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Abstract. One of the aim of the present paper is introduce the concept of ωρ-
closed sets in topological space (X, τ) (cf. Definition 1.4) and study topological prop-
erties of their classes of sets, where ρ : SO(X, τ) → P (X) is a function defined by
ρ(V ) := V, ρ(V ) := Int(V ) or ρ(V ) := Int(Cl(V )) for every semi-open set V of (X, τ).
Furthermore, their relation ships with other generalied closed sets are investigated (cf.
Remark 2.2). Using some analogous concept of the Jankovic-Reilly decomposition of sets
([2]), the concept of ωρ-closed sets is completely characterized (cf. Theorem 4.8(iii)). In
Section 5 and Section 6, some new separation axioms are introduced and investigated (i.e.
(ωρ1, ωρ2)-T ρ

1/2-separation axioms (cf. Definition 5.3(I)(i), Theorem 5.11, Theorem 5.13,
Theorem 5.15), where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf. Definition 1.3). Throughout the present
paper, examples are almost stated from topics of the digital line (Z, κ) due to E. D.
Khalimsky (cf. Definition 2.3).

1 Introduction and preliminaries Throughout the present paper, (X, τ) repre-
sents a nonempty topological space on which no separation axioms are assumed unless
otherwise mentioned and P (X) denotes the power set of X. For a subset A of (X, τ),
Cl(A), Int(A) and Ker(A) denote the closure, interior and kernel of A with respect to
the topological space (X, τ) respectively; i.e., Cl(A) := ∩{F |A ⊂ F and X \ F ∈ τ},
Int(A):=∪{U |U ⊂ A and U ∈ τ} and Ker(A):=∩{V |A ⊂ V and V ∈ τ}. A subset B
of (X, τ) is said to be semi-open ([13, in 1963],[8]), if B ⊂ Cl(Int(B)) holds in (X, τ).
And, a subset E of (X, τ) is said to be preopen ([19, in 1982]), if E ⊂ Int(Cl(E)) holds
in (X, τ). The family of all semi-open sets (resp. preopen sets) of (X, τ) is denoted by
SO(X, τ) (resp. PO(X, τ)). For a subset A of (X, τ), pCl(A) denotes the preclosure of
A with respect to (X, τ), i.e., pCl(A) := ∩{F |A ⊂ F and X \ F ∈ PO(X, τ)}.

We recall the following concepts of two classes of generalized closed sets of a topolog-
ical space (X, τ).

Definition 1.1 (i) ([27, in 1995], [28, in 2000;Definition 2.1],[26, in 2002]) A subset A of
(X, τ) is said to be ω-closed in (X, τ), if Cl(A) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(ii) ([22, in 2005]) A subset A of (X, τ) is said to be weakly ω-closed in (X, τ), if
Cl(Int(A)) ⊂ U whenever A ⊂ U and U ∈ SO(X, τ).

(iii) A subset B of (X, τ) is said to be ω-open ([27]) (resp. weakly ω-open ([22, Defi-
nition 3.22])) in (X, τ), if X \ B is ω-closed (resp. weakly ω-closed) in (X, τ).
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We use the following notation and definition.

Notation 1.2 (•1) ωC(X, τ) := {A| A is ω-closed in (X, τ)};
(•1′) ωO(X, τ) := {B| B is ω-open in (X, τ)};
(•2) wωC(X, τ) := {A| A is weakly ω-closed in (X, τ)};
(•2′) wωO(X, τ) := {B| B is weakly ω-open in (X, τ)}.

Definition 1.3 Let EX be a subfamily of P (X). The following function ρ : EX → P (X)
is used on the present paper: for every set U ∈ EX and a topological space (X, τ),

(i) ρ := ◦ : EX → P (X) defined by ◦(U) := Int(U);
(ii) ρ := ◦− : EX → P (X) defined by ◦ − (U) := Int(Cl(U));
(iii) ρ := ◦ − ◦ : EX → P (X) defined by ◦ − ◦(U) := Int(Cl(Int(U)));
(iv) ρ := −◦ : EX → P (X) defined by − ◦ (U) := Cl(Int(U));
(v) ρ := − ◦ − : EX → P (X) defined by − ◦ −(U) := Cl(Int(Cl(U)));
(vi) ρ := id : EX → P (X) defined by id(U) := U.

We define some related classes of ω-like closed sets (cf. Definition 1.4, Notation 1.5).

Definition 1.4 Let A and B be subsets of a topological space (X, τ). And, let
ρ : SO(X, τ) → P (X) be a function such that ρ ∈ {id, ◦,−◦,− ◦ −, ◦−, ◦ − ◦} (cf.
Definition 1.3 above for EX := SO(X, τ)). A subset A is said to be ωρ-closed in (X, τ),
if Cl(A) ⊂ ρ(U) holds whenever A ⊂ U and U ∈ SO(X, τ). The complemet X \B of an
ωρ-closed set B is called an ωρ-open set of (X, τ).

We have the following equivalent expression: a subset A is ωid-closed (resp. ωid-open) in
(X, τ) if and only if A is ω-closed (resp. ω-open) in (X, τ).

Notation 1.5 (i) For each function ρ : SO(X, τ) → P (X) with ρ ∈ {id, ◦,−◦,− ◦
−, ◦−, ◦−◦} (cf. Definition 1.3 above for EX := SO(X, τ)), we use the following notation:

(•3ρ) ωρC(X, τ) := {A| A is ωρ-closed in (X, τ)});
(•3′ρ) ωρO(X, τ) := {U | U is ωρ-open in (X, τ)} (cf. Definition 1.4 above).
(ii) (•4) psC(X, τ) := {A| A is ps-closed in (X, τ)};
(•4′) psO(X, τ) := {U | U is ps-open in (X, τ)}.

The concept of ps-closed sets of (ii) above (cf. [3, Definition 2.1]) is defined as follows:
a subset A is called a ps-closed set of (X, τ) if pCl(A) ⊂ U whenever A ⊂ U and
U ∈ SO(X, τ); and its complement X \ A is called a ps-open set of (X, τ).

(iii) We note that ωidC(X, τ) = ωC(X, τ) and ωidO(X, τ) = ωO(X, τ) (cf. Nota-
tions 1.2, 1.5(i)).

(iv) (•5) C(X, τ) := {F | F is closed in (X, τ),i.e., X \ F ∈ τ};
(•6) PC(V, τ) := {F | F is preclosed in (X, τ),i.e., X \ F ∈ PO(X, τ)}.

The purposes of the present paper are to characterlize the ω-like closed sets of a
topological space (cf. Theorem 2.1, Theorem 3.7, Proposition 4.4, Theorem 4.8) and
to investigate the (ωρ1, ωρ2)-T ρ

1/2 separation axioms where ρ1, ρ2, ρ ∈ {id, ◦, ◦−} (cf.
Theorem 5.11, Theorem 5.13, Theorem 5.15). Moreover, in Section 6, it is shown that
the digital line (Z, κ) is ω◦−-T1 except Zκ (cf. Definition 2.3, Theorem 6.1(iv)).

2 Properties on ω-like closed sets For the families in Notation 1.5(•3ρ), (•4), (•6)
and Notation 1.2 (•1), (•2), we have the following properties.
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Theorem 2.1 (i) ω◦C(X, τ) ⊂ ωC(X, τ) ⊂ ω−◦C(X, τ).
(ii) ω−◦C(X, τ) = ω−◦−C(X, τ) = P (X).
(iii) ω◦C(X, τ) ⊂ ω◦−C(X, τ) ⊂ ω−◦C(X, τ).
(iv) ω◦−C(X, τ) = ω◦−◦C(X, τ).
(v) ([3, Corollary 2.6 (iv), Table 1]) psC(X, τ) = PC(X, τ).
(vi) ([26],[27],[3]) C(X, τ) ⊂ ωC(X, τ) ⊂ wωC(X, τ).
(vii) wωC(X, τ) = PC(X, τ).

Proof. (i) - (iv) They are proved by definitions.
(vii) Proof of the equality wωC(X, τ) = psC(X, τ): let A ∈ wωC(X, τ). For

any subset U ∈ SO(X, τ) such that A ⊂ U , we have that Cl(Int(A)) ⊂ U and so
pCl(A) = A ∪ Cl(Int(A)) ⊂ U ; and so we see pCl(A) ⊂ U . Thus, we have that
wωC(X, τ) ⊂ psC(X, τ). Conversely, supppose that A ∈ psC(X, τ). Let U ∈ SO(X, τ)
such that A ⊂ U . Then, pCl(A) = A ∪ Cl(Int(A)) ⊂ U and hence Cl(Int(A)) ⊂ U .
Therefore, A is wωC(X, τ). We proved that psC(X, τ) ⊂ wωC(X, τ).

Thus we show the required equality using (v). �

Remark 2.2 By Theorem 2.1 above, the following diagram of implications is obtained.
All implications in the following diagram are not reversible (cf. Example 2.4 (i) - (v)
below); and two concepts of C(X, τ) and ω◦C(X, τ) are independent (cf. Example 2.4(vi)
below).

A ∈ C(X, τ) A ∈ wωC(X, τ) = psC(X, τ) = PC(X, τ)
↘ ↗


↑ 
↓ A ∈ ωC(X, τ)
↗ ↘

A ∈ ω◦C(X, τ) A ∈ ω−◦C(X, τ) = ω−◦−C(X, τ) = P (X)
↓ ↗
A ∈ ω◦−C(X, τ) = ω◦−◦C(X, τ)

The concept of the digital line (Z, κ) is initiatived by E.D. Khalimsky and sometimes
it is called the Khalimsky line ([10, in 1990]).

Definition 2.3 ([10, in 1990] and references there;[11, in 1991;p.905]; e.g.,[17, in
2014;Section 3]). The digital line or so called Khalimsky line (Z, κ) is the set Z of
all integers, equipped with the topology κ having {{2m − 1, 2m, 2m + 1}| m ∈ Z} as a
subbase. The digital plane or Khalimsky plane is the Cartesian product of 2-copies of the
digital line (Z, κ); this topological space is denoted by (Z2, κ2) (cf. [12, in 1994;Definition
4])

Example 2.4 (i) An ω-closed set need not be ω◦-closed (i.e., ω◦C(X, τ) 
← ωC(X, τ)):
we give two examples as follows.

(i-1) Let (X, τ) := (Z, κ) be the digital line (cf. Definition 2.3 above) and A := {2m},
where m ∈ Z. Then, by definition of the topology κ,A := {2m} is closed and so
A ∈ ωC(Z, κ). We show A 
∈ ω◦C(Z, κ). Indeed, there exists a semi-open set U :=
{2m, 2m + 1} such that A ⊂ U ; and so we have that Int(U) = {2m + 1} and Cl(A) =
{2m} 
⊂ {2m + 1} = Int(U). This shown that the set A is not ω◦-closed in (Z, κ).

(i-2) We can give an example on the Euclidean line (X, τ) := (R, ε). Let A := {x, y},
where x and y are distinct point of (R, ε). There exists a semi-open set U := {t ∈ R|x ≤
t < z} ∪ {t ∈ R|z < t ≤ y}, where z is a point with a relation x < z < y. Then, A ⊂ U
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and Cl(A) = {x, y} 
⊂ Int(U), because Int(U) = {t ∈ R|x < t < z} ∪ {t ∈ R|z < t < y};
and so A 
∈ ω◦C(R, ε). And A is closed and so A ∈ ωC(R, ε).

(ii) A wω-closed set (=preclosed set; cf. Theorem 2.1 (v)(vii)) need not be ω-closed
(i.e., ωC(X, τ) 
← wωC(X, τ) ): let (X, τ) := (Z2, κ2) be the digital plane (cf. Defini-
tion 2.3 above) and A := {x, y} a subset of (Z2, κ2), where x = (2m, 2s) and y = (2m +
1, 2s) for some integers m and s. Then, first we show that Cl(Int(A)) = Cl(∅) = ∅ ⊂ A;
and so A ∈ PC(Z2, κ2) and hence A ∈ wωC(Z2, κ2) (cf. Theorem 2.1(iii)). We note that
the subset A of the present example (ii) is a preclosed set which is not closed in (Z2, κ2).

Secondly, we show that A 
∈ ωC(Z2, κ2). Indeed, we take a subset U := A ∪ {(2m +
1, 2s + 1)}; then U is semi-open in (Z2, κ2). Indeed since κ2 := κ × κ, we see that
Cl(Int(U)) = Cl({(2m + 1, 2s + 1)}) = {2m, 2m + 1, 2m + 2} × {2s, 2s + 1, 2s + 2} ⊃ U
hold and so U ⊂ Cl(Int(U)) (i.e., U ∈ SO(Z2, κ2)). Finally, we have that A ⊂ U
and Cl(A) 
⊂ U . Indeed, Cl(A) = Cl({x}) ∪ Cl({y}) = A ∪ {(2m + 2, 2s)} 
⊂ U hold,
because {x} = {(2m, 2s)} is closed and Cl({y}) = Cl({(2m + 1, 2s)} = {(2m, 2s), (2m +
1, 2s), (2m+2, 2s)} holds in (Z2, κ2). Therefore, A is not ω-closed in (Z2, κ2). Moreover,
we have a digital geometric example in Remark 4.5(ii).

(iii) An ω◦−-closed set need not be ω◦-closed (i.e., ω◦C(X, τ) 
← ω◦−C(X, τ) ): let
(X, τ) be a topological space defined by X := {a, b, c} and τ := {∅, {a}, {a, b}, X}.
Then, we have SO(X, τ) = {∅, {a}, {a, b}, {a, c}, X}. Let A := {a, c} and U ∈ SO(X, τ)
with A ⊂ U ; and so U = {a, c} or X. Then, Cl(A) = X ⊂ Int(Cl(U)), because
Int(Cl(U)) = X for each subset U ; hence we show A ∈ ω◦−C(X, τ). Moreover, we show
that the subset A is not ω◦-closed in (X, τ). Indeed, the subset A is a semi-open set with
Cl(A) = X 
⊂ Int(A) = {a}. In addtion, in Remark 4.5(ii) below, we have a geometric
example of the present topic.

(iv) An ω−◦-closed set need not be ω◦−-closed (i.e., ω◦−C(X, τ) 
← ω−◦C(X, τ) ):
let A := {2m + 1, 2m + 2, 2m + 3, 2m + 4} be a subset of (Z, κ). Since A ∈ P (Z) =
ω−◦C(Z, κ) (cf. Theorem 2.1(ii)), we should show A 
∈ ω◦−C(Z, κ). Indeed, let U := A;
and Cl(Int(U)) = Cl({2m+1, 2m+2, 2m+3}) = {2m, 2m+1, 2m+2, 2m+3, 2m+4} ⊃ U
and so U ∈ SO(Z, κ) such that A ⊂ U . For this semi-open set U , we have that :

• Cl(A) = {2m, 2m + 1, 2m + 2, 2m + 3, 2m + 4} and;
• Int(Cl(U)) = {2m + 1, 2m + 2, 2m + 3}.

Thus, it is shown that Cl(A) 
⊂ Int(Cl(U)), i.e., A is not ω◦−-closed set in (Z, κ).
(v) An ω-closed set need not be a closed set (i.e., C(X, τ) 
← ωC(X, τ) ): such example

is shown by [26].
(vi) Two families C(X, τ) and ω◦C(X, τ) are independent.
· Proof of ω◦C(X, τ) 
← C(X, τ) : the subset A := {2m} of (Z, κ) in (i)(i-1) is a closed

singleton, where m ∈ Z, and it is not ω◦-closed in (Z, κ) (cf. (i)(i-1)).
· Proof of C(X, τ) 
← ω◦C(X, τ): let (X, τ) be a topological space defined by X :=

{a, b, c} and τ := {∅, {a}, {b, c}, X}. Let A := {b} be a not closed singleton. Let U
be a semi-open set containing A; then U = {b, c} or X and so Int(U) = U . Then,
Cl(A) = {b, c} ⊂ Int(U) = U hold and so we show that A ∈ ω◦C(X, τ).

3 More characterizations of wω-closed sets and related Janković Reilly de-
compositions In the present section, we give more characterizations of wω-closed
sets (resp. ps-closed sets) by Theorem 3.7 (i)(1)(2)(3) (resp. (i) (4)(5)(6)(7)) below, even
if we know that wω(X, τ) = psC(X, τ) = PC(X, τ) hold for a topological space (X, τ) (cf.
Theorem 2.1 (v)(vii)). They are done by an analogy of the Janković Reilly decomposition
method; and so we recall them as follows (cf. Theorem 3.1, Notation 3.2, Lemma 3.4,
Lemma 3.6 below).
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Theorem 3.1 (i) ([9, Lemma 2]) Every singleton {x} of a topological space (X, τ) is
either preopen (i.e., {x} ⊂ Int(Cl({x}))) or nowhere dense (i.e., Int(Cl({x})) = ∅).

(ii) (Janković Reilly decompostion;[2, p. 40, line +10]; cf. Theorem 3.3 below) Any
topological space (X, τ) has the following decomposition:

X = X1

⋃
X2 with X1

⋂
X2 = ∅, where X1 and X2 are defined respectively by:

(1a) X1 := {x ∈ X| {x} is nowhere dense in (X, τ)};
(1b) X2 := {x ∈ X| {x} is preopen in (X, τ)}.

The decomposition X = X1∪X2(disjoint union) of Theorem 3.1 is usefull and it is called
the Janković Reilly decomposition of X (e.g., [2, p. 40, line +10]). Moreover, we use the
following convenient notation, because we want to investigate more decompositions.

Notation 3.2 For a subset E of (X, τ), we define the following subsets of E:
(•2a) END := {x| x ∈ E and {x} is nowhere dense in (X, τ)},

(i.e., END = X1 ∩ E and X1 = XND, cf. (1a) of Theorem 3.1(ii) above);
(•2b) EPO := {x| x ∈ E and {x} is preopen in (X, τ)},

(i.e., EPO = X2 ∩ E and X2 = XPO, cf. (1b) of Theorem 3.1(ii) above);
(•2c) ESC := {x| x ∈ E and {x} is semi-closed in (X, τ)};
(•2d) EωO := {x| x ∈ E and {x} is ω-open in (X, τ)};
(•2e) Eτ := {x| x ∈ E and {x} in open in (X, τ)};
(•2f) EC := {x| x ∈ E and {x} in closed in (X, τ)};
(•2g) ERO := {x| x ∈ E and {x} in regular-open in (X, τ), i.e., {x} = Int(Cl({x}))}.
By using Notation 3.2 (•2a),(•2b) above, the Janković Reilly decomposition in Theo-
rem 3.1(ii) is stated as follows.

Theorem 3.3 (Theorem 3.1(ii) above, [9, Lemma 2]) For any subset E of (X, τ),
E = EPO ∪ END and EPO ∩ END = ∅ hold.

Lemma 3.4 (i) For any subset E of (X, τ), E = ESC ∪ EωO holds.
(ii) For a topological space (X, τ) and a subset E of (X, τ),

(1) XPO ∩ XSC = (XPO)SC = XRO and XND ∩ XωO=(XND)ωO ⊂ Xτ hold, and
(2) EPO ∩ ESC = (EPO)SC = ERO and END ∩ EωO=(END)ωO ⊂ Eτ hold.

(iii) Suppose one of the following properties:
(a) END = ∅ and ERO = ∅; (b) Eτ = ∅ and (EPO)ωO = ∅.

Then, ESC ∩EωO = ∅ holds; and so the union ESC ∪EωO of (i) is a disjoint union under
the assumptions (a) or (b) above.

Proof. (i) Let x ∈ E. We consider the following two cases.
Case 1. {x} is not semi-closed in (X, τ): for this case, we show that x ∈ EωO. Indeed,

X is a unique semi-open set containing X \ {x}. Thus, X \ {x} is ω-closed in (X, τ) and
so {x} is an ω-open set (i.e., x ∈ EωO).

Case 2. {x} is semi-closed: for this case, it is shown that x ∈ ESC , by definition.
Therefore, using two cases, we have E ⊂ ESC ∪ EωO; the converse inequality is

trivial, by the definition of (•2c) and (•2d) in Notation 3.2. Thus we show the equality:
E = ESC ∪ EωO.

(ii) They are shown by using definitions.
(iii) In general, by using Theorem 3.1 (i.e., Theorem 3.3), it is shown that: ESC ∩

EωO ={(EPO ∪ END)SC} ∩ {(EPO ∪ END)ωO}= {(EPO)SC ∪ (END)SC} ∩ {(EPO)ωO ∪
(END)ωO}. We prove that ESC ∩EωO = ∅ holds under one of our assumptions (a), (b).
Case 1. we assume (a): for this case, we show that ESC ∩EωO ⊂ (EPO)SC ∪ (END)SC ⊂
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(EPO)SC ∪ END = ERO ∪ END = ∅ (cf. (ii)(2) above and the assumption (a)).
Case 2. we assume (b): for this case, we show that ESC ∩EωO ⊂ (EPO)ωO∪ (END)ωO ⊂
(EPO)ωO ∪ Eτ = ∅(cf. (ii)(2) above and the assumption (b)). �
Remark 3.5 (i) The property (X = XSC ∪ XωO) of Lemma 3.4 (i) above does not
imply a disjoint union in general. For example, let (X, τ) be a topological space defined
by X := {a, b, c} and τ := {∅, {a}, {b, c}, X}. Then, a sigleton {a} is semi-closed and
ω-open; and so a ∈ XSC ∩ XωO.

(ii) For the digital line (Z, κ), we have the following datum on the subsets defined
Lemma 3.4: ZPO = {2m + 1|m ∈ Z}=Zκ (e.g. [6, Theorem 2.1(i)(a)]), ZND = {2m|m ∈
Z}; and so we have the decomposition Z = ZPO ∪ ZND. On the other hands, we have
that ZSC = Z, ZωO = {2m + 1|m ∈ Z}; for a nonempty set E, END = {2m ∈ E|m ∈ Z}
and ERO = {2m + 1 ∈ E|m ∈ Z}=Eκ and (EPO)ωO = EPO.

We need the following lemma in order to prove Theorem 3.7 below; Lemma 3.6 (iii) and
(iv) are applied; we recall the definitions of sKer(•) and pKer(•): for a subset A of (X, τ),
sKer(A) :=

⋂{U | U ∈ SO(X, τ) and A ⊂ U} and pKer(A) :=
⋂{V | V ∈ PO(X, τ) and

A ⊂ V }.
Lemma 3.6 (cf. [4, Proposition 2.1]) Let B be a subset of (X, τ). Then, we have
following properties.

(i) [4, Proposition 2.1] (sCl(B))PO ⊂ sKer(B).
(ii) [26, Proposition 2.2.18] (Cl(B))PO ⊂ sKer(B).
(iii) (Cl(Int(B)))PO ⊂ sKer(B).
(iv) (pCl(B))PO ⊂ sKer(B).
(v) (sKer(B))SC ⊂ B ⊂ sKer(B).
(vi) ((Cl(B))PO)C ⊂ pKer(B).
(vi)’ ((sCl(B))PO)C ⊂ pKer(B).
(vi)” ((pCl(B))PO)C ⊂ pKer(B).

Proof. (iii) Since Cl(Int(B)) ⊂ Cl(B) holds and EPO ⊂ FPO holds if E ⊂ F in
general, we have that (Cl(Int(B)))PO ⊂ (Cl(B))PO; and so, by (ii), it is shown that
(Cl(Int(B)))PO ⊂ sKer(B) holds.

(iv) This is proved by using (ii), because pCl(E) ⊂ Cl(E) holds for any subset E of
(X, τ).

(v) We prove only the implication (sKer(B))SC ⊂ B. Let x ∈ (sKer(B))SC and
assume that x 
∈ B. Since X \ {x} ∈ SO(X, τ) and B ⊂ X \ {x}, it is shown that
sKer(B) ⊂ X \ {x}. Then we have that {x} ⊂ sKer(B) ⊂ X \ {x}; and hence this is a
contradiction.

(vi) Let x ∈ ((Cl(B))PO)C . Suppose that x 
∈ pKer(B). There exists a set V ∈
PO(X, τ) such that B ⊂ V and x 
∈ V . Taking the set X \ V , then X \ V is preclosed in
(X, τ) and x ∈ X \ V . Then, we have that:
{x} ∪ Cl(Int({x})) = pCl({x}) ⊂ pCl(X \ V )=X \ V ; and so
(· 1) Cl(Int({x})) ⊂ X \ V . Since x ∈ Cl(B) and B ⊂ V , (·2) x ∈ Cl({x}) ⊂ Cl(V ).
Since x ∈ XPO, we have that (·3) {x} ⊂ Int(Cl({x})); and so we have that: (·4) the set
Int(Cl({x})) is an open set containing x such that x ∈ Cl(V ).

By (·2) and (·4), it is shown that: (·5) Int(Cl({x})) ∩ V 
= ∅. By using (·1) and an
assumption that x ∈ XC , it is shown that Int(Cl({x})) ∩ V ⊂ Cl(Int(Cl({x}))) ∩ V =
Cl(Int({x}))∩ V ⊂ (X \ V )∩ V = ∅. Therefore, we have that Int(Cl({x}))∩ V =∅; this
contradicts the property (·5) above.

(vi)’ (resp. (vi)”) Since sCl(B) ⊂ Cl(B) (resp. pCl(B) ⊂ Cl(B)) holds for every
set B of (X, τ), (vi)’ (resp.(vi)”) is obtaned by (vi). �
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Finally, we have the following characterizations of weakly ω-closed sets (i.e., wω-closed
sets) and ps-closed sets as follows.

Theorem 3.7 (i) (cf. Theorem 2.1(v)(vi)) For a subset B of (X, τ), the following
properties are equivalent:

(1) B is wω-closed in (X, τ);
(2) (Cl(Int(B)))ND ⊂ B;
(3) Cl(Int(B)) ⊂ sKer(B);
(4) B is ps-closed in (X, τ) (i.e., B is (SO(X, τ), PO(X, τ))id-closed);
(5) (pCl(B))ND ⊂ B;
(6) pCl(B) ⊂ sKer(B);
(7) B is preclosed in (X, τ).
(ii) For a topological space (X, τ), wωO(X, τ) forms a generalized topology of X in

the sense of Lugojan ([15]) such that τ ⊂ ωO(X, τ) ⊂ wωO(X, τ) = PO(X, τ).

Proof. (i) (1)⇒(2) Let x ∈ (Cl(Int(B)))ND. Suppose that x 
∈ B. The singleton {x}
is semi-closed, because {x} is nowhere dense (i.e., Int(Cl({x})) = ∅) and so X \ {x} is
a semi-open set containing B. By (1), Cl(Int(B)) ⊂ X \ {x}. We have a contradiction
that x ∈ X \ {x}.
(2)⇒(3) Using Theorem 3.3, Lemma 3.6(iii) and (2), we have Cl(Int(B))-
=(Cl(Int(B)))PO ∪ (Cl(Int(B)))ND ⊂ sKer(B) ∪ B = sKer(B).
(3)⇒(1) Let U ∈ SO(X, τ) such that B ⊂ U . By definition of the concept of sKer(·)
and (3), it is shown that sKer(B) ⊂ U and so Cl(Int(B)) ⊂ U . Therefore, the set B is
wω-closed in (X, τ).
(4)⇒(5) Let x ∈ (pCl(B))ND. Suppose that x 
∈ B. The singleton {x} is semi-closed
and so X \ {x} is a semi-open set containing B. By (4), pCl(B) ⊂ X \ {x}. We have a
contradiction that x ∈ X \ {x}.
(5)⇒(6) Using Theorem 3.3, Lemma 3.6(iv) and the assumption (5), we have that:
pCl(B)=(pCl(B))PO ∪ (pCl(B))ND ⊂ sKer(B) ∪ B = sKer(B).
(6)⇒(4) Let U ∈ SO(X, τ) such that B ⊂ U . By definition of the concept of sKer(·)
and (6), it is shown that sKer(B) ⊂ U and so pCl(B) ⊂ U . Therefore, the set B is
ps-closed in (X, τ).
(6)⇒(7) It follow from definition and (6) that the set B is a ps-closed set. Indeed, let
U ∈ SO(X, τ) such that B ⊂ U ; and so pCl(B) ⊂ sKer(B) ⊂ U ; thus B ∈ psC(X, τ).
Using Theorem 2.1 (v), B is preclosed.
(7)⇒(1) and (1)⇒ (4) They are obtained by using Theorem 2.1 (v),(vii).

(ii) These properties are obviously obtained by properties on PC(X, τ), because
wωC(X, τ) = PC(X, τ) holds (cf.(i)). However, we attempt to prove them from the
Janković Reilly decompositions method point of view. Let {Bi| i ∈ Γ} be a family of wω-
closed sets in (X, τ) and let B :=

⋂{Bi| i ∈ Γ}. We have Cl(Int(B)) ⊂ Cl(Int(Bi)) for
each i ∈ Γ and so (Cl(Int(B)))ND ⊂ ⋂{(Cl(Int(Bi)))ND| i ∈ Γ} ⊂ ⋂{Bi| i ∈ Γ} = B
(cf. (i) (1)⇒(2)). Namely, by the equivalente property (2)⇔(1) in (i), the set B is wω-
closed in (X, τ). It is obvious that ∅ ∈ wωO(X, τ) and X in wωO(X, τ). Thus, it is
shown that wωO(X, τ) is a generalized topology of X in the sense of Lugojan ([15]). �

Remark 3.8 Using Janković Reilly decomposition method (cf. Theorem 3.3), we show
an alternative proof of Theorem 2.1(v), i.e., psC(X, τ) = PC(X, τ) hold (cf. [3, Corollary
2.6 (iv), Table 1]). First we show that psC(X, τ) ⊂ PC(X, τ). Let A ∈ psC(X, τ) and
x ∈ pCl(A). We claim that x ∈ A. We recall that pCl(A) = (pCl(A))PO ∪ (pCl(A))ND.
When x ∈ (pCl(A))PO, {x} is preopen and so {x} ∩ A 
= ∅ (i.e., x ∈ A). When x ∈
(pCl(A))ND, it is obtained that x ∈ A, by Theorem 3.7 (i)(4)⇒(5). Therefore, for both
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cases, we have x ∈ A whenever x ∈ pCl(A), i.e., A ∈ PC(X, τ) and so psC(X, τ) ⊂
PC(X, τ). The converse implication is obvious.

In the end of the present Section 3, we apply Lemma 3.4 (i) to an alternative charac-
terization of the ω-closed sets; the equivalent property (3) ⇔ (4) in Theorem 3.9 below
is shown by using Lemma 3.4(i).

Theorem 3.9 (Sheik John [26] for (1) ⇔ (2) ⇔ (3)) For a subset B of (X, τ), the
following properties are equivalent:

(1) B is ω-closed in (X, τ);
(2) (Cl(B))ND ⊂ B;
(3) Cl(B) ⊂ sKer(B);
(4) (a) (Cl(B))SC ⊂ B and (b) (Cl(B))ωO ⊂ sKer(B) hold.

Proof. (3)⇒(4) First we claim that (sKer(B))SC ⊂ B. Indeed, let x ∈ (sKer(B))SC and
assume that x 
∈ B. Since the set X \ {x} ∈ SO(X, τ) and B ⊂ X \ {x}, sKer(B) ⊂
X \{x}. Then, we have that {x} ⊂ X \{x} and so this is a contradiction. Thus, we show
that (sKer(B))SC ⊂ B. By using (3), it is shown that (Cl(B))SC ⊂ (sKer(B))SC ⊂ B;
and so (a) is proved. The property (b) is obtained by (3), because (Cl(B))ωO ⊂ Cl(B) ⊂
sKer(B) hold.

(4)⇒(3): Using Lemma 3.4 (i) and (4), we have that Cl(B)=(Cl(B))SC∪(Cl(B))ωO ⊂
B ∪ sKer(B)=sKer(B). That is, Cl(B) ⊂ sKer(B) holds. �

4 Some properties of ωρ-closed sets, where ρ ∈ {◦, ◦−} After some charac-
teriations of ωρ-closedness (cf. Proposition 4.4), we add a complete characterization of
the ωρ-closedness, where ρ : SO(X, τ) → P (X) is a function such that ρ ∈ {◦, ◦−} (cf.
Theorem 4.8(iii)).

Theorem 4.1 (i) The union of two ω◦-closed (resp. ω◦−-closed) sets is ω◦-closed (resp.
ω◦−-closed).

(ii) If A is ω◦-closed (resp. ω◦−-closed) and A ⊂ B ⊂ Cl(A), then B is ω◦-closed
(resp. ω◦−-closed).

(iii) If A is ω◦-closed (resp. ω◦−-closed), then Cl(A)\A does not contain any nonempty
semi-closed (resp. semi-closed and semi-open set).

Proof. (i) Let A,B ∈ ω◦C(X, τ) (resp. A,B ∈ ω◦−C(X, τ)) and U ∈ SO(X, τ) such
that A ∪ B ⊂ U . Then, it follows from assumptions that Cl(A ∪ B) = Cl(A) ∪ Cl(B) ⊂
Int(U) (resp. Cl(A ∪ B) ⊂ Int(Cl(U))), because Cl(A) ⊂ Int(U) and Cl(B) ⊂ Int(U)
hold (resp. Cl(A) ⊂ Int(Cl(U)) and Cl(B) ⊂ Int(Cl(U)) hold). Thus, we show that
A ∪ B ∈ ω◦C(X, τ) (resp. A ∪ B ∈ ω◦−C(X, τ)).

(ii) Let U ∈ SO(X, τ) such that B ⊂ U . Then, by assumptions, it is shown that
Cl(B) = Cl(A), A ⊂ U and so Cl(B) ⊂ Int(U) (resp. Cl(B) ⊂ Int(Cl(U))), i.e.,
B ∈ ω◦C(X, τ) (resp. B ∈ ω◦−C(X, τ)).

(iii) Case 1. A ∈ ω◦C(X, τ): suppose that Cl(A) \ A contains a semi-closed set F .
Since A ⊂ X \ F and X \ F ∈ SO(X, τ), Cl(A) ⊂ Int(X \ F ) holds. Thus, we have
that Cl(F ) = X \ (Int(X \ F )) ⊂ X \ Cl(A) and so Cl(A) ⊂ X \ Cl(F ). We have that
F ⊂ Cl(F )∩Cl(A) ⊂ (X \Cl(A))∩Cl(A), because F ⊂ Cl(A) holds; and hence F = ∅.

Case 2. A ∈ ω◦−C(X, τ): suppose that Cl(A) \ A contains a semi-closed and semi-
open set F . Since A ⊂ X \ F and X \ F ∈ SO(X, τ), Cl(A) ⊂ Int(Cl(X \ F )) holds.
Thus, we have that Cl(Int(F )) = X \ (Int(Cl(X \ F ))) ⊂ X \ Cl(A) and so Cl(A) ⊂
X \ Cl(Int(F )). Then, we have that F ⊂ Cl(Int(F )) ∩ Cl(A) ⊂ (X \ Cl(A)) ∩ Cl(A),



Characterizations of ω-like closed sets and separation axioms in topological spaces 9

because F ⊂ Cl(A) and F is semi-open; and hence F = ∅. �

Moreover, as continuation of Notation 3.2, we prepare the following notation.

Notation 4.2 For a subset E of (X, τ), we define the following families: (cf. Defin-
tion 1.4)
(•3a) Eω◦O := {x| x ∈ E and {x} is ω◦-open set of (X, τ)};
(•3b) Eω◦−O := {x| x ∈ E and {x} is ω◦−-open set of (X, τ)};
(•3c) EPC := {x| x ∈ E and {x} is preclosed in (X, τ)}.

Lemma 4.3 For a topological space (X, τ) and a subset E of (X, τ), we have the
following properties (cf. Notation 3.2, Notation 4.2).

(i) X = XSC ∪ Xω◦O and E = ESC ∪ Eω◦O hold.
(ii) X = (XSC ∩ Xτ ) ∪ Xω◦−O and E = (ESC ∩ Eτ ) ∪ Eω◦−O hold.
(iii) X = (XSC ∩ XPO) ∪ Xω◦−O and E = (ESC ∩ EPO) ∪ Eω◦−O hold.

Proof. (i) First, let x ∈ X. Suppose that x 
∈ XSC . We claim that x ∈ Xω◦O. Indeed,
let U be any semi-open set containing X \ {x}. Then, U = X, because X \ {x} is not
semi-open and so X is a unique semi-open set containing X \ {x}. Thus, Cl(X \ {x}) ⊂
U = X = Int(U), i.e., X \ {x} is ω◦-closed, i.e. x ∈ Xω◦O. Therefore, we have that
X = XSC ∪ Xω◦O holds. And, for the final property that E = ESC ∪ Eω◦O, the proof is
obvious, because of the facts that ESC=E ∩XSC and Eω◦O=E ∩Xω◦O for any subset E
of (X, τ).

(ii) First, let x ∈ X and suppose that x ∈ X \(XSC∩Xτ ). We claim that x ∈ Xω◦−O.
Let U ∈ SO(X, τ) such that X \ {x} ⊂ U . Then, U = X or U = X \ {x}.

Case 1. x 
∈ XSC : by similar argument of the proof of (i), it is shown that X \ {x} 
∈
SO(X, τ) and so U = X and Cl(X \ {x}) ⊂ X = Int(Cl(U)).

Case 2. x 
∈ Xτ : for this case, if U = X, then Cl(X \ {x}) ⊂ X = Int(Cl(X)) =
Int(Cl(U)); if U = X \ {x}, then X \ {x} 
=Cl(X \ {x})=X-
=Int(X)=Int(Cl(X \ {x})) = Int(Cl(U)).

By both cases, X \ {x} is ω◦−-closed in (X, τ), i.e., x ∈ ω◦−O(X, τ) under the
assumption that the point x satiesfies Case 1 or Case 2 above. Therefore, we show that,
for a point x ∈ X, x ∈ XSC ∩Xτ or x ∈ Xω◦−O, i.e., X ⊂ (XSC ∩Xτ )∪Xω◦−O holds; and
hence we have the required first equality. Since EE = E ∩ XE holds where the symbol
E ∈ {SC, τ, ω◦−O}, we have the final equality using the firsr property above.

(iii) By using (ii) above and the following fact that Eτ ⊂ EPO holds, it is shown that
E = (ESC ∩ Eτ ) ∪ Eω◦−O ⊂ (ESC ∩ EPO) ∪ Eω◦−O hold. Hence, we have the required
equalities. �

We have the following property: (•) For a subset A of (X, τ), (Cl(A))τ ⊂ A holds.
Indeed, let x ∈ (Cl(A))τ . Suppose that x 
∈ A. Since A ⊂ X \ {x} and {x} is open, i.e.,
X \ {x} is closed, we have that Cl(A) ⊂ Cl(X \ {x}) = X \ {x}; and so we have that
x ∈ Cl(A) ⊂ X \ {x}; this contradicts x 
∈ X \ {x}. (�)

For an ωρ-closed set A, where ρ ∈ {◦, ◦−}, we have an analogouse form of the property
(•) above and Theorem 3.7 (cf. Proposition 4.4 and Remark 4.5 below).

Proposition 4.4 (i) If A is an ω◦−-closed set of (X, τ), then
((Cl(A))PC)SO ⊂ A (cf. Notations 3.2(•2e),4.2(•3d); Remark 4.5 (i), (ii)).

(ii) If A is an ω◦-closed set of (X, τ), then (Cl(A))SC ⊂ A (cf. Remark 4.5 (iii),(iv)).
(iii) If A is an ω◦−-closed set of (X, τ), then ((Cl(A))SC)SO ⊂ A (cf. Remark 4.5

(vii),(viii)).
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(iv) If A is an ω◦−-closed set of (X, τ), then ((Cl(A))ND)SO ⊂ A (cf. Remark 4.5
(v),(vi)).

Proof. (i) First, we recall that (EPC)SO = EPC ∩ ESO holds for any set E ⊂ X. Let
x ∈ ((Cl(A))PC)SO. Suppose that x 
∈ A. Since A ⊂ X \{x} and X \{x} is preopen (i.e.,
X \ {x} ⊂ Int(Cl(X \ {x}))), the set Int(Cl(X \ {x})) is a semi-open set containing A.
Since A is ω◦−-closed, we have that Cl(A) ⊂ Int(Cl({Int(Cl(X \{x}))})) = Int(Cl(X \
{x})) = X \ Cl(Int({x})) ; and so x ∈ X \ Cl(Int({x})), i.e., (∗) x 
∈ Cl(Int({x})).
On the other hand, it follows from the assumption (x ∈ ((Cl(A))PC)SO ⊂ XSO) for the
point x that {x} ⊂ Cl(Int({x})) holds; this contradicts the property (∗) above.

(ii) Let x ∈ (Cl(A))SC . And suppose that x 
∈ A. Then, A ⊂ X \ {x} and X \ {x} ∈
SO(X, τ), we have Cl(A) ⊂ Int(X \ {x}); and so x ∈ Int(X \ {x}) = X \ Cl({x}), i.e.,
x 
∈ Cl({x}); this contradicts the property: E ⊂ Cl(E) for any subset E.

(iii) Let x ∈ ((Cl(A))SC)SO such that x 
∈ A. Since A ⊂ X \ {x} and X \ {x} ∈
SO(X, τ) and A is ω◦−-closed, we have that Cl(A) ⊂ Int(Cl(X\{x}))=X\Cl(Int({x})).
Since X\x ∈ XSC , Int(Cl(X\{x})) ⊂ X\{x} and so x ∈ X\{x}; this is a contradiction.

(iv) It is known that END ⊂ ESC holds for any set E of a topological space (X, τ).
Then, for the given ω◦−-closed set A, by (iii) above, it is obtained that ((Cl(A))ND)SO ⊂
((Cl(A))SC)SO ⊂ A. �

Remark 4.5 (i) The converse of Proposition 4.4 (i) is not true from the following
example. Let A := {2m+1} be a subset of the digital line (Z, κ). First, we claim that A
is not ω◦−-closed in (Z, κ). Indeed, the set A is semi-open; and, take U := A ∈ SO(Z, κ);
then, we have that Cl(A) = {2m, 2m+1, 2m+2} 
⊂ Int(Cl(U))={2m+1}; and so A is not
ω◦−-closed in (Z, κ). Finally, we show that ((Cl(A))PC)SO=({2m, 2m + 2})SO=∅ ⊂ A
hold.

(ii) Let A := {0} ∪ {2s + 1 ∈ Z| s ∈ Z} be an open set of (Z, κ). Then, A
is an example of the ω◦−-closed set which satisfies Proposition 4.4(i)). Indeed, let
U ∈ SO(Z, κ) such that A ⊂ U . Since A ∈ κ ⊂ SO(Z, κ), we have that Cl(A) =
Z=Int(Z)=Int(Cl(A)) ⊂ Int(Cl(U)); and so A is ω◦−-closed in (Z, κ). Moreover,
(((Cl(A))PC)SO=(ZPC)SO=({2s| s ∈ Z})SO=∅ ⊂ A hold in (Z, κ). On the other
hand, the present set A is an example which is not ω◦-closed in (Z, κ). Indeed, take
U := A ∈ SO(Z, κ); and so Cl(A)=Z 
⊂ Int(U)=A; by Definition 1.4, A is not ω◦-
closed. Moreover, since (Cl(A))SC=Z 
⊂ A holds, the set A is not ω◦-closed in (Z, κ) (cf.
Proposition 4.4(ii)).

(iii) The converse of Proposition 4.4 (ii) is not true from the following example. Let
A := {2m, 2m + 1, 2m + 2} be a subset of (Z, κ) and the semi-open set U := A. It is
shown that Cl(A) = A 
⊂ Int(U)={2m + 1}; and so A is not ω◦-closed. On the other
hands, (Cl(A))SC=ZSC ∩ Cl(A)=Z ∩ A=A hold in (Z, κ).

(iv) Using contraposition of Proposition 4.4(ii), we can find any examples of non-ω◦-
closed sets. For example, the subset A := {2m + 1} given by (i) above is not ω◦-closed
in (Z, κ). Indeed, (Cl(A))SC=ZSC ∩ Cl(A)=Z ∩ Cl(A)={2m, 2m + 1, 2m + 2} 
⊂ A; and
so A is not ω◦-closed in (Z, κ).

(v) We have an example of an ω◦−-closed set A which satisfies Proposition 4.4 (iii).
We consider the ω◦−-closed set A of (ii) above, say A := {0}∪{2s+1 ∈ Z| s ∈ Z}. Indeed,
since (Cl(A))SC=ZSC=Z, we have that (((Cl(A))SC)SO=ZSO={2s+1 ∈ Z| s ∈ Z} ⊂ A.

(vi) The converse of Proposition 4.4 (iii) is not true. Let A := {2s+1 ∈ Z| s ∈ Z}\{1}
be an open set of (Z, κ). Then, we have that Cl(A)=Z \ {1} and so ((Cl(A))SC)SO= -
(Cl(A))SO=(Z \ {1})SO=A, because any singleton {x} is semi-closed, any odd singleton
{2s + 1} is semi-open and any even singleton {2s} is not semi-open in (Z, κ), where
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s ∈ Z. And, the set A is not ω◦−-closed in (Z, κ). Indeed, there exists a semi-open
set U := A such that A ⊂ U ; and so Cl(A)=Z \ {1} 
⊂ {z ∈ Z|z ≤ −1} ∪ {z ∈ Z|3 ≤
z}=Int(Z \ {1})=Int(Cl(A)); and hence the set A is not ω◦−-closed in (Z, κ).

(vii) The converse of Propositon 4.4(iv) is not true. The following subset A :=
{2m−2, 2m−1, 2m+1, 2m+2} of (Z, κ) is an example of non-ω◦−-closed sets. Indeed, we
know that A ∈ SO(Z, κ) such that A ⊂ A; and so Cl(A)=A∪{2m} 
⊂ {2m−1, 2m, 2m+
1}=Int(Cl(A)); thus A is not ω◦−-closed. Moreover, ((Cl(A))ND)SO=({2m−2, 2m, 2m+
2})SO=∅ ⊂ A hold.

(viii) (cf. Proposition 4.4(iv)) For the ω◦−-closed set A :={0}∪ {2s+1| s ∈ Z} of (ii)
above, we check the following property: ((Cl(A))ND)SO ⊂ A. Indeed, ((Cl(A))ND)SO -
=(ZND)SO=({2s| s ∈ Z})SO=∅ ⊂ A hold.

We define some analogouse concepts of the sets Ker(•) and sKer(•) (cf. Defini-
tion 4.6) and we characterize the ωρ-closedness of a subset, where ρ : SO(X, τ) → P (X)
is a function such that ρ ∈ {◦, ◦−} (cf. Theorem 4.8(iii) below).

Definition 4.6 For a subset A of (X, τ) and a function ρ : SO(X, τ) → P (X) with
ρ ∈ {id, ◦−, ◦}, we define the following subsets:

(·) sρKer(A) :=
⋂{W | W ∈ SO(X, τ) and A ⊂ ρ(W )};

(·)’ sρKer
′
(A) :=

⋂{ρ(W )| W ∈ SO(X, τ) and A ⊂ ρ(W )};
(·)” sρKer1(A) :=

⋂{ρ(W )| W ∈ SO(X, τ) and A ⊂ W}.
We note that sidKer(A)=sidKer

′
(A)=sidKer1(A)=sKer(A) hold.

Proposition 4.7 (i) For any subset A of a topological space (X, τ), we have the fol-
lowing properties:
(i-1) s◦Ker1(A) ⊂ s◦Ker′(A) ⊂ s◦Ker(A);
(i-2) s◦−Ker(A) ⊂ s◦Ker(A);
(i-3) A ⊂ s◦Ker(A).

(ii) (ii-1) There exists a subset A of (Z, κ) such that s◦−Ker(A) � A.
(ii-2) There exists a subset A of (Z, κ) such that s◦Ker1(A) � A and
s◦−Ker1(A) � A.

Proof (i) (i-1) Let ρ := ◦ throughout the present proof of (i-1).
Proof of s◦Ker1(A) ⊂ s◦Ker′(A): let x be any point such that x 
∈ s◦Ker′(A). Then, by
Definition 4.6(·)’, there exists a subset W ∈ SO(X, τ) such that x 
∈ ρ(W ) = Int(W ) and
A ⊂ ρ(W ) = Int(W ); and so x 
∈ s◦Ker1(A) (cf. Definition 4.6(·)”), because ρ(W ) ⊂ W
holds for ρ = ◦.

Proof of s◦Ker′(A) ⊂ s◦Ker(A): let x be any point such that x 
∈ s◦Ker(A). Then,
by Definition 4.6(·), there exists a subset W ∈ SO(X, τ) such that x 
∈ W and A ⊂ ρ(W );
and so x 
∈ s◦Ker′(A), because ρ(W ) ⊂ W and so x 
∈ ρ(W ) holds for ρ = ◦.

(i-2) Let x be any pont such that x 
∈ s◦Ker(A). Then, by Definition 4.6(·), there
exists a subset W ∈ SO(X, τ) such that x 
∈ W and A ⊂ Int(W ); and so x 
∈ s◦−Ker(A)
(cf. Definition 4.6(·)), because A ⊂ Int(W ) ⊂ Int(Cl(W )) holds.

(i-3) Let x be any point such that x 
∈ s◦Ker(A). Then, by Definition 4.6(·), there
exists a subset W ∈ SO(X, τ) such that x 
∈ W and A ⊂ Int(W ); and so x 
∈ A, because
Int(W ) ⊂ W .

(ii) (ii-1) We prepare the following notation: Kρ
A(X, τ) := {S| S ∈ SO(X.τ) and

A ⊂ ρ(S)}, where ρ : SO(X, τ) → P (X) be a function and a subset A of a topological
space (X, τ). Then, (∗) sρKer(A)=

⋂{W | W ∈ Kρ
A(X, τ)} holds.

Let (X, τ) be the digital line (Z, κ) and ρ := ◦−. Let A := {0} ∪ {2s + 1| s ∈ Z}
and W0 := A \ {0}. Then, since A ⊂ ρ(W0) = Int(Cl(W0)) = Z, A ⊂ ρ(A) = Z and
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W0, A ∈ SO(Z, κ), we have that W0 ∈ Kρ
A(Z, κ) and A ∈ Kρ

A(Z, κ). Therefore, we have
that s◦−Ker(A) ⊂ W0 � A holds for the set A.

(ii-2) Let ρ ∈ {◦, ◦−} and let A := {−5, 0, 1, 5} be a subset of (Z, κ). Then, A ∈
SO(Z, κ) and ρ(A) = {−5, 1, 5} for the function ρ ∈ {◦, ◦−}. We are able to take the
set W := A as a semi-open set W in the set sρKer1(A) :=

⋂{ρ(W )| W ∈ SO(Z, κ) and
A ⊂ W}, then it is obtained that sρKer1(A) ⊂ ρ(A) = {−5, 1, 5} � {−5, 0, 1, 5} = A;
and hence sρKer1(A) � A for the present set A and ρ ∈ {◦, ◦−}. �

Theorem 4.8 Let A be a subset of (X, τ).
(i) If A is ω◦-closed in (X, τ), then Cl(A) ⊂ s◦Ker(A) (cf. Remark 4.9 (i) below).
(ii) If A is ω◦−-closed in (X, τ), then (Cl(A))PO ⊂ s◦−Ker(A) (cf. Remark 4.9 (ii)

below).
(iii) A is an ωρ-closed set of (X, τ) if and only if Cl(A) ⊂ sρKer1(A) holds, where

ρ : SO(X, τ) → P (X) is a function such that ρ ∈ {◦, ◦−}.
Proof (i) Throughout the present proof, let ρ := ◦ : SO(X, τ) → P (X) be the function
defined by ρ(U) := Int(U) for every set U ∈ SO(X, τ). Let x ∈ Cl(A). Suppose that
x 
∈ sρKer(A). There exists a subset V ∈ SO(X, τ) such that x 
∈ V and A ⊂ ρ(V )
(cf. Definition 4.6 (i)). Since A is ω◦-closed and ρ(V ) = Int(V ) ∈ τ ⊂ SO(X, τ), we
have that Cl(A) ⊂ Int(ρ(V )) = Int(Int(V )) ⊂ V and so x ∈ V ; and hence this is a
contradiction.

(ii) Throughout the present proof, let ρ := ◦− : SO(X, τ) → P (X) be the function
defined by ρ(U) := Int(Cl(U)) for every set U ∈ SO(X, τ). Let x ∈ (Cl(A))PO. Suppose
that x 
∈ s◦−Ker(A). There exists a subset V ∈ SO(X, τ) such that x 
∈ V and A ⊂ ρ(V )
(cf. Definition 4.6 (i)). Since A is ω◦−-closed and ρ(V )) ∈ τ ⊂ SO(X, τ), we have that
Cl(A) ⊂ Int(Cl(ρ(V )))) = Int(Cl(Int(Cl(V )))) ⊂ Cl(V ) and so x ∈ Cl(V ). Thus,
it is proved that (∗1): Int(Cl({x})) ∩ V 
= ∅, because x ∈ Cl(V ), x ∈ Int(Cl({x}))
and Int(Cl({x})) ∈ τ . On the other hands, since x ∈ X \ V and X \ V ∈ SC(X, τ)
hold, we have that {x} ∪ Int(Cl({x})) = sCl({x}) ⊂ sCl(X \ V ) = X \ V ; and so
Int(Cl({x})) ⊂ X \ V ; and hence we have that Int(Cl({x})) ∩ V ⊂ (X \ V ) ∩ V = ∅;
this contradicts (∗1) above.

(iii) (Necessity) Let x ∈ Cl(A). Suppose that x 
∈ sρKer1(A) (cf. Definition 4.6(·)”).
There exists a subset V ∈ SO(X, τ) such that x 
∈ ρ(V ) and A ⊂ V . Since A is ωρ-closed,
we have that Cl(A) ⊂ ρ(V ); and so x ∈ ρ(V ); and hence this is a contradiction.

(Sufficiency) Assume that Cl(A) ⊂ sρKer1(A). Let V ∈ SO(X, τ) such that A ⊂ V .
Then, by definition, it is shown that sρKer1(A) ⊂ ρ(V ) holds, where sρKer1(A) :=⋂{ρ(W )| W ∈ SO(X, τ) and A ⊂ W}. Therefore, Cl(A) ⊂ ρ(V ) hold, whenever V ∈
SO(X, τ) and A ⊂ V ; thus A is ωρ-closed in (X, τ) (cf. Definition 4.6(·)”). �

Remark 4.9 (i) The converse of Theorem 4.8(i) is not true from the same example
given by Remark 4.5(iii). Namely, let A := {2m, 2m + 1, 2m + 2} be a subset of the
digital line (Z, κ), where m ∈ Z; then A is not ω◦-closed in (Z, κ) (cf. Remark 4.5 (iii)).
And, it is obtained that Cl(A) ⊂ s◦Ker(A) holds, because Cl(A) = A for the present
set A and B ⊂ s◦Ker(B) holds, in general, for every set B of a topological space (X, τ).

(ii) The converse of Theorem 4.8(ii) is not true from the same example given by
Remark 4.5(i). Indeed, let A := {2m + 1} be a subset of the digital line (Z, κ), where
m ∈ Z; then A is not ω◦−-closed in (Z, κ). And, we note that (Cl(A))PO = ({2m, 2m +
1, 2m + 2})PO = A. If W ∈ SO(Z, κ) and A ⊂ Int(Cl(W )), then A ⊂ W ; and so we
show that A ⊂ s◦−Ker(A). Therefore, we have that (Cl(A))PO ⊂ s◦−Ker(A) holds in
(Z, κ).
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Remark 4.10 Using the concepts of (Cl(•))PO, it is possible to define the following
ωρ-like closed sets, where ρ : SO(X, τ) → P (X) is a function such that ρ ∈ {◦, ◦−}:
(·1) a subset A of (X, τ) is said to be ωρ

(PO)-closed, if (Cl(A))PO ⊂ ρ(V ) holds whenever
A ⊂ V and V ∈ SO(X, τ).
(·2) ωρ

(PO)C(X, τ) := {A| A is ωρ
(PO)-closed in (X, τ)}, where ρ ∈ {◦, ◦−}. Then, we

prove the following properties:
(·3) ωρ

(PO)C(X, τ)=P (X) holds (i.e. every set is ωρ
(PO)-closed in (X, τ)). Namely, let A

be a set of (X, τ). Then (Cl(A))PO ⊂ ρ(W ) holds whenever A ⊂ W and W ∈ SO(X, τ),
where ρ ∈ {◦, ◦−}.
(·4) (Cl(A))PO ⊂ s◦Ker1(A) ⊂ s◦−Ker1(A) hold (cf. Definition 4.6 (i)”).

Proof of (·3). Let A be a subset of (X, τ). By Lemma 3.6 (ii), it is well known that,
(∗1) (Cl(A))PO ⊂ sKer(A) holds. Let W ∈ SO(X, τ) such that A ⊂ W . Take a point
x ∈ (Cl(A))PO (i.e., x ∈ Cl(A) and {x} ⊂ Int(Cl({x}))).

Case 1. ρ = ◦: we suppose that x 
∈ ρ(W ) = Int(W ). Since x ∈ X \ Int(W ) =
Cl(X \W ), Cl(X \W ) is semi-closed and x ∈ Int(Cl({x})), we have that Int(Cl({x})) =
{x}∪ Int(Cl({x})) = sCl({x}) ⊂ sCl(Cl(X \W )) = Cl(X \W ); and so Int(Cl({x})) ⊂
X \ Int(W ). Thus, we show that (∗2) Int(Cl({x})) ∩ Int(W ) = ∅. On the other hands,
we use the property that (∗) (Cl(A))PO ⊂ sKer(A); and so x ∈ sKer(A). Then, for the
given set W ∈ SO(X, τ) such that A ⊂ W , we show that x ∈ sKer(A) ⊂ W ; and so
x ∈ W . Since x ∈ W ⊂ Cl(Int(W )) and x ∈ Int(Cl({x})) ∈ τ , it is obtained that (∗3)
Int(Cl({x}))∩Int(W ) 
= ∅; and hence (∗3) contradicts (∗2) above. Therefore, we proved
that the property that x ∈ ρ(W ) = Int(W ) holds for any point x ∈ (Cl(A))PO. Namely,
(Cl(A))PO ⊂ ρ(W ) = Int(W ) holds for any set W ∈ SO(X, τ) such that A ⊂ W .

Case 2. ρ = ◦−: by the result for Case 1 above, it is obtained that (Cl(A))PO ⊂
Int(W ) ⊂ Int(Cl(W )) = ρ(W ) holds for any set W ∈ SO(X, τ) such that A ⊂ W . (�).

Proof of (·4). Let A ∈ P (X). First, we recall that (cf. Definiton 4.6) s◦Ker1(A) =⋂{Int(S)| S ∈ K1,A}, where K1,A := {S′|S′ ∈ SO(X, τ) and A ⊂ S′}. Then, by (· 3)
for ρ = ◦, it is obtained that (Cl(A))PO ⊂ Int(W ) holds for any set W ∈ K1,A; and
hence (Cl(A))PO ⊂ ⋂{Int(W )| W ∈ K1,A} = s◦Ker1(A) holds. And, we prove the
last implication:(∗) s◦Ker1(A) ⊂ s◦−Ker1(A) for any subset A of (X, τ). Indeed, let
x 
∈ s◦−Ker1(A). There exists a set W ∈ SO(X, τ) such that x 
∈ Int(Cl(W )) and A ⊂
W . Since x 
∈ Int(W ), A ⊂ W and W ∈ SO(X, τ), we have that x 
∈ ⋂{Int(W ′)|W ′ ∈
SO(X, τ) and A ⊂ W ′} = s◦Ker1(A). (�)
5 (ω, ω)-T ρ

1/2 spaces and related separation axioms, where ρ ∈ {id, ◦, ◦−} We
recall that, by definition due to Levine [14], a topological space (X, τ) is said to be T1/2

if every generalized closed set (shortly, g.closed set) is closed in (X, τ). And, by Dunham
[5], it is shown that (X, τ) is T1/2 if and only if every singleton {x} is closed or open in
(X, τ), where x ∈ X (cf. [5], e.g., [7]). Moreover, it is well known that the separation
axiom T1/2 is placed between the axioms T0 and T1 ([14]).

In order to introduce the concept of (ω, ω)-T ρ
1/2 spaces (cf. Definition 5.3) and related

separation axioms, we prepare the concept of a general form of ”g.closed sets” (cf. Defi-
nition 5.2). The purpose of the present section is to prove Theorem 5.11, Theorem 5.13
and Theorem 5.15.

Throughout the present paper, let (EX , E ′
X) be an ordered pair of two families EX

and E ′
X of subsets in a topological space (X, τ) such that

(•1) {∅, X} ⊂ EX and {∅, X} ⊂ E ′
X .

Notation 5.1 (i) (e.g., [18, in 1996; (2.1)], [16, in 1999;Definition 2.1], [20, in 2003;Defini-
ton 3.2]) Let A be a subset of (X, τ) and (EX , E ′

X) be an ordered pair satisfying (•1) above.



14 H.Maki, N.Rajesh, S.Shanthi

(•2) EX -Cl(A) :=
⋂{F | A ⊂ F and X \ F ∈ EX};

(•2)’ E ′
X -Cl(A) :=

⋂{F | A ⊂ F and X \ F ∈ E ′
X}.

(ii) ([26, in 2002]) (•3) ωCl(A) := ωO(X, τ)-Cl(A) (cf. (i)(•2) above for the case
where EX = ωO(X, τ)) ([27, in 1995], [28, in 2000;Defintion 3.1]));
(•4) ωμCl(A) :=ωμO(X, τ)-Cl(A), where μ : SO(X, τ) → P (X) is a function such that
μ ∈ {id, ◦, ◦−} and A ⊂ X (cf. (i)(•2) above for the case where EX = ωμO(X, τ),
Notation 1.5(•3μ)′).

Definition 5.2 (I) Let ρ1 : SO(X, τ) → P (X) and ρ2 : SO(X, τ) → P (X) be two
functions such that ρ1 ∈ {id, ◦, ◦−} and ρ2 ∈ {id, ◦, ◦−}; and ρ : ωρ1O(X, τ) → P (X)
be a function such that ρ ∈ {id, ◦, ◦−}.

A subset A of a topological space (X, τ) is said to be:
(ωρ1, ωρ2)-gρ.closed in (X, τ), if ωρ2Cl(A) ⊂ ρ(V ) holds whenever V ∈ ωρ1O(X, τ) with
A ⊂ V (cf. Notation 1.5(•3’ρ)); this may be called as (ωρ1, ωρ2)-generalized closed set
with degree ρ. Sometimes, an ”(ωid, ωid)-gid.closed” set is said simply to be ”(ω,
ω)-g.closed”.

(II) (cf. [18, Definition 2.10] for ρ = id) Let ρ : EX → P (X) be a function with
ρ ∈ {id, ◦, ◦−}. A subset A of (X, τ) is said to be:
(EX , E ′

X)-gρ.closed in (X, τ), if E ′
X -Cl(A) ⊂ ρ(V ) holds whenever A ⊂ V and V ∈ EX ;

this may be called as (EX , E ′
X)-generalized closed with degree ρ .

We note that: a subset A is (ωρ1, ωρ2)-gρ.closed in (X, τ) if and only if A is -
(ωρ1O(X, τ),ωρ2O(X, τ))-gρ.closed in (X, τ) in the sense of Definition 5.2 (II) for EX := -
ωρ1O(X, τ), E ′

X :=ωρ2O(X, τ)). The above pairs (ωρ1, ωρ2) and (ωρ1O(X, τ),ωρ2O(X, τ))
imply the ordered pairs.

First, using Definition 5.2 above, we define the concept on (ωρ1,ωρ2)-T ρ
1/2 spaces and

also it’s general forms (EX ,E ′
X)-T ρ

1/2 spaces. Especially, the concept of (EX ,E ′
X)-T id

1/2

spaces is defined in [18, in 1996;Definition 2.19].

Definition 5.3 (I) Let ρ1 : SO(X, τ) → P (X) and ρ2 : SO(X, τ) → P (X) be two
functions such that ρ1 ∈ {id, ◦, ◦−} and ρ2 ∈ {id, ◦, ◦−}; and let ρ : ωρ1O(X, τ) → P (X)
be a function such that ρ ∈ {id, ◦, ◦−}.

For the fixed functions ρ1, ρ2 and ρ, a topological space (X, τ) is said to be:
(i) (ωρ1,ωρ2)-T ρ

1/2, if A is ωρ2-closed (cf. Definition 1.4;i.e., X \A ∈ ωρ2O(X, τ)) for
every (ωρ1,ωρ2)-gρ.closed set A, (cf. Definition 5.2(I));

(ii) weak (ωρ1,ωρ2)-T ρ
1/2, where ρ2 
= id, if ωρ2Cl(A) = A holds for every (ωρ1,ωρ2)-

gρ.closed set A, where ωρ2Cl(A):=ωρ2O(X, τ)-Cl(A) (cf. Definition 5.2(I), Notation 5.1).
(II) Let (EX , E ′

X) be an ordered pair and let ρ : EX → P (X) be a fixed function such
that ρ ∈ {id, ◦, ◦−}. A topological space (X, τ) is said to be:

(i) an (EX ,E ′
X)-T ρ

1/2 space, if X \A ∈ E ′
X holds for every (EX ,E ′

X)-gρ.closed set A (cf.
[18, Definition 2.19] for ρ = id).

(ii) a weak (EX ,E ′
X)-T ρ

1/2 space, if E ′
X -Cl(A) = A holds for every (EX ,E ′

X)-gρ.closed
set A (cf. Definition 5.2(II), Notation 5.1).

We investigate some relations between ”weak (EX ,E ′
X)-T ρ

1/2 spaces” and ”(EX ,E ′
X)-

T ρ
1/2 spaces” (cf. Lemma 5.5), applying the following Lemma 5.4 due to Noiri and Popa

([20, in 2003;Lemma 3.3], [21, in 2000]).
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Lemma 5.4 ([20, in 2003;Lemma 3.3], [21, in 2000]) For a minmal structure mX on a
nonempty set X (i.e., ∅ ∈ mX , X ∈ mX and mX ⊂ P (X)), the following are equivalent:
(1) mX has property, say (B)mX

: if the union of any family of subsets belonging to mX

belongs to mX ;
(2) if mX-Int(V ) = V , then V ∈ mX ;
(3) if mX-Cl(F ) = F , then X \ F ∈ mX .

Lemma 5.5 Let (X, τ) be a topological space and (EX , E ′
X) an ordered pair of given

familes EX and E ′
X such that {∅, X} ⊂ EX ∩ E ′

X .
For each function ρ : EX → P (X) with ρ ∈ {id, ◦, ◦−}, we have the following proper-

ties.
(i) Every (EX , E ′

X)-T ρ
1/2 space (X, τ) is weak (EX , E ′

X)-T ρ
1/2.

(ii) Suppose that E ′
X has property (B)E′

X
: the union of any family of subsets belonging

to E ′
X belongs to E ′

X (cf. Lemma 5.4). Then, every weak (EX ,E ′
X)-T ρ

1/2 space (X, τ) is
(EX ,E ′

X)-T ρ
1/2.

Proof. (i) Let A be an (EX , E ′
X)-gρ closed set in (X, τ). Then, by assumption, it is

obtained that X \A ∈ E ′
X ; and so E ′

X -Cl(A) :=
⋂{F | A ⊂ F and X \F ∈ E ′

X} = A hold.
Therefore, (X, τ) is weak (EX ,E ′

X)-T ρ
1/2.

(ii) Let A be an (EX ,E ′
X)-gρ closed set in (X, τ). Since (X, τ) is weak (EX ,E ′

X)-T ρ
1/2,

we have E ′
X -Cl(A) = A. Since (B)E′

X
is supposed, by Lemma 5.4, it is obtained that

X \ A ∈ E ′
X . Therefore, (X, τ) is (EX ,E ′

X)-T ρ
1/2. �

Remark 5.6 (i) The following properties on a topological space (X, τ) are equivalent
for a fixed function ρ : EX → P (X) with ρ ∈ {id, ◦, ◦−} and a fixed function ρ1 :
SO(X, τ) → P (X) with ρ1 ∈ {id, ◦, ◦−}:

(1) (X, τ) is (ωρ1,ωid)-T ρ
1/2 (cf. Definition 5.3(I)(i);

(2) (X, τ) is weak (ωρ1O(X, τ),ωO(X, τ))-T ρ
1/2 (cf. Definition 5.3(II)(ii));

(3) (X, τ) is (ωρ1O(X, τ),ωO(X, τ))-T ρ
1/2 (cf. Definition 5.3(II)(ii)).

Indeed, they are obtained by definitions and the well known fact that, for a subset A of
(X, τ), X \ A ∈ ωO(X, τ) if and only if ωCl(A) = A holds, where ωCl(A):=ωO(X, τ)-
Cl(A). By [26], ωO(X, τ) has property (B)ωO(X,τ); and so the equivalences are obtained
by Lemma 5.5.

(ii) The concept of an (ωid,ωid)-T id
1/2 space is called an (ω,ω)-T1/2 space or an ω-T1/2

space.

Lemma 5.7 (i) The following properties on a topological space (X, τ) are equivalent:
let EX and E ′

X be two families satisfying the condition that {∅, X} ⊂ EX ∩ E ′
X .

(1) (X, τ) is weak (EX , E ′
X)-T ◦

1/2;
(2) (∗1): if x ∈ X, then X \ {x} ∈ EX or E ′

X-Cl(X \ {x}) = X \ {x} hold;
(3) (X, τ) is weak (EX , E ′

X)-T id
1/2.

(ii) Every weak (EX , E ′
X)-T ◦−

1/2 topological space (X, τ) is weak (EX , E ′
X)-T ρ

1/2, where
ρ ∈ {id, ◦}.

(iii) Suppose that (∗2): if x ∈ X, then X \{x} ∈ EX ∩SC(X, τ) or E ′
X-Cl(X \{x}) =

X \ {x} hold. Then, (X, τ) is weak (EX , E ′
X)-T ◦−

1/2.

Proof. (i) (1)⇒(2) We suppose that X \ {x} 
∈ EX . Let U ∈ EX be any set such that
X \ {x} ⊂ U . Then we have that U = X only; and so E ′

X -Cl(X \ {x}) ⊂ E ′
X -Cl(X) =

X = Int(U). Thus, we have that X \ {x} is (EX , E ′
X)-g◦.closed (cf. Definition 5.2(II)).
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By assumption (cf. Defintion 5.3(II)(ii)), it is shown that E ′
X -Cl(X \ {x}) = X \ {x}

holds. Therefore, we have (∗1).
(2)⇒ (3) Let A be an (EX , E ′

X)-gid.closed set. We claim that E ′
X -Cl(A) = A. Let

x ∈ E ′
X -Cl(A); and we suppose that x 
∈ A; and so A ⊂ X \ {x}.

Case 1. E ′
X -Cl(X \ {x}) = X \ {x}: for this case, we have that x ∈ E ′

X -Cl(A) ⊂ E ′
X -

Cl(X \ {x}) = X \ {x}; and so x ∈ X \ {x}; this is a contradiction.
Case 2. X \ {x} ∈ EX : for this case, since A ⊂ X \ {x}, where X \ {x} ∈ EX , and

A is (EX , E ′
X)-gid.closed, we have that x ∈ E ′

X -Cl(A) ⊂ X \ {x} (cf. Definition 5.2(II));
and so x ∈ X \ {x}; this is also a contradiction.

By all cases, we have contradictions; and so we prove that E ′
X -Cl(A) ⊂ A holds. Since

A ⊂ E ′
X -Cl(A), we have the required equality E ′

X -Cl(A) = A; and hence (X, τ) is weak
(EX , E ′

X)-T id
1/2 (cf. Defintion 5.3(II)).

(3)⇒(1) Let A be an (EX , E ′
X)-g◦.closed set of (X, τ). Then, by Definition 5.2(II), it

is shown that the set A is (EX , E ′
X)-gid.closed. Using the assumption (3), we have that

E ′
X -Cl(A) = A; and so (X, τ) is (EX , E ′

X)-T ◦
1/2 (cf. Definition 5.3(II)).

(ii) We prove the property (∗1) of (i) above. Indeed, we suppose that X \ {x} 
∈ EX .
Let U ∈ EX be any set such that X \ {x} ⊂ U . Then we have that U = X only; and so
E ′

X -Cl(X \{x}) ⊂ E ′
X -Cl(U)=E ′

X -Cl(X) = X = Int(Cl(U)). Thus, we have that X \{x}
is (EX , E ′

X)-g◦−.closed (cf. Definition 5.2(II)). It is shown that E ′
X -Cl(X \{x}) = X \{x}

holds, because (X, τ) is weak (EX , E ′
X)-T ◦−

1/2. Therefore, we have (∗1); and so (X, τ) is
(EX , E ′

X)-T ρ
1/2, where ρ ∈ {id, ◦} (cf. (i) above).

(iii) Let A be an (EX , E ′
X)-g◦−.closed set. We claim that E ′

X -Cl(A) = A. Indeed, let
x ∈ E ′

X -Cl(A). And we suppose that x 
∈ A; and so A ⊂ X \ {x}.
Case 1. E ′

X -Cl(X \ {x}) = X \ {x}: for this case, we have that x ∈ E ′
X -Cl(A) ⊂ E ′

X -
Cl(X \ {x}) = X \ {x}; and so x ∈ X \ {x}; this is a contradiction.

Case 2. X \ {x} ∈ EX ∩ SC(X, τ): for this case, since A ⊂ X \ {x}, X \ {x} ∈
EX and A is (EX , E ′

X)-g◦−.closed, we have that x ∈ E ′
X -Cl(A) ⊂ Int(Cl(X \ {x})) =

X \ Cl(Int({x})). We have that x ∈ X \ Cl(Int({x})). Namely, we have that {x} 
⊂
Cl(Int({x})),i.e., {x} is not semi-open in (X, τ). This contradicts one of the assumptions:
X \ {x} ∈ SC(X, τ) (i.e., {x} is semi-open in (X, τ)).

Thus, for both cases, we have contradictions; and so we show that E ′
X -Cl(A) ⊂ A;

and so A = E ′
X -Cl(A); and hence (X, τ) is weak (EX , E ′

X)-T ◦−
1/2. �

Remark 5.8 The following diagram shows the implications in Lemma 5.7 above: under
the assumption that {∅, X} ⊂ EX ∩ E ′

X .
weak (EX , E ′

X)-T id
1/2 � (∗1) of Lemma 5.7(i)(2)

↗
weak (EX , E ′

X)-T ◦−
1/2 ↓ ↑

↑ ↘
(∗2) of Lemma 5.7(iii) weak (EX , E ′

X)-T ◦
1/2

We investigate the following properties on ”(EX , E ′
X)-T ρ

1/2”, corresponding to Lemma 5.7
above.

Lemma 5.9 (i) Let ρ : EX → P (X) be a fixed function such that ρ ∈ {id, ◦, ◦−}.
Suppose that (X, τ) is an (EX , E ′

X)-T ρ
1/2 topological space. Then,

(∗1’): if x ∈ X then X \ {x} ∈ EX or {x} ∈ E ′
X .

(ii) Suppose that E ′
X has property (B)E′

X
(cf. Lemma 5.5(ii)). If (∗1’) of (i) above holds,

then (X, τ) is (EX , E ′
X)-T ρ

1/2, where ρ ∈ {id, ◦}. And, every (EX , E ′
X)-T ◦−

1/2 topological
space is (EX , E ′

X)-T id
1/2 and (EX , E ′

X)-T ◦
1/2.
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(iii) Suppose that E ′
X has property (B)E′

X
and that (∗2’): if x ∈ X then X \ {x} ∈

EX ∩ SC(X, τ) or {x} ∈ E ′
X . Then, (X, τ) is (EX , E ′

X)-T ◦−
1/2.

Proof. (i) Let {x} be a singleton in (X, τ). We suppose that X \ {x} 
∈ EX . Let
U ∈ EX be any set such that X \ {x} ⊂ U . Then, U = X holds only; and so E ′

X -
Cl(X \ {x}) ⊂ EX -Cl(U) = EX -Cl(X) = X = ρ(U), where ρ ∈ {id, ◦, ◦−}. Thus, we
have that X\{x} is (EX , E ′

X)-gρ.closed (cf. Definition 5.3(II)). By assumption, it is shown
that X \ (X \ {x}) ∈ E ′

X and so {x} ∈ E ′
X .

(ii) First, suppose that (∗1’) holds. For a singleton {x} such that {x} ∈ E ′
X , it is

shown that E ′
X -Cl(X \ {x}) = X \ {x} holds (cf. Notation 5.1(I)(i)). Then, the given

assumption (∗1’) implies the assumption (∗1) of Lemma 5.7(i)(2), i.e., X \ {x} ∈ EX or
E ′

X -Cl(X \ {x}) = X \ {x} hold. Thus, by Lemma 5.7(i), (X, τ) is weak (EX , E ′
X)-T ρ

1/2,
where ρ ∈ {id, ◦}; and, by Lemma 5.5(ii), (X, τ) is (EX , E ′

X)-T ρ
1/2, where ρ ∈ {id, ◦}.

Finally, suppose that (X, τ) is (EX , E ′
X)-T ◦−

1/2. Then, by (i) above, it is shown that the
property (∗1’) holds; and so, by the first property of the present (ii), the space (X, τ) is
(EX , E ′

X)-T ρ
1/2, where ρ ∈ {id, ◦}.

(iii) Let {x} ∈ E ′
X . It is shown that E ′

X -Cl(X \ {x}) = X \ {x} holds; and so
the assumption (∗2’) implies the assumption (∗2) of Lemma 5.7(iii), i.e., X \ {x} ∈
EX ∩ SC(X, τ)) or E ′

X -Cl(X \ {x}) = X \ {x}) hold. Thus, by Lemma 5.7(iii) and
Lemma 5.5(ii), it is shown that (X, τ) is (EX , E ′

X)-T ◦−
1/2. �

Remark 5.10 The following diagram is shown by the above implications in Lemma 5.9:
under the assumption (B)E′

X
;

(EX , E ′
X)-T id

1/2

↗
(EX , E ′

X)-T ◦−
1/2 ↓ ↑
↘

(EX , E ′
X)-T ◦

1/2

Using Lemma 5.7 for EX := ωρ1O(X, τ) and E ′
X := ωρ2O(X, τ), the concept of

”weak (ωρ1, ωρ2)-T ρ
1/2 spaces” is characterized by the following Theorem 5.11, where ρ1 :

SO(X, τ) → P (X) and ρ2 : SO(X, τ) → P (X) are functions such that ρ1 ∈ {id, ◦, ◦−}
and ρ2 ∈ {id, ◦, ◦−} and ρ : ωρ1O(X, τ) → P (X) is a function such that ρ ∈ {id, ◦, ◦−};
(cf. Definition 5.3 (I)(ii)).

Theorem 5.11 Let ρ1 : SO(X, τ) → P (X) and ρ2 : SO(X, τ) → P (X) be two
functions such that ρ1 ∈ {id, ◦, ◦−} and ρ2 ∈ {id, ◦, ◦−}.

(i) The following properties are equivalent:
(1) a topological space (X, τ) is weak (ωρ1, ωρ2)-T ◦

1/2;
(2) (∗1): if x ∈ X then {x} is ωρ1-closed (cf. Definition d75) (i.e., X \ {x} ∈

ωρ1O(X, τ)) or ωρ2Cl(X \ {x}) = X \ {x};
(3) (X, τ) is weak (ωρ1, ωρ2)-T id

1/2.
(ii) Every weak (ωρ1, ωρ2)-T ◦−

1/2 topological space is weak (ωρ1, ωρ2)-T ρ
1/2, where ρ ∈

{id, ◦}.
(iii) Suppose that (∗2): if x ∈ X then X \{x} ∈ ωρ1O(X, τ)∩SC(X, τ) or ωρ2Cl(X \

{x}) = X \ {x}. Then, (X, τ) is weak (ωρ1, ωρ2)-T ◦−
1/2. �

Remark 5.12 The following diagrams are obtained by Theorem 5.11(i) and (ii) above:
for fixed functions ρ1 ∈ {id, ◦, ◦−} and ρ2 ∈ {id, ◦, ◦−} (cf. Remark 5.8),
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weak (ωρ1, ωρ2)-T id
1/2 � {x} ∈ ωρ1C(X, τ) or

↖ ωρ2Cl(X \ {x}) = X \ {x}(∀x ∈ X)
↓ ↑ weak (ωρ1, ωρ2)-T ◦−

1/2

↙
weak (ωρ1, ωρ2)-T ◦

1/2

In Definition 5.3 (II)(i), especially we consider the case where EX := ωρ1O(X, τ)
(ρ1 : SO(X, τ) → P (X) is a function such that ρ1 ∈ {id, ◦, ◦−}) and E ′

X :=ωO(X, τ);
and so we have the following propeties on ”(ωρ1, ω)-T ρ

1/2” spaces using Lemma 5.9 above
and Definition 5.3 (II)(i), where ρ : ωρ1O(X, τ) → P (X) is a function such that ρ ∈
{id, ◦, ◦−}. We note that the family E ′

X := ωO(X, τ) has property (B)E′
X

(cf. Remark 5.6
above;[26]).

Theorem 5.13 For a fixed function ρ1 : SO(X, τ) → P (X) with ρ1 ∈ {id, ◦, ◦−}, we
have the following properties.

(i) The following properties are equivalent:
(1) a topological space (X, τ) is (ωρ1, ω)-T id

1/2;
(2) if x ∈ X then {x} is ωρ1-closed or {x} is ω-open;
(3) (X, τ) is (ωρ1, ω)-T ◦

1/2.
(ii) Every (ωρ1, ω)-T ◦−

1/2 topological space is (ωρ1, ω)-T id
1/2 and (ωρ1, ω)-T ◦

1/2.
(iii) Suppose that if x ∈ X then {x} is ωρ1-closed and semi-open (i.e. X \ {x} ∈

ωρ1O(X, τ) and {x} ∈ SO(X, τ)), or {x} is ω-open, then (X, τ) is (ωρ1, ω)-T ◦−
1/2. �

Remark 5.14 The following diagram is obtained by Theorem 5.13(i) and (ii) above:
(ωρ1, ω)-T id

1/2 � {x} ∈ ωρ1C(X, τ) ∪ ωO(X, τ) (∀x ∈ X)
↗

(ωρ1, ω)-T ◦−
1/2 ↓ ↑

↘
(ωρ1, ω)-T ◦

1/2

In Defintion 5.3(II)(i), especially we consider the case where EX := ωρ1O(X, τ)
(ρ1 : SO(X, τ) → P (X) is function such that ρ1 ∈ {id, ◦, ◦−}), E ′

X := ω◦O(X, τ) (resp.
E ′

X := ω◦−O(X, τ)) and a function ρ : SO(X, τ) → P (X) with ρ ∈ {id, ◦, ◦−}; and so we
have the following properties on ”(ωρ1, ω◦)-T ρ

1/2” (resp. ”(ωρ1, ω◦−)-T ρ
1/2”) spaces, using

Lemma 5.9 and Definition 5.3 (I) above.

Theorem 5.15 For fixed functions ρ1 : SO(X, τ) → P (X) with ρ1 ∈ {id, ◦, ◦−} and
μ : SO(X, τ) → P (X) with μ ∈ {◦, ◦−}, we have the following properties.

(i) For a fixed function ρ : ωρ1O(X, τ) → P (X) with ρ ∈ {id, ◦, ◦−}, if (X, τ) is
(ωρ1, ωμ)-T ρ

1/2, then {x} ∈ ωρ1C(X, τ) ∪ ωμO(X, τ) for each singleton {x} of (X, τ).
(ii) Suppose that ωμO(X, τ) has property (B)ωμO(X,τ) for μ ∈ {◦, ◦−}. Then, the

following properties are equivalent:
(1) (X, τ) is (ωρ1, ωμ)-T id

1/2;
(2) if x ∈ X then {x} ∈ ωρ1C(X, τ) ∪ ωμO(X, τ);
(3) (X, τ) is (ωρ1, ωμ)-T ◦

1/2.
(iii) Suppose that ωμO(X, τ) has property (B)ωμO(X,τ) for μ ∈ {◦, ◦−}. Then, every

(ωρ1, ωμ)-T ◦−
1/2 topological space is (ωρ1, ωμ)-T id

1/2 and (ωρ1, ωμ)-T ◦
1/2.
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(iv) Suppose that ωμO(X, τ) has property (B)ωμO(X,τ) for μ ∈ {◦, ◦−}. Then, if
{x} ∈ (ωρ1C(X, τ) ∩ SO(X, τ)) ∪ ωμO(X, τ) for each x ∈ X, then (X, τ) is (ωρ1, ωμ)-
T ◦−

1/2. �

(•) In the end of the present section, we define the concepts of ω◦-Ti spaces, ω◦−-Ti

spaces and ω-Ti spaces for each integer i ∈ {1, 0} (cf. Definition 5.16 (II) below). The
following Definition 5.16 (I) (i.e., EX -Ti separation axioms, where i ∈ {0, 1}) are well
known by many authors; for examples, they are defined on a generalized topology, say
λ, due to [1, in 2002] and they are investigated on (X, λ) by [24, in 2011; for i=1],[25, in
2016;Definition 1.7 (for i=1), Definition 1.8 (for i=1/2), Defintion 3.1 (for i=3/4)]. We
give Definition 5.16 (I) in order to explain the concepts of ωρ-Ti(i ∈ {0, 1}) accurately
(cf. Definiton 5.16 (II)).

Let X ×X be the direct product of X and �(X) := {(x, x)| x ∈ X} the diagonal set
of X; and (X × X) \ �(X) := {(x, y) ∈ X × X|x 
= y}.
Definition 5.16 (I)([1], [24],[25]) A topological space (X, τ) is said to be:

(i) EX -T1, if for each (x, y) ∈ (X ×X) \�(X) there exist subsets U and V belonging
to EX such that x ∈ U but y 
∈ U and y ∈ V but x 
∈ V ;

(ii) EX -T0, if for each (x, y) ∈ (X × X) \ �(X) there exists a subset U belonging to
EX such that x ∈ U and y 
∈ U or y ∈ U and x 
∈ U (i.e., U ∈ EX contains exactly one of
two points).

(II) For each integer i ∈ {0, 1} and a function ρ : SO(X, τ) → P (X) with ρ ∈
{id, ◦, ◦−}, a topological space (X, τ) is said to be ωρ-Ti , if (X, τ) is ωρO(X, τ)-Ti (in
the sense of (I) for EX = ωρO(X, τ)) (cf. Notation 1.5 (i)). Sometimes, the separation
axiom ωid-Ti is denoted by ω-Ti, where i ∈ {0, 1}.

The followng properties are well known; (ii) is obtained by using (i) below and
Lemma 5.4.

Theorem 5.17 (i) The following properties (1) and (2) are equivalent:
(1) a topological space (X, τ) is EX-T1;
(2) for each singleton {x}, EX-Cl({x}) = {x} holds.
(ii) Suppose that EX has property (B)EX

. Then, (1), (2) above and the following
property (3) are equivalent.

(3) For each singleton {x}, X \ {x} ∈ EX holds. �

We investigate some relations among ωρ1-Ti spaces for a function ρ1 : SO(X, τ) →
P (X) with ρ1 ∈ {id, ◦, ◦−} and a fixed number i with i ∈ {0, 1/2, 1}.
Theorem 5.18 (i) Every Ti space is ω-Ti for each i ∈ {0, 1/2, 1}, where a symbol
ω-T1/2 means the separation axiom: (ω, ω)-T id

1/2 (cf. Definition 5.3 (I)(∗1)).
(ii) Every ω◦-Ti space is ω-Ti and ω◦−-Ti for each i ∈ {0, 1} (cf. Theorem 5.13(ii) for

the case where i = 1/2).

Proof (i) Since τ ⊂ ωO(X, τ), the case where of i ∈ {0, 1} is proved by Definition 5.16
for EX := ωO(X, τ). By [5, Theorem 2.5], it is shown that if (X, τ) is T1/2 then every
singleton {x} of (X, τ) is open or closed; and so it is ω-open or ω-closed. Then, the proof
of the case where of i = 1/2 is obtained by Theorem 5.13(i) for ρ1 = id.

(ii) Since ω◦O(X, τ) ⊂ ωO(X, τ) and ω◦O(X, τ) ⊂ ω◦−O(X, τ) holds (cf. Theo-
rem 2.1), the proof of (ii) is obtained by Definition 5.16. �
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We investigate some relations among ωρ1-T0 spaces, ωρ1-T1 spaces and (ωρ1, ωρ1)-
T ρ

1/2 spaces, where ρ1 : SO(X, τ) → P (X) is a function such that ρ1 ∈ {id, ◦, ◦−} and
ρ = id : ωρ1O(X, τ) → P (X) (cf. Definition 5.3(I) and Definition 5.16 (II)).

Theorem 5.19 We have the following diagram of implications.
(i) ω-T1 ⇒ (ω, ω)-T id

1/2(= ω-T1/2) ⇒ ω-T0.
(ii) Let μ : SO(X, τ) → P (X) be a function such that μ ∈ {◦, ◦−}. Supose that

ωμO(X, τ) has property property (B)ωμO(X,τ). Then,
ωμ-T1 ⇒ (ωμ, ωμ)-T id

1/2.
(iii) Let b : SO(X, τ) → P (X) be a fixed function such that b ∈ {◦, ◦−}. Then,

(ωb, ωb)-T id
1/2 ⇒ ωb-T0.

Proof (i) ·(ω-T1 ⇒ (ω, ω)-T id
1/2): Suppose that (X, τ) is ω-T1, i.e., ωO(X, τ)-T1. By

Theorem 5.17(i) for EX := ωO(X, τ), it is shown that ωO(X, τ)-Cl({x}) = {x} for each
singleton {x} of (X, τ); and so, by Theorem 5.17(ii) for EX := ωO(X, τ), it is shown
that every singleton {x} is ω-closed (i.e., X \ {x} ∈ ωO(X, τ)), because ωO(X, τ) has
property (B)ωO(X,τ) (cf. Remark 5.6(i)). Using Theorem 5.13(i) for ρ1 = id, we have
that the space (X, τ) is (ω, ω)-T id

1/2 (cf. Remark 5.6(ii)).
·((ω, ω)-T id

1/2 ⇒ ω-T0): Suppose that (X, τ) is (ω, ω)-T id
1/2. By Theorem 5.13(i) for

ρ1 = id, every singleton {x} is ω-closed or ω-open. For a pair of distinct points x and y,
we consider the following cases:

Case 1. {x} ∈ ωO(X, τ) and {y} ∈ ωO(X, τ): for this case, {x} is the required set
belonging to EX := ωO(X, τ) such that x ∈ {x} and y 
∈ {x}.

Case 2. {x} ∈ ωO(X, τ) and {y} ∈ ωC(X, τ): for this case, {x} ∈ EX := ωO(X, τ)
such that x ∈ {x} and y 
∈ {x}.

Case 2’. {x} ∈ ωC(X, τ) and {y} ∈ ωO(X, τ): for this case, {y} ∈ EX := ωO(X, τ)
such that y ∈ {y} and x 
∈ {y}.

Case 3. {x} ∈ ωC(X, τ) and {y} ∈ ωC(X, τ): for this case, X\{y} ∈ EX := ωO(X, τ)
such that x ∈ X \ {y} and y 
∈ X \ {y}.
Therefore (X, τ) is ω-T0 (cf. Definition 5.16(II) for ρ = id).

(ii) Let x ∈ X. By Theorem 5.17(ii) for EX := ωμO(X, τ), it is shown that the
singleton {x} is ωμ-closed (i.e., X \ {x} ∈ ωμO(X, τ)); and so, by Theorem 5.15(ii) for
the case where ρ1 = μ, (X, τ) is (ωμ, ωμ)-T id

1/2.
(iii) Let (X, τ) be an (ωb, ωb)-T id

1/2 space, where b ∈ {◦, ◦−}. Let x 
= y be two points
of X. Then, by Theorem 5.15(i) for EX := ωbO(X, τ) and ρ1 = μ = b, it is shown that,
the singleton {x} is ωb-closed or {x} is ωb-open. Then, (X, τ) is ωb-T0. �

6 An example satisfying a separation axiom: ”ω◦−-T1 except a subset A” of
(Z, κ) In the last section, we prove the following properties: Theorem 6.1 on some
separation axioms of the digital line (Z, κ).

Theorem 6.1 Let (Z, κ) be the digital line and Zκ := {2s + 1|s ∈ Z}. We have the
following properties of (Z, κ).

(i) (Z, κ) is (ω, ω)-T id
1/2.

(ii) (Z, κ) is not ω◦-T0.
(iii) (Z, κ) is not ω◦−-T0.
(iv) (Z, κ) is ω◦−-T1 except Zκ.
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In the end of the present section, we prove the Theorem 6.1 above, after recalling of
definitions (i.e., Definitions 6.2, 6.3) and preparing some propositions (i.e., Propositions
6.4,6.5).

Definition 6.2 Suppose that |X| > 1. Let A be a proper subset of X. A topological
space (X, τ) is said to be:

EX-T1 except A, if the following properties (1) and (2) are satisfied:
(1) for every ordered pair (x, y) ∈ (X \ A) × (X \ A) such that x 
= y, there exists a

set V ∈ EX such that x ∈ V and y 
∈ V and there exists a set V1 ∈ EX such that x 
∈ V1

and y ∈ V1;
(2) for every ordered pair (a, b) ∈ A × A such that a 
= b, there does not exist any

subsets V ∈ EX and V1 ∈ EX such that a ∈ V and b 
∈ V , and b ∈ V1 and a 
∈ V1.

Put EX := ω◦−O(X, τ) in Defintion 6.2; then we have the following definition.

Definition 6.3 Suppose that |X| > 1 and A is a proper subset of X. A topologcal
space (X, τ) is said to be ω◦−-T1 except A, if the space (X, τ) is ω◦−O(X, τ)-T1 except
A in the sense of Definition 6.2.

Proposition 6.4 Let (Z, κ) be the digital line and {2m} and {2s+1} be two singletons
of (Z, κ), where m, s ∈ Z.

(i) {2m} ∈ ωC(Z, κ), {2m} 
∈ ωO(Z, κ); {2s + 1} 
∈ ωC(Z, κ), {2s + 1} ∈ ωO(Z, κ).
(ii) {2m} 
∈ ω◦−C(Z, κ), {2m} ∈ ω◦−O(Z, κ); {2s + 1} 
∈ ω◦−C(Z, κ), {2s + 1} 
∈

ω◦−O(Z, κ).
(iii) For every singleton {x} of (Z, κ), {x} 
∈ ω◦C(Z, κ) and {x} 
∈ ω◦O(Z, κ).

Proof. (i) It is well known that {2m} is not open and it is closed in (Z, κ) and {2s + 1}
is open and it is not closed in (Z, κ). Since ωO(Z, κ) = κ holds by [17, Theorem 4.6],
and hence we have that {2m} ∈ ωC(Z, κ) \ωO(Z, κ) and {2s+1} ∈ ωO(Z, κ) \ωC(Z, κ)
hold.

(ii) · Proof of {2m} 
∈ ω◦−C(Z, κ): there exists a semi-open set V := {2m, 2m + 1}
such that {2m} ⊂ V and Cl({2m}) = {2m} 
⊂ Int(Cl(V )), because of Int(Cl(V )) =
Int({2m, 2m + 1, 2m + 2}) = {2m + 1}; and so {2m} is not ω◦−-closed in (Z, κ) (i.e.,
{2m} 
∈ ω◦−C(Z, κ)).

· Proof of {2m} ∈ ω◦−O(Z, κ): let E := Z\{2m}. Let V be a semi-open set containing
E; then V = E or V = Z. Since Cl(E) = Z and Int(Cl(E)) = Z hold, we have that
Cl(E) ⊂ Int(Cl(V )); and so E := Z \ {2m} is ω◦−-closed in (Z, κ). Hence {2m} is
ω◦−-open (i.e., {2m} ∈ ω◦−O(Z, κ)).

· Proof of {2s + 1} 
∈ ω◦−C(Z, κ): there exists a semi-open set V := {2s + 1} such
that {2s + 1} ⊂ V and Cl({2s + 1}) = {2s, 2s + 1, 2s + 2} 
⊂ Int(Cl(V )), because of
Int(Cl(V )) = Int({2s, 2s + 1, 2s + 2}) = {2s + 1}; and so {2s + 1} is not ω◦−-closed in
(Z, κ) (i.e., {2s + 1} 
∈ ω◦−C(Z, κ)).

· Proof of {2s + 1} 
∈ ω◦−O(Z, κ): let E := Z \ {2s + 1}. Let V := E; and so
V is a semi-open set containing E. Since Cl(E) = E and Int(Cl(V )) = Int(E) =
Z\{2s, 2s+1, 2s+2} hold, we have that Cl(E) = E 
⊂ Int(Cl(V )); and so E := Z\{2s+1}
is not ω◦−-closed in (Z, κ). Hence {2s + 1} 
∈ ω◦−O(Z, κ).

(iii) Let x = 2m or x = 2s + 1, where m ∈ Z and s ∈ Z.
· Proof of {2m} 
∈ ω◦C(Z, κ): by using the properties for (Z, κ) of Theorem 2.1(iii)

(i.e., ω◦C(Z, κ) ⊂ ω◦−C(Z, κ)) and the corresponding property of the present (ii) (i.e.,
{2m} 
∈ ω◦−C(Z, κ)), it is shown that {2m} 
∈ ω◦C(Z, κ).

· Proof of {2m} 
∈ ω◦O(Z, κ): by using the property for (X, τ) of Theorem 2.1(i) (i.e.,
ω◦C(X, τ) ⊂ ωC(X, τ)) and definitions, it is shown that ω◦O(X, τ) ⊂ ωO(X, τ) holds
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in general. By using the corresponding property of the proof of (i), it is obtained that
{2m} 
∈ ω◦O(Z, κ).

· Proof of {2s + 1} 
∈ ω◦C(Z, κ): by using the property for (Z, κ) of Theorem 2.1(iii)
(i.e., ω◦C(Z, κ) ⊂ ω◦−C(Z, κ)) and the corresponding property of the present (ii) (i.e.,
{2s + 1} 
∈ ω◦−C(Z, κ)), it is shown that {2s + 1} 
∈ ω◦C(Z, κ).

· Proof of {2s + 1} 
∈ ω◦O(Z, κ): by using the same property for (Z, κ) of The-
orem 2.1(iii) (cf. Proof of {2m} 
∈ ω◦O(Z, κ)) and the corresponding property of the
present (ii) (i.e., {2s + 1} 
∈ ω◦−O(Z, κ)), it is shown that {2s + 1} 
∈ ω◦O(Z, κ). �
Proposition 6.5 (i) (i-1) If U ∈ ω◦O(Z, κ) and 2m ∈ U for some integer m, then
{2m − 1, 2m, 2m + 1} ⊂ U .

(i-2) If U ∈ ω◦O(Z, κ) and 2s + 1 ∈ U for some integer s, then {2s − 1, 2s, 2s +
1, 2s + 2, 2s + 3} ⊂ U .

(i-3) ω◦O(Z, κ) = {∅, Z} holds.
(ii) (ii-1) If V ∈ ω◦−O(Z, κ) and 2s+1 ∈ V for some integer s, then {2s− 1, 2s, 2s+

1, 2s + 2, 2s + 3} ⊂ V .
(ii-2) The following properties on a nonempty subset V are equivalent:

(1) V ∈ ω◦−O(Z, κ) and 2s + 1 ∈ V for some integer s;
(2) V = Z holds.

(ii-3) ω◦−O(Z, κ) = {E| E ⊂ ZF} ∪ {∅, Z} holds, where ZF :={2m| m ∈ Z}. Espe-
cially, ZF ∈ ω◦−O(Z, κ) holds.

(ii-4) Every nonempty subset of Zκ is not ω◦−-open in (Z, κ)(i.e., {2m+1| m ∈ E} 
∈
ω◦−O(Z, κ), where E ⊂ Z with E 
= ∅). Especially, Zκ 
∈ ω◦−O(Z, κ) holds.

Proof. (i) (i-1) Since {2m} ∈ SC(Z, κ) and so Z \ {2m} is a semi-open set. And, it
follows from assumptions that Z \ {2m} contains the set Z \U which is ω◦-closed. Then,
Cl(Z \ U) ⊂ Int(Z \ {2m})=Z \ {2m}; and so we have that Z \ Int(U) ⊂ Z \ {2m},
i.e., 2m ∈ Int(U). There exists the smallest open set {2m − 1, 2m, 2m + 1} containing
2m such that {2m − 1, 2m, 2m + 1} ⊂ Int(U) ⊂ U (e.g., [17, Definition 3.3 and its near
part]).

(i-2) Since Z = ZSC ∪ Zω◦O (cf. Lemma 4.3(i)), we consider the following cases:
{2s + 1} ∈ SC(Z, κ) or {2s + 1} ∈ ω◦O(Z, κ). By Proposition 6.4(iii), {2s + 1} 
∈
ω◦O(Z, κ); and so we consider the case where {2s + 1} ∈ SC(Z, κ). Since Z \ {2s + 1}
is a semi-open set containing Z \ U and the set Z \ U is an ω◦-closed set, we have that
Cl(Z\U) ⊂ Int(Z\{2s+1}) = Z\Cl({2s+1}) = Z\{2s, 2s+1, 2s+2}. Thus, we have
that {2s, 2s+1, 2s+2} ∈ Int(U). Since 2s ∈ Int(U) (resp. 2s+2 ∈ Int(U)), the minimal
open set containing 2s (resp. 2s+2) is included in Int(U),i.e., {2s−1, 2s, 2s+1} ⊂ Int(U)
(resp. {2s + 1, 2s + 2, 2s + 3} ⊂ Int(U).

(i-3) Let U ∈ ω◦O(Z, κ) such that U 
= ∅. Then, by (i-1) and (i-2) above, it is shown
that there exists an odd point, say 2u + 1 ∈ U , where u ∈ Z. We claim that Z ⊂ U .
Indeed, let z ∈ Z be a point.

Case 1. z = 2s, where s ∈ Z: for the present case, if 2s < 2u + 1, then we can
take the following sequence of points, say {zi}k

i=1, where k := 2(u − s + 1) and zi :=
2u + 2 − i (1 ≤ i ≤ k), where ; then, z1 = 2u + 1 ∈ U and zk = 2s = z; and by using
(i-1) and (i-2) above, we show inductively, that zi ∈ U (2 ≤ i ≤ k) and hence z ∈ U . If
2s > 2u+1, then we can take the following sequence of points, say {z′i}k′

i=1, k′ := 2(s−u)
and z′i := 2u + i (1 ≤ i ≤ k′); then, z′1 = 2u + 1 ∈ U and z′k′ = z; and by a similar
arguments of the above case, it is shown that z′i ∈ U (2 ≤ i ≤ k′); and so z ∈ U . Thus,
we proved that z = 2s ∈ U holds for any cases.

Case 2. z = 2t + 1, where t ∈ Z: for the present case, let z 
= 2u + 1. If z < 2u + 1,
then we can constract the following sequence of points, say {xi}k

i=1, where k := u− t+1,
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and xi := 2u + 1 − 2(i − 1)(1 ≤ i ≤ k); then x1 = 2u + 1 ∈ U and xk = z; and by using
(i-2) above, we show inductively, that xi ∈ U(2 ≤ i ≤ k); and so z ∈ U . If 2u + 1 < z,
then we can constract the following sequence of points, say {x′

i}k′
i=1, where k′ := t−u+1,

and x′
i := 2u + 1 + 2(i− 1)(1 ≤ i ≤ k′); then x′

1 = 2u + 1 ∈ U and x′
k′ = z; and by using

(i-2) above, we show inductively, that x′
i ∈ U(2 ≤ i ≤ k′); and so z ∈ U .

Therefore, we prove that Z ⊂ U and so U = Z.
(ii) (ii-1) · Proof of {2s, 2s+2} ⊂ V . Since Z\{2s+1} is a semi-open set containing

Z \ V and Z \ V is ω◦−-closed, we have that Cl(Z \ V ) ⊂ Int(Cl(Z \ {2s + 1}))=Z \
{2s, 2s + 1, 2s + 2}. Thus, we have that {2s, 2s + 1, 2s + 2} ⊂ Int(V ).
Since 2s ∈ Int(V ) (resp. 2s + 2 ∈ Int(V )) and the set {2s − 1, 2s, 2s + 1} (resp. {2s +
1, 2s + 2, 2s + 3}) is the ninimal open set containing the point 2s (resp. 2s + 2), we have
that {2s− 1, 2s, 2s + 1} ⊂ V (resp. {2s + 1, 2s + 2, 2s + 3} ⊂ V ). Therefore, we show the
required property that {2s − 2 + j|1 ≤ j ≤ 5} ⊂ V .

(ii-2) (1)⇒(2) In order to prove that Z ⊂ V , let z ∈ Z be a point. First, it is claimed
that:
(∗1) if z = 2m + 1 for some integer m, then z ∈ V .

Proof of (∗1): (Case 1) z := 2m + 1 and z < 2s + 1; for the present case, we apply
(ii-1) for the point 2s + 1 ∈ V and V ∈ ω◦−O(X, τ). And, it is shown inductively that
there exists a finite sequence of points {yi}k

i=1 such that:
(∗2)i yi ∈ V (1 ≤ i ≤ k), where yi := 2s + 1 − 2i and k := s − m.
Indeed, by (ii-1) above for the odd point 2s + 1 ∈ V , it is shown that {2s − 1, 2s, 2s +
1, 2s + 2, 2s + 3} ⊂ V . Thus, 2s − 1 ∈ V ; and so y1 = 2s + 1 − 2 ∈ V . Then, we show
that (∗2)i holds for i = 1. In order to prove (∗2)i by finite induction on i (1 ≤ i ≤ k),
suppose that yr ∈ V , where 1 < r < k and yr := 2s+1− 2r. Since yr is odd and yr ∈ V ,
by (ii-1) above, it is shown that {yr − 2, yr − 1, yr, yr + 1, yr + 2} ⊂ V . Thus, we have
that yr+1 = 2s + 1 − 2(r + 1) = 2s + 1 − 2r − 2 = yr − 2 ∈ V , i.e., we have that (∗2)i

holds for i = r + 1. Then, by finte induction on i (1 ≤ i ≤ k), it is shown that yk ∈ V ;
and hence z = 2m + 1 = 2s + 1− 2(s−m) = ys−m = yk ∈ V . Thus, we show that z ∈ V
for the present Case 1.
(Case 1’). z = 2m+1 ∈ Z and 2s+1 < z: for the present case, we apply (ii-1) above for
the point 2s + 1 ∈ V and V ∈ ω◦−O(X, τ). By an argument similar to that in the proof
of Case 1 above, it is shown inductively that there exists a sequence of points {y′

i}k′
i=1

such that :
(∗2)′i y′

i ∈ V holds for each integer i with 1 ≤ i ≤ k′, where y′
i := (2s + 1) + 2i and

k′ := m − s. Thus, we show that z ∈ V for the present Case 1’.
Finally, it is claimed that:
(∗3) if z = 2m for some integer m, then z ∈ V .

Proof of (∗3): by (∗1) above, it is shown that 2u+1 ∈ V for any odd point 2u+1 ∈ Z.
Then, take the odd point z + 1 = 2m + 1; and so 2m + 1 ∈ V . Here, by using (ii-1)
above for the point 2m+1 ∈ V and V ∈ ω◦−O(Z, κ), it is shown that {2m−2, 2m, 2m+
1, 2m + 2, 2m + 3} ⊂ V ; and so z := 2m ∈ V .

Therefore, we conclude that z ∈ V for any point z ∈ Z (i.e., Z = V ).
(2)⇒(1) Suppose V = Z. By definitions, it is obvious that Z ∈ ω◦−O(Z, κ) and

there exists an odd point 2s + 1 ∈ V = Z, where s ∈ Z.
(ii-3) First, we prove that:

(∗4) ω◦−O(Z, κ) ⊂ {E| E ⊂ ZF} ∪ {∅, Z}. Indeed, let V ∈ ω◦−O(Z, κ) such that
V 
∈ {∅, Z}. Then, by (ii-2) above, it is shown that 2s + 1 
∈ V holds for every integer
s ∈ Z, i.e., V ⊂ ZF :={2m| m ∈ Z}. Thus, we proved (∗4). Secondly, we prove that:
(∗5) {E| E ⊂ ZF} ∪ {∅, Z} ⊂ ω◦−O(Z, κ) holds. Let V ⊂ ZF with V 
∈ {∅, Z}. Then,



24 H.Maki, N.Rajesh, S.Shanthi

V = {2m| m ∈ A}, where A ⊂ Z. In order to prove hat Z \ V ∈ ω◦−C(Z, κ), let U be a
semi-open set such that Z \ V ⊂ U . Since Zκ={2s + 1|s ∈ Z} ⊂ Z \ V , it is shown that
Z=Cl(Zκ) ⊂ Cl(Z \ V ) ⊂ Cl(U); and so Z = Cl(U) and Cl(Z \ V ) = Z = Int(Cl(U))
hold. Thus, we prove that Z \ V is ω◦−-closed, i.e., V ∈ ω◦−O(Z, κ).
Finally, by (∗5) above, it is especially shown that ZF ∈ ω◦−O(Z, κ).

(ii-4) Let denote V := {2m + 1| m ∈ A}, where A ⊂ Z with A 
= ∅. Then, V 
∈
{E| E ⊂ ZF} ∪ {∅, Z} ;and so, by (ii-3) above, V 
∈ ω◦−O(Z, κ). Especially, Zκ 
∈
ω◦−O(Z, κ). �

Remark 6.6 The converse of Proposition 6.5(ii)(ii-1) is not true. Indeed, Let V :=
{2s − 1, 2s, 2s + 1, 2s + 2, 2s + 3} be a subset of (Z, κ), where s ∈ Z. Then, there exists
a semi-open set W := Z \ V such that Z \ V ⊂ W and Cl(Z \ V )=Cl(W ) = W 
⊂
Int(Cl(W )). Then, Z \ V 
∈ ω◦−C(Z, κ),i.e., V 
∈ ω◦−O(Z, κ) holds, even if 2s + 1 ∈ V
and {2s − 1, 2s, 2s + 1, 2s + 2, 2s + 3} ⊂ V .

Proof of Theorem 6.1:
Proof of (i) It is well known that (Z, κ) is T1/2 and so it is (ω, ω)-T id

1/2 (cf. [5,
Theorem 2.5], Theorem 5.18 (i)).

Proof of (ii) Let x := 2m ∈ Z and U be any ω◦-open set such that x ∈ U . By
Proposition 6.5(i)(i-3), it is shown that U = Z and so 2m + 1 ∈ U . Thus, there exists a
pair of distinct points 2m and 2m + 1 of (Z, κ) which does not satisfy the condition of
the ω◦-T0 (cf. Definition 5.16 for EZ := ω◦O(Z, κ)).

Proof of (iii) Let x := 2s + 1 and y := 2s + 3 be two points of (Z, κ), where
s ∈ Z. And, let V (resp. V1) be any ω◦−-open set containing the point x (resp. y). By
Proposition 6.5(ii)(ii-2)(1)⇒(2), it is shown that V = Z (resp. V1 = Z), and so y ∈ V
(resp. x ∈ V ). Thus, (Z, κ) is not ω◦−-T0 (cf. Definition 5.16).

Proof of (iv) First, we recall that Zκ := {2u + 1| u ∈ Z}. Let (x, y) ∈ (Z \ Zκ) ×
(Z \ Zκ) be an ordered pair of points such that x 
= y. Since x = 2m for some integer
m, there exists a set V ∈ ω◦−O(Z, κ) (cf. Proposition 6.4(ii)), where V := {2m}, such
that x ∈ V and y 
∈ V . And, since y = 2s for some integer s with s 
= m, there exists
a set V1 ∈ ω◦−O(Z, κ), where V1 := {2s}, such that x 
∈ V1 and y ∈ V1. Thus, one
of the properties of ω◦−-T1-ness except Zκ is satiesfied (cf. (1) of Definition 6.2 and
Definition 6.3).

Finally, let (a, b) ∈ Zκ × Zκ be any ordered pair of points a and b such that a 
= b.
Let Va (resp. Wb) be any ω◦−-open set such that a ∈ Va (resp. b ∈ Wb). Then, by
Proposition 6.5(ii)(ii-2) (1)⇒(2), it is shown that Va = Z; and so b ∈ V (resp. Wb = Z
and so a ∈ Wb). Thus, the property (2) for A := Zκ in Definition 6.2 of ω◦−-T1-ness
except Zκ is satisfied.

Therefore, the digital line (Z, κ) is ω◦−-T1 except Zκ. �
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