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Abstract. Let Φ be a subset of L∞ containing H∞ and TΦ the family of Toeplitz
operators {Tφ}φ∈Φ. In this paper, we study invariant subspaces of TΦ and their prop-
erties. Moreover, we provide a concrete description of nontrivial invariant subspaces
of TΦ for some Φ.

1 Introduction Let Γ be the unit circle centered at the origin in the complex plane,
and H2(Γn) be the Hardy space on Γn. In [5], the second author showed that H2(Γ) has
a certain rigidity (see Theorem 2.1 stated below), and pointed out that H2(Γ2) does not
have this property. The purpose of this paper is to study this phenomenon with examples.

We introduce notions in this paper. Let L2(Γn) be the usual L2 space with respect to
the normalized Lebesgue measure on Γn. Let P be the orthogonal projection from L2(Γn)
onto H2(Γn). For φ ∈ L∞(Γn), we define

Tφf = P (φf) (f ∈ H2).

Then Tφ is called the Toeplitz operator with symbol φ. For a subset Φ in L∞(Γn), TΦ
denotes the set of Toeplitz operators whose symbols are in Φ, that is, we set

TΦ = {Tφ : φ ∈ Φ}.

The collection of all closed subspaces of H2(Γn) invariant under every Tφ ∈ TΦ is denoted
by LatTΦ. Throughout this paper, we assume that H∞ ⊆ Φ ⊆ L∞.

This paper consists of five sections. In Section 2, we consider one variable Hardy space
and recall results in [5]. In Section 3, we introduce some classes of functions in order to
study LatTΦ. In Section 4, we study LatTΦ for some Φ’s. In Section 5, we show that
LatTΦ is nontrivial for some Φ, and present examples of invariant subspaces of Tz and Tw.

2 A certain rigidity of H2(Γ) The following theorem was given in [5], which shows
that H2(Γ) has a certain rigidity.

Theorem 2.1 ([5]). If Φ = H∞(Γ) ∪ {φ} for φ ∈ L∞(Γ) \ H∞(Γ), then LatTΦ =
{⟨0⟩,H2(Γ)}.

The original proof is based on the theory of uniform algebras. We shall give another
proof to this theorem.

Proof. In this proof, we will write H2 = H2(Γ), H∞ = H∞(Γ) and so on. Suppose that
M ∈ LatTΦ and M is nontrivial. Then, M is an invariant subspace of H2. Hence, there
exists a non-constant inner function q such that M = qH2 by Beurling’s theorem. We note
that TφM ⊂ M is equivalent to that

PH2φqH2 ⊂ qH2.
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Hence, for any function h ∈ H2, there exists a function gh ∈ H2 such that PH2(φqh) = qgh.

Then we have that PH2(φqh − qgh) = 0, and which is equivalent to that φqh − qgh ∈ H2
0 ,

where H2
0 = L2 ⊖H2. Therefore we have that

(2.1.1) φqh ∈ M⊕H2
0 (h ∈ H2).

In particular, for h = 1, there exist g1 ∈ H2 and k ∈ H2
0 such that

(2.1.2) φq = qg1 + k.

Put N = H2 ⊖M. Multiplying both sides of (2.1.2) by h ∈ H∞, we obtain

φqh = {PM + PN + (IL2 − PH2)}(qg1h+ kh)

= (qg1h+ PMkh)⊕ PNkh⊕ (IL2 − PH2)kh.

Then, by (2.1.1), we note that

PNkh = PNφqh = 0.

Let D be the open unit disc in the complex plane. Now, setting

k =
∞∑
j=1

cjz
j , kn =

n∑
j=1

cjz
j and sλ =

1

1− λz
(λ ∈ D),

we have that

∥PNknsλ∥ = ∥PNknsλ − PNksλ∥
≤ ∥knsλ − ksλ∥
≤ ∥sλ∥∞∥kn − k∥
→ 0

as n→ ∞. On the other hand,

PNknsλ = PNT
∗
knsλ

= PNkn(λ)sλ

→ PNk(λ)sλ

as n→ ∞. Therefore PNk(λ)sλ = 0 for any λ ∈ D. If k(λ) ̸= 0 for some λ, then PN sλ = 0.
However,

PN sλ =
1− q(λ)q

1− λz
̸= 0.

Hence k(λ) = 0 for all λ ∈ D. Then we see that φq = qg1 in (2.1.2), and which implies
φ = g1 ∈ H2. This contradicts that φ ∈ L∞ \H∞.

From Theorem 2.1, in H2(Γ), LatTΦ has only trivial invariant subspaces if Φ contains
H∞(Γ) properly. On the other hand, in the case ofH2(Γ2), LatTΦ may not be {⟨0⟩,H2(Γ2)}
even if Φ properly contains H∞(Γ2). The following is an example.

Example 2.2. We set M = zH2(Γ2)+wH2(Γ2). Then M ∈ LatTΦ for Φ = H∞(Γ2)∪{zw}.
We will see more examples in Section 5.
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3 MΦ, MΦ and KΦ
M We focus on the structure of H2(Γ2), so that we will write L2 =

L2(Γ2), H2 = H2(Γ2) and so on, if no confusion occurs. In this section, some classes of
functions which play important roles in this paper are introduced.

Definition 3.1. Let φ be a function in L∞. For M ∈ LatTφ, we put

Mφ = {f ∈ M : φf ∈ M} and Mφ = M⊖Mφ.

Moreover, let Φ be a subset of L∞. For M ∈ LatTΦ, we put

MΦ =
∩
φ∈Φ

Mφ and MΦ = M⊖MΦ.

Example 3.1. Mz = zM and Mz = M ⊖ zM. Further, if Φ = H∞ ∪ {z, w}, then
MΦ = zwM and MΦ = M⊖ zwM.

We are mainly interested in the case where Φ is a subset of L∞ which contains H∞

properly. We shall give some general facts on MΦ and MΦ.

Proposition 3.2. Let Φ be a subset of L∞ which contains H∞ properly. Then MΦ is an
invariant subspace in H2.

Proof. It suffices to show that Mφ is an invariant subspace for any φ ∈ Φ. If f ∈ Mφ then
φf ∈ M. It follows from this that zφf ∈ M, that is, zf ∈ Mφ. Hence Mφ is invariant
under multiplication by z. Moreover, if fn ∈ Mφ and fn → f (n → ∞), then f ∈ M and
φfn → φf (n → ∞) in M. Hence we have that f ∈ Mφ, that is, Mφ is closed. These
conclude that M is an invariant subspace in H2.

In order to give the next theorem on MΦ, we need a lemma.

Lemma 3.3. Let Φ be a subset of L∞ which contains H∞ properly. Suppose that M ∈
LatTΦ. For any f ∈ H∞, we define Qf = PMΦTf |MΦ . Then

Qfg = QfQg (f and g ∈ H∞).

Proof. It follows from Proposition 3.2 that

Qfg −QfQg = PMΦTfgPMΦ − PMΦTfPMΦTgPMΦ

= PMΦTf (PM − PMΦ)TgPMΦ

= PMΦTfPMΦ
TgPMΦ

= 0.

Theorem 3.4. Let Φ be a subset of L∞ which contains H∞ properly. If M ∈ LatTΦ then
dimMΦ = ∞.

Proof. Suppose dimMΦ = n < ∞. Then, by Lemma 3.3, there exists a finite Blaschke
product b1(z) such that Qb1(z) = 0. Hence we have b1(z)MΦ ⊂ MΦ. Further, it follows
from Proposition 3.2 that b1(z)MΦ ⊂ MΦ, that is,

b1(z)φM ⊂ M (φ ∈ Φ).

Similarly, there exists a finite Blaschke product b2(w) such that

b2(w)φM ⊂ M (φ ∈ Φ).



Hence b1(z)φ and b2(w)φ belong to H2 for all φ ∈ Φ. Therefore we have

φ ∈ b1(z)H
2 ∩ b2(w)H2 ⊂ H2.

However, this is a contradiction.

Next, we introduce a kind of complement of M in our problem.

Definition 3.2. For M ∈ LatTΦ and φ ∈ Φ, put

K = {f : f ∈ L2 ⊖H2}

and

Kφ
M = {k ∈ K : k = φf − g for some f and g ∈ M},

where f denotes the complex conjugate of f . Moreover, we set

KΦ
M =

∪
φ∈Φ

Kφ
M.

If φ ∈ H∞ and k ∈ Kφ
M, then there exist f and g ∈ M such that k = φf − g. However,

it follows from K ∩M = ⟨0⟩ that k = 0, that is, Kφ
M = ⟨0⟩ for φ ∈ H∞, so that we may

define

KΦ
M =

∪
φ∈Φ\H∞

Kφ
M.

Remark 3.5. In H2(Γ),

K = {f : f ∈ L2(Γ)⊖H2(Γ)} = H2
0 (Γ)

and we have already dealt with Kφ
M in the proof of Theorem 2.1 (see (2.1.1)), implicitly.

Next, we study the properties of KΦ
M used in the rest of this paper.

Lemma 3.6. Let M be a closed subspace in H2, and Φ be a subset of L∞ which contains
H∞.

(1) M ∈ LatTΦ if and only if φM ⊂ M+Kφ
M for all φ ∈ Φ.

(2) If M ∈ LatTΦ, then (IL2 − PM)φMφ = Kφ
M for all φ ∈ Φ.

Proof. (1) First we show the ‘if’ part. For any φ ∈ Φ and f ∈ M, there exist g ∈ M and
k ∈ Kφ

M such that φf = g + k. From this equality, we have Tφf = g ∈ M. Hence we see
that M ∈ LatTΦ. Next, we show the ‘only if’ part. Suppose that M is in LatTΦ. For any
φ ∈ Φ and f ∈ M, there exist g ∈ M, h ∈ H2 ⊖M and k ∈ K such that

φf = g + h+ k.

From this equality, we have P (φf) = g + h. Since P (φf) and g are in M, h must be 0.
Therefore we see that φf = g + k and that k ∈ Kφ

M by the definition of Kφ
M.

(2) Since M contains Mφ, for any f ∈ Mφ there exist g ∈ M and k ∈ Kφ
M such that

φf = g + k̄ by (1). Then we see

(IL2 − PM)φf = (IL2 − PM)(g + k̄) = k̄.
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Therefore we have (IL2 − PM)φMφ ⊂ Kφ
M. On the other hand, for any k ∈ Kφ

M there
exist f and g ∈ M such that φf = g + k̄ by the definition of Kφ

M. In particular, we can
write f = f1 + f2, where f1 ∈ Mφ and f2 ∈ Mφ. Since φf1 ∈ M, we have

k̄ = (IL2 − PM)k̄

= (IL2 − PM)(φf − g)

= (IL2 − PM)(φf1 + φf2 − g)

= (IL2 − PM)φf2,

and which implies Kφ
M ⊂ (IL2 − PM)φMφ. Hence we have

(IL2 − PM)φMφ = Kφ
M.

Thus we obtain (2).

4 Properties of LatTΦ In this section, we study properties of LatTΦ for some Φ as the
union of H∞ and some set. First we set Φ the union of H∞ and the complex conjugate of
functions in H∞.

Proposition 4.1. If Φ = H∞ ∪H∞, then LatTΦ = LatTL∞ .

Proof. It is obvious that LatTL∞ ⊂ LatTΦ. To prove the converse inclusion, suppose that
M ∈ LatTΦ. Then, since Th1h2

= Th2
Th1 for any h1, h2 ∈ H∞, we see that Th1h2

M ⊂ M.

We note that L∞ is the algebra generated by H∞ and H∞ in the w∗-topology. So for any
φ ∈ L∞ we can choose a net {φα} ⊂ L∞ converging in w∗-topology to φ, where each φα
is a linear combination of products of functions in H∞ and H∞ and satisfies TφαM ⊂ M.
For any f and g ∈ H2 we have

lim
α∈A

⟨Tφα
f, g⟩ = lim

α∈A

∫
Γ2

φαfgdµ =

∫
Γ2

φfgdµ = ⟨Tφf, g⟩.

In particular, for any f ∈ M and g ∈ H2 ⊖M we see that

⟨Tφf, g⟩ = lim
α∈A

⟨Tφα
f, g⟩ = 0.

Hence Tφf is in M. Therefore we have TφM ⊂ M and so we conclude that LatTΦ ⊂
LatTL∞ .

Proposition 4.2. Suppose that F is a non-constant function in H∞∩qH∞ for some inner
function q. Let Φ = H∞ ∪ {F}. If M is in LatTΦ, then MΦ = MF ⊇ qM.

Proof. If F ∈ H∞ ∩ qH∞ then there exists f ∈ H∞ such that F = qf . Hence FqM =
fM ⊂ M, and trivially, qM ⊂ M. Therefore we have that qM ⊂ MF .

Next, we consider examples when Φ consists of all functions in H∞ and the complex
conjugate of an inner function.

Theorem 4.3. Let Φ = H∞ ∪ {q} for some non-constant inner function q. Suppose that
M ∈ LatTΦ. Then the following statements hold.

(1) MΦ = qM and MΦ = M⊖ qM.

(2) MΦ ⊂ (H2)Φ and MΦ ⊂ (H2)Φ.



(3) KΦ
M = q(M⊖ qM).

Proof. (1) It is sufficient to prove Mq = qM since MΦ = Mq. If f ∈ Mq, then qf ∈ M
from the definition of Mq. The assumption that q is an inner function implies that f ∈ qM,
and hence we see that Mq ⊂ qM. Conversely, if f ∈ qM, then f ∈ M since qM ⊂ M.
Moreover, that q is inner implies that qf ∈ M. Therefore we see that qM ⊂ Mq, which
implies that the first statement. The second statement follows from the first statement.
(2) The first statement follows from the definition of MΦ and (H2)Φ. To show the second
statement, suppose that f ∈ MΦ. By (1) we have f ∈ M and f ⊥ qM. Moreover, since M
is invariant under Tq, we see that Tq(H

2 ⊖M) ⊂ H2 ⊖M, that is, q(H2 ⊖M) ⊂ H2 ⊖M.
This implies that M ⊥ q(H2 ⊖M). For any g ∈ H2, there exist g1 ∈ M and g2 ∈ H2 ⊖M
such that g = g1 + g2. Then we have

⟨f, qg⟩ = ⟨f, qg1 + qg2⟩
= ⟨f, qg1⟩+ ⟨f, qg2⟩
= 0

since f ⊥ qM and M ⊥ q(H2 ⊖M). Therefore we see that f ⊥ qH2, that is, f ∈ (H2)Φ.
Hence the second statement holds.
(3) By (2) of Lemma 3.6, it is obvious that

q(M⊖ qM) ⊃ (IL2 − PM)q(M⊖ qM) = Kq
M.

Next, we will show the converse inclusion. For any f ∈ M⊖ qM, there exist g ∈ M and
k ∈ Kq

M such that qf = g + k by (1) of Lemma 3.6. Then we have

∥g∥2 = ⟨g, g⟩
= ⟨qf − k, g⟩
= ⟨qf, g⟩ − ⟨k, g⟩
= ⟨f, qg⟩ − ⟨k, g⟩
= 0,

since f ⊥ qM and g ⊥ Kq
M. So we see that g = 0, which implies that qf = k ∈ Kq

M.

Therefore we have q(M⊖ qM) ⊂ Kq
M. Hence we obtain

q(M⊖ qM) = (IL2 − PM)q(M⊖ qM) = Kq
M

Since KΦ
M = Kq

M, the statement holds.

More generally, we are able to consider the case when Φ is the union of H∞ and a set of
the complex conjugate of inner functions. In Corollary 4.4, we denote by Λ a subset of R.

Corollary 4.4. Let Φ = H∞ ∪ {qα : qα is inner, α ∈ Λ}. Suppose that M ∈ LatTΦ. Then
the following statements hold.

(1) MΦ =
∩
α∈Λ

qαM and MΦ = M⊖
∩
α∈Λ

qαM.

(2) MΦ ⊂ (H2)Φ and MΦ ⊂ (H2)Φ.

(3) KΦ
M =

∪
α∈Λ

qα(M⊖ qαM).
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Proof. (1) These statements follow from (1) of Theorem 4.3 and the definitions of MΦ and
MΦ.
(2) It is clear that qαM ⊂ qαH

2 for all α ∈ Λ. Hence we have

MΦ =
∩
α∈Λ

qαM ⊂
∩
α∈Λ

qαH
2 = (H2)Φ.

Moreover by (2) of Theorem 4.3, we see that if f is in M⊖ qαM, then f ⊥ qαH
2 for all

α ∈ Λ. Therefore the second statement holds.
(3) The statement follows from (3) of Theorem 4.3 and the definition of KΦ

M.

We will use Proposition 4.5 to determine LatTΦ in some concrete case.

Proposition 4.5. Let q be a non-constant inner function and ψ = q−a
1−aq for some a ∈ C

with |a| < 1. If Φ = H∞ ∪ {q} and Ψ = H∞ ∪ {ψ}, then LatTΦ = LatTΨ.

Proof. Suppose that M ∈ LatTΦ. Since M is invariant under Tq, we see that TqN ⊂ N
where N = H2 ⊖M. In particular, we have

qN ⊂ N .

Note that N is a closed subspace in H2. We obtain

(q − a)N ⊂ N and (1− aq)−1N ⊂ N

for |a| < 1. Thus TψN ⊂ N and so TψM ⊂ M. This shows that LatTΦ ⊂ LatTΨ. Since

q = ψ+a
1+aψ , we can prove the converse inclusion similarly.

5 Examples In this section, we will describe LatTΦ for some concrete Φ. To begin with,
in Corollary 5.3, we will show the case that LatTΦ is trivial. To show this, we consider
when Φ is the union of H∞ and {q} for a one variable inner function q = q(z).

Theorem 5.1. Let Φ = H∞ ∪ {q(z)} for a one variable non-constant inner function q =
q(z). If M ∈ LatTΦ, then there exists some one variable inner function Q = Q(w) such
that M = Q(w)H2.

Proof. Since q = q(z) is a one variable non-constant inner function, there exist some a, b ∈ C
such that q(b) = a and |a| < 1, |b| < 1. Put ψ = q−a

1−aq . Since ψ(b) = 0, we write ψ = q0q1

where q0 = z−b
1−bz and q1(z) is inner. If we put Ψ = H∞ ∪ {ψ}, then LatTΦ = LatTΨ by

Proposition 4.5. This implies that M is invariant under Tψ = Tq0q1 . So we have that

Tq0M = Tq0q1q1M ⊂ Tq0q1M ⊂ M.

Therefore we obtain Tq0M ⊂ M. So if we put Ω = H∞ ∪ {q0}, then LatTΨ ⊂ LatTΩ.
Moreover, by Proposition 4.5, we obtain LatTΩ = LatTΩ′ , where Ω′ = H∞ ∪ {z}. Hence
we have TzM ⊂ M. By (2) of Theorem 4.3, we see that

M⊖ zM ⊂ H2 ⊖ zH2 = H2(Γw)

and so w(M⊖zM) ⊂ M⊖zM ⊂ H2(Γw). The Beurling theorem implies that M⊖zM =
QH2(Γw), where Q = Q(w). Thus we have M = Q(w)H2.

Remark 5.2. Let Φ = H∞∪{q(w)} for a one variable non-constant inner function q = q(w).
Making the same argument for Theorem 5.1, we can show that if M ∈ LatTΦ, then there
exists some one variable inner function Q = Q(z) such that M = Q(z)H2.



Corollary 5.3. If Φ = H∞ ∪ {q1(z)q2(w)} for one variable non-constant inner functions
q1 = q1(z) and q2 = q2(w), then LatTΦ = {⟨0⟩,H2}.

Proof. If M ∈ LatTΦ, then we have that

Tq1M = Tq1q2(q2M) ⊂ Tq1q2M ⊂ M.

Hence by Theorem 5.1, there exists some one variable inner function Q2 = Q2(w) such that
M = Q2(w)H

2. Similarly we have Tq2M ⊂ M and so M = Q1(z)H
2 for some one variable

inner function Q1 = Q1(z). This happens only when Q1 and Q2 are constant. Therefore
we obtain the corollary.

Next, we will show the case that LatTΦ is nontrivial. Now we study the case of Φ =
H∞ ∪ {q1q2, q1q2} for some non-constant inner functions q1 = q1(z) and q2 = q2(w). We
note that if M =

∑n
k=0 q

n−k
1 qk2H

2, then it is clear that M is in LatTΦ. Theorem 5.4 shows
properties of LatTΦ.

Theorem 5.4. Let Φ = H∞ ∪ {q1q2, q1q2} for some non-constant one variable inner func-
tions q1 = q1(z) and q2 = q2(w). Suppose that M ∈ LatTΦ. Then the following statements
hold.

(1) q1M ⊂ q2M+H2 ⊖ q2H
2 and q2M ⊂ q1M+H2 ⊖ q1H

2.

(2) If there exists some natural number n such that qn1 ∈ M and qn−1
1 /∈ M, then we have

ql1q
m
2 /∈ M for l ≥ 0,m ≥ 0 and l +m < n.

(3) If there exists some natural number n such that qn1 ∈ M, then we have M ⊃∑n
k=0 q

n−k
1 qk2H

2.

Proof. (1) By (1) of Lemma 3.6,

q1q2M ⊂ M+KΦ
M.

Then we have
q1M ⊂ q2M+ q2KΦ

M ⊂ q2M+ q2K

since KΦ
M is a subset of K. Hence q1M ⊂ q2M+ q2K ∩H2. Moreover from the definition

of K, it is clear that q2K ∩H2 ⊂ H2 ⊖ q2H
2. Therefore we obtain

q1M ⊂ q2M+H2 ⊖ q2H
2.

The same argument shows that q2M ⊂ q1M+H2 ⊖ q1H
2.

(2) If ql1q
m
2 were in M, then we would have

Tn−1−m−l
q1 Tmq1q2(q

l
1q
m
2 ) = Tn−1−m−l

q1 (qm+l
1 ) = qn−1

1 ∈ M.

This contradicts that qn−1
1 /∈ M. Hence we conclude that ql1q

m
2 /∈ M for l ≥ 0,m ≥ 0 and

l +m < n.
(3) Since qn1 is in M, we have T jq1q2(q

n
1 ) = qn−j1 qj2 ∈ M for 0 ≤ j ≤ n. Let P+ be the set of

analytic trigonometric polynomials. Then we see that
∑n
j=0 q

n−j
1 qj2P+ ⊂ M. Since H2 is

the closure in the L2-norm of P+ and the multiplication by an inner function is continuous,
we have

n∑
j=0

qn−j1 qj2H
2 ⊂ M.
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In [3], the first author studied LatTΨ for Ψ = {znw, znw} for a fixed natural number
n. In this context, we consider the case when Φ = H∞ ∪ {zw, zw}. In Theorem 5.5, we
describe LatTΦ completely and show that LatTΦ is nontrivial. Moreover we provide a
concrete example of invariant subspaces of Tz and Tw. We recall that H2(Γz) or H2(Γw)
denotes a one variable Hardy space on the unit circle Γ = Γz or Γw respectively.

Theorem 5.5. Let Φ = H∞ ∪ {zw, zw}. Then the following statements hold.

(1) If M ∈ LatTΦ, then

zM ⊂ wM+H2(Γz) and wM ⊂ zM+H2(Γw).

(2) A closed subspace M is in LatTΦ if and only if there exists the smallest natural number

N such that zN and wN belong to M and M =
∑N
j=0 z

N−jwjH2.

Proof. (1) We note that equalities

H2 ⊖ zH2 = H2(Γw) and H2 ⊖ wH2 = H2(Γz)

hold. Applying (1) of Theorem 5.4, we obtain the conclusion.
(2) The ‘if’ part is not hard to prove. Now we show the ‘only if’ part. Assume that
M ∈ LatTΦ. It is clear that there exists the smallest natural number N satisfying the

following condition; there exists f ∈ M such that ∂N

∂zN
f(0, 0) ̸= 0 but ∂k

∂zk
g(0, 0) = 0 for all

g ∈ M if k < N . In order to show that zN ∈ M, we consider the extremal problem

sup{Re ∂
N

∂zN
f(0, 0); f ∈ M, ∥f∥ ≤ 1}.

Note that the mapping f 7→ ∂N

∂zN
f(0, 0) is a bounded linear functional on H2. By the Riesz

representation theorem, this extremal problem has a unique solution G ∈ M with ∥G∥ = 1

and ∂N

∂zN
G(0, 0) > 0. We will see that G = zN . Put

gf =
G+ TN+1

zw f

∥G+ TN+1
zw f∥

for each f ∈ M. Since Re ∂
N

∂zN
gf (0, 0) ≤ ∂N

∂zN
G(0, 0), it is easy to see that ∥G+TN+1

zw f∥ ≥ 1

for any f ∈ M. From this inequality, we obtain G ⊥ TN+1
zw f . Hence we have TN+1

zw G = 0.
Similarly we have TzwG = 0. From these equalities, we obtain G = zN . It is obvious that
wN = TNzwz

N is in M.

By (3) of Theorem 5.4, we obtain M ⊃
∑N
j=0 z

N−jwjH2. Moreover, by (2) of Theorem

5.4, we see that zk1wk2 /∈ M for 0 ≤ k1 + k2 < N , which shows the converse inclusion.

Corollary 5.6 shows that eachM in LatTΦ contains an invariant subspace zNH2+wNH2

for some natural number N .

Corollary 5.6. Let Φ = H∞ ∪ {zw, zw}. If M ∈ LatTΦ, then there exists some natural
number N such that

M ⊃ zNH2 + wNH2.

Proof. By (2) of Theorem 5.5, there exists some natural number N such that

M =
N∑
j=0

zjwN−jH2.



Then we obtain

zNH2 + wNH2 ⊂
N∑
j=0

zjwN−jH2 = M.

Hence the statement is clear.
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