric ∆(u, v) =
∞∑

n=1

min(1, ∆n(u, v))
2n

or
∞∑

n=1

∆n(u, v)
2nµ∗(Xn)

A similar argument shows that F 1
A(X, S , µ∗) with the countable gauge {∆′

n : n ≥ N} is
Hausdorff and completely metrizable and

∆′(u, v) =
∞∑

n=1

min(1, ∆′
n(u, v))

2n
or

=
∞∑

n=1

∆′
n(u, v)

2nµ∗(Xn)

gives a complete metric.

The following theorem can be proved along similar lines.

Theorem 4.2. Let (X, S , µ) be a complete measure space where X =
∞∪

n=1

Xn where X1 ⊆

X2 ⊆ · · · ⊆ Xn ⊆ Xn+1 ⊆ · · · and 0 < µ(Xn) < +∞ for all n. Let F 1
A(X, S , µ) be the set

of measurable functions mapping X into [0, 1] such that for some A ⊆ X1 with µ(A) > 0
and u[1] ⊇ A. Then F 1

M (X) is a Hausdorff complete metrizable gauge space with the gauge
{∆n : n ∈ N} or {∆′

n : n ∈ N} where

∆n(u, v) = sup
0≤α≤1

ρn([u]α, [v]α) and

∆′
n(u, v) = sup

0≤α≤1
δn([u]α, [v]α)
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for u, v ∈ F 1
m(X). ρn and δn are as in Theorem 3.6.

Corollary 4.3. Let µ∗ be the Lebesgue outer measure on X = Rn. Then for any A ⊆
B(0; 1) the unit open ball with µ∗(A) > 0, F 1

A(X, 2X , µ∗), the set of all fuzzy subsets u of Rn

with u[1] ⊇ A is a sequentially complete Hausdorff gauge space with the gauge {∆n : n ∈ N}
or {∆′

n : n ∈ N} where ∆n and ∆′
n are as in Theorem 4.1.

Corollary 4.4. If µ∗ is the Lebesgue measure on Rn and A ⊆ B(0, 1) the unit open ball in
Rn with µ(A) > 0. Then F 1

µ(Rn,S , µ) the set of all fuzzy Lebesgue measurable subsets of Rn

with [u]1 ⊇ A is a sequentially complete Hausdorff gauge space with the gauge {∆n : n ∈ N}
or {∆′

n : n ∈ N} where ∆n and ∆′
n are as in Theorem 4.2.

Remark 4.5. As the space of Lebesgue outer measurable subsets of (0, 1) or the unit ball in
Rn with the metrics ρ or δ induced by the Lebesgue outer measure is not separable, F 1

A(R, 2R)
or F 1

A(Rn, 2Rn

) with the gauge {∆n : n ∈ N} or {∆′
n : n ∈ N} described in Theorem 4.1 is

not separable.

Remark 4.6. Characteristic functions of singletons in R are identified with fuzzy real
numbers in the Kaleva approach to fuzzy real numbers. However as singletons have zero
Lebesgue measure, the characteristic functions of singletons are all equivalent to the zero
function and so cannot be used to represent fuzzy real numbers in F 1(R). However this
can be remedied by considering the product metric space F 1(R) × R with the corresponding
metric of the product space so that the real number system can be isometrically embedded
in this product space. This is similar to embedding the real numbers isometrically in the
complex plane or R2.

Remark 4.7. When (X, S , µ∗) is a finite outer measure space, then F 1
U (X, S , µ∗), the set

of all fuzzy subsets u : X → [0, 1] with [u]1 ⊇ A and µ∗(A) > 0 is a complete metric space
under the metrics

ρ(u, v) = sup
0≤α≤1

{m∗([u]α − [v]α) + m∗([v]α − [u]α)]

δ(u, v) = sup
0≤α≤1

{m∗[([u]α − [v]α) ∪ ([v]α − [u]α)]

Finally we provide just one example to show that certain fuzzy functional equations
can be solved in this setting, affording greater flexibility and scope for solving nonlinear
equations involving fuzzy numbers which are neither upper semicontinuous nor convex.

Example 4.8. Let X be [0,1] and µ∗ the Lebesgue outer measure on the power set 2X of
X. Let A be a non-measurable subset of X with positive outer measure and F 1

A(X, S , µ∗)
the set of all fuzzy subsets u : X → [0, 1] such that [u]1 ⊇ A. Define T : F 1

A(X) → F 1
A(X)

by [Tu]α = [v]α = f{x : u(x) ≥ α} ∪ A where f(x) = e−x+x
2 . Since µ∗([Tu1]α − [Tu2]α) +

µ∗([Tu2]α − [Tu1]α) ≤ 1
2µ∗([u1]α − [u2]α) + µ∗([u2]α − [u1]α) and F 1

A(X) is complete and
∆(Tu1, Tu2) ≤ 1

2∆(u1, u2), T has a unique fixed point which is a solution of the functional
equation Tu = u in F 1

A(X).
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