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ABSTRACT. Let ® be a subset of L™ containing H* and Ty the family of Toeplitz
operators {T,},cs. In this paper, we study invariant subspaces of Ts and their prop-
erties. Moreover, we provide a concrete description of nontrivial invariant subspaces
of Te for some P.

1 Introduction Let I' be the unit circle centered at the origin in the complex plane,
and H?(T'™) be the Hardy space on I'™. In [5], the second author showed that H?(T') has
a certain rigidity (see Theorem 2.1 stated below), and pointed out that H?(I'?) does not
have this property. The purpose of this paper is to study this phenomenon with examples.

We introduce notions in this paper. Let L?(I'") be the usual L? space with respect to
the normalized Lebesgue measure on I'™. Let P be the orthogonal projection from L?(T™)
onto H2(I'™). For ¢ € L>(I'), we define

Tof = P(of) (f€H).

Then T, is called the Toeplitz operator with symbol ¢. For a subset ® in L*°(IT"), To
denotes the set of Toeplitz operators whose symbols are in ®, that is, we set

Te ={T,: ¢ € ®}.

The collection of all closed subspaces of H?(I') invariant under every T,, € Ty is denoted
by Lat Ts. Throughout this paper, we assume that H>* C & C L,

This paper consists of five sections. In Section 2, we consider one variable Hardy space
and recall results in [5]. In Section 3, we introduce some classes of functions in order to
study LatTs. In Section 4, we study LatTg for some ®’s. In Section 5, we show that
Lat T is nontrivial for some ®, and present examples of invariant subspaces of T, and T,,.

2 A certain rigidity of H?(I') The following theorem was given in [5], which shows
that H2(T') has a certain rigidity.

Theorem 2.1 ([5]). If ® = H™(T) U {¢} for ¢ € L>®() \ H>®(T), then LatTe =
{(0), H*(I)}.

The original proof is based on the theory of uniform algebras. We shall give another
proof to this theorem.

Proof. In this proof, we will write H2 = H?(I'), H* = H>°(T') and so on. Suppose that
M € Lat Ty and M is nontrivial. Then, M is an invariant subspace of H2. Hence, there
exists a non-constant inner function ¢ such that M = ¢H? by Beurling’s theorem. We note
that T, M C M is equivalent to that

Py2pqH? C ¢H?.
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Hence, for any function h € H?, there exists a function g, € H? such that P2 (pqh) = q9n-
Then we have that P2 (¢gh — qgn) = 0, and which is equivalent to that ¢gh — qgn, € HZ,
where HZ = L? & H?. Therefore we have that

(2.1.1) pqh € M@ HZ (h € H?).

In particular, for h = 1, there exist g1 € H? and k € HZ such that

(2.1.2) ©q = qg1 + k.

Put ' = H? & M. Multiplying both sides of (2.1.2) by h € H*, we obtain

= (gg1h + Prkh) @ Pxkh @ (Irz — Pyz2)kh.

Then, by (2.1.1), we note that
Pyxkh = Pyogh = 0.

Let D be the open unit disc in the complex plane. Now, setting

> . n . 1
k= c;izl, kp,= c;z? and sy = = AeD),
j; J ; J A -2 ( )

we have that

[ Prrknsall | Pxknsx — Pyksal
||]€n8)\ — ]ﬂS)\”
lsxlloo 1kn — Kl

0

LA A

as n — oo. On the other hand,

Prxknsx = PnTy sa
= Pyxkn(N)sy
& PuE()sa

as n — 00. Therefore Pyrk(A)sy = 0 for any A € D. If k£(\) # 0 for some A, then Pysy = 0.

However,

1—g(Ng
NN =TT #
Hence k(\) = 0 for all A € D. Then we see that g = gg; in (2.1.2), and which implies
© = g1 € H?. This contradicts that ¢ € L>\ H>. N

From Theorem 2.1, in H?(T'), Lat T has only trivial invariant subspaces if ® contains
H*(T) properly. On the other hand, in the case of H?(I'?), Lat Ty may not be {(0), H?(I'?)}
even if ® properly contains H>(I'2). The following is an example.

Ezample 2.2. We set M = zH?*(I'?)+wH?(I'?). Then M € Lat Ty for ® = H>(I'?)U{zw}.

We will see more examples in Section 5.
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3 Mg, M® and K%, We focus on the structure of H?(I'?), so that we will write L? =
L?(I'?), H? = H?*(I'?) and so on, if no confusion occurs. In this section, some classes of
functions which play important roles in this paper are introduced.

Definition 3.1. Let ¢ be a function in L>°. For M € LatT,, we put
Mo={feM:pf e M} and MY =M M,.
Moreover, let ® be a subset of L. For M € LatTg, we put
Mg =M, and M®=Me Ma,.
ED

Ezample 3.1. Mz = 2M and M? = M © 2M. Further, if & = H*> U {z,w}, then
Mg = zwM and M® = M S zwM.

We are mainly interested in the case where ® is a subset of L°° which contains H>
properly. We shall give some general facts on Mg and M?®.

Proposition 3.2. Let ® be a subset of L which contains H* properly. Then Mg is an
invariant subspace in H?.

Proof. 1t suffices to show that M, is an invariant subspace for any ¢ € ®. If f € M, then
of € M. It follows from this that z¢f € M, that is, zf € M,. Hence M, is invariant
under multiplication by z. Moreover, if f,, € M, and f, — f (n — o), then f € M and
ofn = @©f (n = o00) in M. Hence we have that f € M., that is, M, is closed. These
conclude that M is an invariant subspace in H?2. O

In order to give the next theorem on M®, we need a lemma.

Lemma 3.3. Let ® be a subset of L>° which contains H*> properly. Suppose that M €
LatTe. For any f € H>, we define Q5 = PyjaTf|pqe. Then

Qrg =QrQy (f and g€ H™).
Proof. Tt follows from Proposition 3.2 that
= PpraTi(Pu — Prys)T,Pro
= PypaTi Py TyPpe
0.
O

Theorem 3.4. Let ® be a subset of L° which contains H> properly. If M € Lat Tg then
dim M?® = cc.

Proof. Suppose dim M?® = n < oo. Then, by Lemma 3.3, there exists a finite Blaschke
product b (z) such that @, .y = 0. Hence we have by (2)M?® C Mg. Further, it follows
from Proposition 3.2 that by (2) Mg C Mg, that is,

bi(z)pM C M (p D).
Similarly, there exists a finite Blaschke product bs(w) such that
ba(w)pM C M (p € ®).
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Hence b1 (2)p and ba(w)p belong to H? for all ¢ € ®. Therefore we have
@Y e bl(Z)H2 n bg(w)HZ C H2.
However, this is a contradiction. O]

Next, we introduce a kind of complement of M in our problem.
Definition 3.2. For M € LatTs and ¢ € @, put
K={f:fel*?cH?}
and B
K{y={ke K :k=opf —g for some f and g € M},
where f denotes the complex conjugate of f. Moreover, we set

P
Ky=J K%
ped

If o€ H* and k € K¢, then there exist f and g € M such that k = of —g. However,
it follows from K N M = (0) that k = 0, that is, K, = (0) for ¢ € H*, so that we may

define
Ku= U K%
QED\H>

Remark 3.5. In H*(T),
K ={f:feL*)oH*I)} = H§(T)

and we have already dealt with K, in the proof of Theorem 2.1 (see (2.1.1)), implicitly.
Next, we study the properties of Kﬁ’,t used in the rest of this paper.

Lemma 3.6. Let M be a closed subspace in H%, and ® be a subset of L™ which contains
H>.

1) M € Lat Ty if and only if pM C M+ K%, for all p € ®.
M
(2) If M € Lat T, then (Ir2 — Pp)pM¥ = K% for all ¢ € ®.

Proof. (1) First we show the ‘if’ part. For any ¢ € ® and f € M, there exist g € M and
k € K%, such that of =g + k. From this equality, we have T,,f = g € M. Hence we see
that M € Lat Ts. Next, we show the ‘only if” part. Suppose that M is in Lat Tg. For any
@ € ®and f € M, there exist g € M, h € H> © M and k € K such that

of =g+h+k.

From this equality, we have P(¢f) = g + h. Since P(pf) and g are in M, h must be 0.
Therefore we see that ¢f = g+ k and that k € K%, by the definition of K¥%,.

(2) Since M contains M¥, for any f € M? there exist g € M and k € K}, such that
pf =g+ k by (1). Then we see

(Ir2 = Prm)ef = (I — Pm)(g + k) = k.
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Therefore we have (Ir> — Pp)eM? C Ky, . On the other hand, for any k € K%, there
exist f and g € M such that ¢f = g + k by the definition of K%;. In particular, we can
write f = fi1 4+ fo, where f; € M, and f, € M¥. Since ¢f; € M, we have

k = (Ip2—Puwk
= (I2 = Pm)(ef —g)
= (Ip2 = Pm)(efi +of2—9)
(Ir2 — Prm)efo,

and which implies K%, C (I2 — Py)pM?¥. Hence we have
(IL2 — PM)(pM@ = Kf/[
Thus we obtain (2). O

4 Properties of Lat T In this section, we study properties of Lat Ty for some ® as the
union of H*° and some set. First we set ® the union of H*° and the complex conjugate of
functions in H*°.

Proposition 4.1. If & = H>® U H>®, then Lat Te = Lat Tp.

Proof. 1t is obvious that Lat T« C LatTs. To prove the converse inclusion, suppose that
M € Lat Tg. Then, since ThlE = TET;11 for any hi,ho € H™, we see that ThlEM c M.
We note that L> is the algebra generated by H> and H* in the w*-topology. So for any
© € L™ we can choose a net {¢,} C L converging in w*-topology to ¢, where each ¢,
is a linear combination of products of functions in H> and H> and satisfies T,,, M C M.
For any f and g € H? we have

lim (T, f,9) = lim /Fz Pafgdp = /F2 ofgdp =Ty f,9).
In particular, for any f € M and g € H?> © M we see that
<Ttpf; g> = Olélé{lq<Ttpafa g> = 0

Hence T, f is in M. Therefore we have T,M C M and so we conclude that LatTe C
Lat TLoo. O]

Proposition 4.2. Suppose that F' is a non-constant function in H>*NgH> for some inner
function q. Let & = H>* U{F}. If M is in Lat Ty, then Mg = Mz 2 gM.

Proof. If F € H>® N qH> then there exists f € H> such that ' = ¢f. Hence FgM =
fM C M, and trivially, gM C M. Therefore we have that gM C M. O

Next, we consider examples when ® consists of all functions in H*° and the complex
conjugate of an inner function.

Theorem 4.3. Let ® = H™ U {g} for some non-constant inner function q. Suppose that
M € Lat Tg. Then the following statements hold.

(1) Mg =gM and M® = M S gM.
(2) Mg C (H?)g and M® C (H?)?.
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(3) K =q(M e qM).

Proof. (1) It is sufficient to prove Mg = ¢M since Mo = Mg. If f € Mg, then Gf € M
from the definition of Myg. The assumption that ¢ is an inner function implies that f € ¢ M,
and hence we see that Mg C ¢M. Conversely, if f € gM, then f € M since gM C M.
Moreover, that ¢ is inner implies that gf € M. Therefore we see that gM C Mg, which
implies that the first statement. The second statement follows from the first statement.
(2) The first statement follows from the definition of Mg and (H?)g. To show the second
statement, suppose that f € M®. By (1) we have f € M and f L gM. Moreover, since M
is invariant under Ty, we see that T,(H> & M) C H? & M, that is, ¢(H> & M) C H>& M.
This implies that M L q(H?> © M). For any g € H?, there exist g; € M and g, € H> © M
such that g = g1 + g2. Then we have

(f,a9) ,q91 + q92)

(f
= (fiq9) +(f,q92)
0

since f L gM and M L q(H? © M). Therefore we see that f | qH?, that is, f € (H?)®.
Hence the second statement holds.
(3) By (2) of Lemma 3.6, it is obvious that

M e gM) > (Ir2 — Pr)g(M & gM) = K2,

Next, we will show the converse inclusion. For any f € M © ¢gM, there exist g € M and
k € K%, such that gf = g+ k by (1) of Lemma 3.6. Then we have

lgl*> = (9.9)
= (qf —k,9)
= (qf.9) — (k,9)
= (f,q9)— (k,9)

since f L gM and g L ijw So we see that g = 0, which implies that gf = k € K?A'
Therefore we have g(M & ¢gM) C K%. Hence we obtain

GM O gM) = (Ir2 — P)G(M © gM) = K,

Since Kf/l = K/q:,t, the statement holds. O

More generally, we are able to consider the case when ® is the union of H*° and a set of
the complex conjugate of inner functions. In Corollary 4.4, we denote by A a subset of R.

Corollary 4.4. Let ® = H*® U{qQ, : qo is inner,a € A}. Suppose that M € Lat Te. Then
the following statements hold.

(1) Mo = () gqaM and M®* = M & () gaM.
aEA ach

(2) Mg C (H*)g and M® C (H?)?.

(3) ﬁ = U qj(M S an)-

acA
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Proof. (1) These statements follow from (1) of Theorem 4.3 and the definitions of Mg and
M2,
(2) Tt is clear that g, M C g, H? for all a € A. Hence we have

Mg = ﬂ qaM C m QaH2 = (H2)<I>~

acA a€EA

Moreover by (2) of Theorem 4.3, we see that if f is in M © g,M, then f L q,H? for all
a € A. Therefore the second statement holds.
(3) The statement follows from (3) of Theorem 4.3 and the definition of K. O

We will use Proposition 4.5 to determine Lat T in some concrete case.

Proposition 4.5. Let q be a non-constant inner function and » = 1'1__6“(1

with |a| < 1. If ® = H® U{g} and ¥ = H*>® U {¢}, then Lat Tp = Lat Ty.

for some a € C

Proof. Suppose that M € Lat Ty. Since M is invariant under Ty, we see that T,N C N
where N' = H? © M. In particular, we have

gN C N.
Note that N is a closed subspace in H?. We obtain
(q—a)NCN and (1-aq) *NcCN

for |a| < 1. Thus Ty C N and so TyM C M. This shows that Lat Te C Lat Tyy. Since

_ Yta
q - 1+ay?’

we can prove the converse inclusion similarly. O

5 Examples In this section, we will describe Lat T for some concrete ®. To begin with,
in Corollary 5.3, we will show the case that LatTg is trivial. To show this, we consider
when @ is the union of H> and {q} for a one variable inner function g = ¢(z).

Theorem 5.1. Let ® = H® U {q(z)} for a one variable non-constant inner function q =
q(z). If M € Lat Ty, then there exists some one variable inner function @ = Q(w) such
that M = Q(w)H?>.

Proof. Since g = ¢(z) is a one variable non-constant inner function, there exist some a,b € C
such that ¢(b) = a and [a| < 1,[b] <1. Put ¢ = {=.. Since 9 (b) = 0, we write ¢ = goq1

where ¢p = 1Z:Ebz and q;(z) is inner. If we put ¥ = H> U {3}, then Lat Ty = Lat Ty by

Proposition 4.5. This implies that M is invariant under TJ = Tgsqr- So we have that

TqT)M = qulM C TWM C M

Therefore we obtain TgizM C M. So if we put Q = H*™ U {Gp}, then Lat Ty C Lat Tq.
Moreover, by Proposition 4.5, we obtain Lat T, = Lat T, where Q' = H* U {z}. Hence
we have Tz M C M. By (2) of Theorem 4.3, we see that

Mo 2MC H*© zH? = H*(T,,)

and so w(MS2zM) C MezM C H?(T',,). The Beurling theorem implies that M © 2z M =
QH?*(T,), where Q = Q(w). Thus we have M = Q(w)H?>. O

Remark 5.2. Let ® = H*U{q(w)} for a one variable non-constant inner function ¢ = g(w).
Making the same argument for Theorem 5.1, we can show that if M € Lat T, then there
exists some one variable inner function @ = Q(z) such that M = Q(z)H>.
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Corollary 5.3. If ® = H*® U {q1(z)q2(w)} for one variable non-constant inner functions
@1 = q1(2) and g2 = q2(w), then Lat Ty = {(0), H?}.

Proof. If M € Lat Ty, then we have that

Hence by Theorem 5.1, there exists some one variable inner function Q2 = Q2(w) such that
M = Qa(w)H?. Similarly we have T, M C M and so M = Q1(z)H? for some one variable
inner function @1 = Q1(z). This happens only when @1 and Q2 are constant. Therefore
we obtain the corollary. O

Next, we will show the case that LatTs is nontrivial. Now we study the case of ® =
H> U {Gig2, 12} for some non-constant inner functions ¢; = ¢1(z) and g2 = ¢2(w). We
note that if M = ZZZO q?_kqé?Hz, then it is clear that M is in Lat Tg. Theorem 5.4 shows
properties of Lat Tg.

Theorem 5.4. Let ® = H>® U{G1q2,q1Gz} for some non-constant one variable inner func-
tions 1 = q1(z) and g2 = q2(w). Suppose that M € Lat Te. Then the following statements
hold.

(1) gM C oM+ H* S goH? and M C gM + H* © ¢ H?.

(2) If there exists some natural number n such that ¢f € M and ¢i'~' ¢ M, then we have
¢ia’ ¢ M for1>0,m >0 andl+m <n.

(3) If there exists some natural number n such that ¢} € M, then we have M D
ZZ:O Q?_kngQ-
Proof. (1) By (1) of Lemma 3.6,

Q@M C M+ K.%/t

Then we have o
QM C M+ @K C oM+ 2K

since K%, is a subset of K. Hence ¢ M C oM + g2 K N H?. Moreover from the definition
of K, it is clear that ¢o K N H?> C H? © go H?. Therefore we obtain

aM C q2M+H2@CIQH2.

The same argument shows that ggpM C g M + H? © ¢ H?.
(2) If ¢! ¢5* were in M, then we would have

—1—-m—I I —1—m—l/, m+l -1
T T () = TR ) = e M.

This contradicts that ¢ ~" ¢ M. Hence we conclude that ¢{¢i* ¢ M for I > 0,m > 0 and
l4+m < n. 4 o
(3) Since gf' is in M, we have T (q7) = ¢, 'g3 € M for 0 < j <n. Let P, be the set of
analytic trigonometric polynomials. Then we see that > ", @@ Py € M. Since H? is
the closure in the L?-norm of P, and the multiplication by an inner function is continuous,
we have

n
Z @ H? C M.
=0
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In [3], the first author studied Lat Ty for ¥ = {z"w,z"w} for a fixed natural number
n. In this context, we consider the case when ® = H> U {Zw, zw}. In Theorem 5.5, we
describe LatTg completely and show that LatTs is nontrivial. Moreover we provide a
concrete example of invariant subspaces of T, and T,,. We recall that H(T',) or H*(T,)
denotes a one variable Hardy space on the unit circle I' =T', or I',, respectively.

Theorem 5.5. Let & = H*>® U {Zw, zw}. Then the following statements hold.
(1) If M € Lat Ty, then
M CwM+ H*T.) and wM C 2M + H*(T,,).

(2) A closed subspace M is in Lat Tg if and only if there exists the smallest natural number
N such that 2N and w belong to M and M = Z;V:O 2N=Iwi H?.

Proof. (1) We note that equalities
H?*©:H? = H*(I',) and H?*cwH? = H*T),)

hold. Applying (1) of Theorem 5.4, we obtain the conclusion.
(2) The ‘if’ part is not hard to prove. Now we show the ‘only if’ part. Assume that
M € LatTg. It is clear that there exists the smallest natural number N satisfying the
following condition; there exists f € M such that % (0,0) # 0 but g’;g(o, 0) =0 for all
g € M if k < N. In order to show that 2%V € M, we consider the extremal problem
aN
sup{Re = £(0,0): / € M. |17 < 1}

N

Note that the mapping f — a%f(o, 0) is a bounded linear functional on H?. By the Riesz
representation theorem, this extremal problem has a unique solution G € M with ||G|| =1

and %G(O, 0) > 0. We will see that G = 2. Put

G+ TS
G T

for each f € M. Since Re%gf(0,0) < % (0,0), it is easy to see that ||G+TH || > 1
for any f € M. From this inequality, we obtain G L TZNEHf. Hence we have TE]YUHG =0.
Similarly we have T.G = 0. From these equalities, we obtain G’ = zV. It is obvious that
wh = TEJ\{U,ZN is in M.

By (3) of Theorem 5.4, we obtain M D Z;V:O 2N=Jwl H%. Moreover, by (2) of Theorem
5.4, we see that zF1w*2 ¢ M for 0 < ky + ka < N, which shows the converse inclusion. [J

Corollary 5.6 shows that each M in Lat T contains an invariant subspace 2~V H?+w! H?
for some natural number N.

Corollary 5.6. Let ® = H>® U {zZw,zw}. If M € LatTg, then there exists some natural
number N such that
M D NH? +wNH?.

Proof. By (2) of Theorem 5.5, there exists some natural number N such that

N
M= szwN_jH2.

Jj=0
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Then we obtain

N
NH? +wVH? C szwN_jH2 = M.
=0

Hence the statement is clear. O

Acknowledgement This paper is based on a manuscript left by Professor Nakazi. Takahiko
Nakazi, our supervisor, teacher and collaborator, died in November 2017, and was not able
to finish this work. We received the manuscript from his wife, and heard that he wanted to
develop this research topic. Thus, we decided to complete the manuscript as Nakazi’s final
research paper.

As students of Nakazi, we were attracted by his mathematics, and remember that he
always started on mathematics with his unique observation about elementary examples. We
would like to express our affection and respect for his life devoted to mathematics.

We are also grateful to Mrs. Keiko Nakazi for her encouragement and support in this
project.

REFERENCES

. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math.
1] A. Beurli 0 bl ing | ; in Hilb A Math. 81
(1949), 239-255.

[2] S. Kuwahara, Reducing subspaces of weighted Hardy spaces on polydisks, Nihonkai Math J. 25
(2014), 77-83.

[3] S. Kuwahara, Reducing subspaces for a class of Toeplitz operators on weighted Hardy spaces
over bidisk, Bull. Korean Math. Soc. 54 (2017), 1221-1228.

[4] T. Nakazi, Homogeneous polynomials and invariant subspaces in the polydisc, Arch. Math. 58
(1992), 56—63.

[6] T. Nakazi, Invariant subspaces of Toeplitz operators and uniform algebras, Bull. Belg. Math.
Soc. Simon Stevin 15 (2008), 1-8.

[6] T. Nakazi, Invariant subspaces in the bidisc and wandering subspaces, J. Aust. Math. Soc.
84(2008), 367-374.

[7] M. Stessin and K. Zhu, Reducing subspaces of weighted shift operators, Proc. Amer. Math.
Soc. 130 (2002), 2631-2639.

(Shuhei Kuwahara) SAPPORO SEISHU HIGH SCHOOL, SAPPORO 064-0916, JAPAN
E-mail address: s.kuwahara@sapporoseishu.ed.jp

(Takahiko Nakazi) HOKKAIDO UNIVERSITY, SAPPORO 060-0810, JAPAN

(Michio Seto) NATIONAL DEFENSE ACADEMY, YOKOSUKA 239-8686, JAPAN
E-mail address: mseto@nda.ac. jp





