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Abstract. We present a tree-grass competition model on the basis of the forest kine-
matic model due to Kuznetsov-Antonovsky-Biktashev-Aponina [6]. The main purpose
of the paper is to construct global solutions and to construct a dynamical system gen-
erated by the model equations. By numerical computations, we also show that our
model actually admits coexisting solutions of trees and grass.

1 Introduction We want to study the kinematics of forest-grassland system from a view-
point of competitive system between trees and grass.

Our mathematical model is written as the initial-boundary value problem for a parabolic-
ordinary system

(1.1)



∂u

∂t
= βδ[w − w∗]+ − (λg + av2 + c)u− fu in Ω× (0,∞),

∂v

∂t
= fu− hv in Ω× (0,∞),

∂w

∂t
= dw∆w − βw + αv in Ω× (0,∞),

∂g

∂t
= dg∆g − µvg + γ(g − `)(1− g)g in Ω× (0,∞),

∂w

∂n
=
∂g

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), g(x, 0) = g0(x) in Ω,

in a two-dimensional bounded, C2 or convex domain Ω. Here, the unknown functions u(x, t)
and v(x, t) denote tree densities of young and old age classes, respectively, at a position
x ∈ Ω and at time t ∈ [0,∞). The unknown function w(x, t) denotes a density of seeds in
the air at x ∈ Ω and t ∈ [0,∞). Meanwhile, g(x, t) denotes a density of grass at x ∈ Ω and
t ∈ [0,∞).

The third equation in (1.1) describes the kinetics of seeds; dw > 0 is a diffusion constant,
and α > 0 and β > 0 are seed production and seed deposition rates, respectively. The first
equation describes growth of young age trees; here, 0 < δ ≤ 1 is a seed establishment rate,
the term [w−w∗]+ = max{w−w∗, 0} means that a fixed amount w∗ of seeds on the ground
are consumed (by animals or birds), λg+ av2 + c is a mortality of young age trees which is
proportional to the densities g and v2 with coefficients λ > 0 and a > 0, c > 0 being a basic
mortality. The second equation describes growth of old age trees; f > 0 is an aging rate
from young age to old age, and h > 0 is a mortality. Finally, the fourth equation describes
growth of grass that is basically given by a reaction-diffusion equation with a diffusion
constant dg > 0 and with a cubic growth function γ(g − `)(1 − g)g, where 0 < ` < 1 is an
unstable state and γ > 0 is a reaction rate, the term −µvg denotes suppression by the trees

2010 Mathematics Subject Classification. 35K55, 37L30, 74E15.
Key words and phrases. Global solution, Dynamical system, Tree-grass coexistence.

GLOBAL EXISTENCE FOR TREE-GRASS COMPETITION MODEL

Jian Yang1 and Atsushi Yagi2

Received October 4, 2018



2 J. Yang and A. Yagi

with a coefficient µ > 0. On w and g, the homogeneous Neumann conditions are imposed
on the boundary ∂Ω. Nonnegative initial functions u0(x) ≥ 0, v0(x) ≥ 0, w0(x) ≥ 0 and
g0(x) ≥ 0 are given in Ω for all unknown functions.

This model is derived by the present authors on the basis of the classical forest kinematic
model [6]. The detail of derivation is discussed in Section 2.

First, for suitable initial values (u0, v0, w0, g0), we construct a unique global solution in
the underlying space

X = {(u, v, w, g); u ∈ L∞(Ω), v ∈ L∞(Ω), w ∈ L2(Ω), g ∈ L2(Ω)}.

As the equations of u and v are an ordinary equation for each x ∈ Ω, the underlying spaces
for u and v must be a Banach algebra. In addition, even if u0(x) and v0(x) are continuous
functions on Ω, u(x, t) and v(x, t) of the global solution can tend to a stationary solution
(u, v, w, g) as t → ∞ in which u and v are discontinuous functions. By this reason, we set
L∞(Ω) for the underlying spaces of u and v. Meanwhile, as w and g satisfy a diffusion
equation, u(t) and g(t) belong to H2(Ω) ⊂ C(Ω) for any t > 0. In constructing a local
solution, we apply the theory of abstract parabolic evolution equations as in [2, 3, 4] (see
also [15, Chapter 11]).

Second, after constructing a dynamical system generated by (1.1), we show that there
exists a bounded absorbing set (see [14]). This in particular implies that every solution to
(1.1) admits a nonempty ω-limit set in a suitable weak topology of X.

Third, by numerical methods, we observe that the model (1.1) includes some solutions
showing segregation patterns. Under careful tuning for the parameters in the equations of
(1.1), we observe that solutions starting from some class of initial values tend to a stationary
solution (0, 0, 0, 1) as t → ∞. Solutions starting another class of initial values tend to a
stationary solution of the form v(hf−1, 1, αβ−1, 0), where v is a positive solution of the
cubic equation

ahv3 + [(c+ f)h− fαδ]v + fβδw∗ = 0.

And solutions starting from the other class of initial values tend to a stationary solution
(u, v, w, g) which is not homogeneous but shows coexistence of trees and grass. As we can
see a clear curve which divides Ω into forest and grassland, such a stationary might be
called a segregation pattern.

In the forth coming paper [10], the authors will discuss segregation patterns in detail.

2 Kinematics of forests and grasslands Kuznetsov-Antonovsky-Biktashev-Aponina
have first presented by their paper [6] a continuous space model describing the kinematics
of forests. That is written as

(2.1)



∂u

∂t
= βδw − ϕ(v)u− fu in Ω× (0,∞),

∂v

∂t
= fu− hv in Ω× (0,∞),

∂w

∂t
= d∆w − βw + αv in Ω× (0,∞),

∂w

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), in Ω.

As seen, the main difference of (2.1) from (1.1) is that the state variables consist of u, v
and w and do not include the density of grass g(x, t). As a consequence, the mortality of
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young age trees is given by a function of the density of old age trees alone, i.e., ϕ(v). As
for a typical form of ϕ(v), they proposed ϕ(v) such that

(2.2) ϕ(v) = a(v − b)2 + c,

where a, b, c > 0 are positive constants (see [6, p. 220]). This means that the mortality
takes its minimum when v is an optimal value b.

It is quite reasonable to assume that the higher the density of old age trees is, the higher
the mortality of young age trees, because the dense canopy of old age trees admits only
a small amount of light transmission and prevents young age trees under it from growing
regularly and because the trees which cease growing die at a higher rate. In the meantime,
it is very difficult to understand a reason why the mortality ϕ(v) increases as v → 0 for
0 < v < b. It may be possible to claim that a canopy of suitable density protects young age
trees under it by providing them with a comfortable shelter. On the other hand, according
to the articles [1, 5, 8, 9], it is known that trees and grass are always in competition. The
old age trees prevent grass’s growth and conversely the grass prevents seedling’s growth. So,
we want to explain by tree-grass competition why the mortality of young age trees increases
as old age tree’s density decreases less than the critical value b. More precisely, we want to
present in this paper a tree-grass competition model for the kinematics of forest together
with grassland.

As already shown, our mortality function is given by

(2.3) γ(g, v) = λg + av2 + c.

It is similar to (2.2) for sufficiently large v. But, for small v, the mortality is governed by
the density of grass and is actually proportional to it.

In addition, we need to introduce a growth equation for the grassland. As the basic
growth equation, we use the usual reaction-diffusion equation

∂g

∂t
= dg∆g + γ(g − `)(1− g)g

including a cubic growth function γ(g − `)(1 − g)g. To this equation, we incorporate the
effect of competition with trees that is described by −µvg.

In this way, our tree-grass competition model (1.1) is derived on the basis of the classical
model (2.1) due to Kuznetsov-Antonovsky-Biktashev-Aponina just by incorporating newly
competition effects between trees and grass and a growth equation of grassland.

3 Preliminary I) Some inequality. It is easily verified that

(3.1) (g − `)(1− g)g6 ≤ 1− `
6

(
1− g6

)
for 0 ≤ g <∞.

Indeed, we have

(g − `)g6 <
1− `

6

(
1 + g + g2 + · · ·+ g5

)
for 0 ≤ g < 1.

Meanwhile,

(g − `)g6 >
1− `

6

(
1 + g + g2 + · · ·+ g5

)
for 1 < g <∞.
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II) Function Spaces. Let Ω is a bounded, C2 or convex domain in R2. For 0 ≤ s ≤ 2,
Hs(Ω) denotes the complex Sobolev space, its norm being denoted by ‖ · ‖Hs (see [13,
Chap. 1]). For 0 ≤ s0 ≤ s ≤ s1 ≤ 2, Hs(Ω) coincides with the complex interpolation space
[Hs0(Ω), Hs1(Ω)]θ, where s = (1− θ)s0 + θs1, and among their norms the estimate

(3.2) ‖ · ‖Hs ≤ C‖ · ‖1−θHs0 ‖ · ‖
θ
Hs1

holds true. When 0 ≤ s < 1, Hs(Ω) ⊂ Lp(Ω), where 1
p = 1−s

2 , with continuous embedding

(3.3) ‖ · ‖Lp ≤ Cs‖ · ‖Hs .

When s = 1, H1(Ω) ⊂ Lq(Ω) for any finite 2 ≤ q <∞ with the estimate

(3.4) ‖ · ‖Lq ≤ Cpq‖ · ‖
1− pq
H1 ‖ · ‖

p
q

Lp ,

where 1 ≤ p < q <∞. When s > 1, Hs(Ω) ⊂ C(Ω) with continuous embedding

(3.5) ‖ · ‖C ≤ Cs‖ · ‖Hs .

III) Linear Operators. Consider a sesquilinear form given by

a(u, v) = d

∫
Ω

∇u · ∇v dx+ c

∫
Ω

uv dx, u, v ∈ H1(Ω),

d and c being positive constants. From this form, one can define a realization Λ of the
Laplace operator −d∆+ c in the space L2(Ω) under the homogeneous Neumann conditions
on the boundary ∂Ω (see [12, Chap. VI]).

The realization Λ is a positive definite self-adjoint operator of L2(Ω), i.e., Λ ≥ c. When
Ω is bounded and, convex or C2, its domain is characterized by

(3.6) D(Λ) = H2
N (Ω) ≡ {u ∈ H2(Ω); ∂u

∂n = 0 on ∂Ω}.

For 0 < θ < 1, the fractional powers Λθ of Λ are defined and also are positive definite
self-adjoint in L2(Ω). As shown in [15, Sec. 16.4], their domains are characterized by

(3.7) D(Λθ) =

{
H2θ(Ω), when 0 ≤ θ < 3

4 ,

H2θ
N (Ω) ≡ {u ∈ H2θ(Ω); ∂u

∂n = 0 on ∂Ω}, when 3
4 < θ ≤ 1.

In addition, the following equivalence estimates

(3.8) C−1‖Λθ · ‖L2 ≤ ‖ · ‖H2θ ≤ C‖Λθ · ‖L2

hold true with some constant C > 0.
Furthermore, let e−tΛ (0 ≤ t < ∞) denote the semigroup generated by −Λ. Then, the

positivity Λ ≥ c implies that

(3.9) ‖e−tΛ‖L(L2) ≤ e−ct, 0 ≤ t <∞.

In addition, it is known for 0 < θ ≤ 1 that

(3.10) ‖Λθe−tΛ‖L(L2) ≤ Ct−θ, 0 < t <∞,
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with some constant C > 0.

IV) Evolution Equations. Consider the Cauchy problem for an evolution equation
du

dt
+ Λu = f(t), 0 < t ≤ T,

u(0) = u0

in the space L2(Ω), Λ being a positive definite self-adjoint operator of L2(Ω). Let f ∈
C([0, T ];L2(Ω)) and u0 ∈ L2(Ω). If u(t) is a strict solution lying in the solution space:

u ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];D(Λ)) ∩ C1((0, T ];L2(Ω)),

then u(t) is necessarily represented by the formula

(3.11) u(t) = e−tΛu0 +

∫ t

0

e−(t−s)Λf(s)ds, 0 ≤ t ≤ T.

Next, consider the Cauchy problem of a linear equation
du

dt
= p(t)u+ q(t), 0 < t ≤ T,

u(0) = u0

in the space L∞(Ω), p(t) and q(t) being functions such that p, q ∈ C([0, T ];L∞(Ω)). Then,
one can show that, for any initial value u0 ∈ L∞(Ω), there exists a unique strict solution
u ∈ C1([0, T ];L∞(Ω)) and the solution is given by

(3.12) u(t) = e
∫ t
0
p(τ)dτu0 +

∫ t

0

e
∫ t
s
p(τ)dτq(s)ds, 0 ≤ t ≤ T.

For the proof, see [15, p. 53].

4 Local solutions In order to construct local solutions to (1.1), we want to apply the
theory of abstract semilinear parabolic evolution equations.

As for the first and second equations of (1.1), we handle them in the space L∞(Ω)
because they are ordinary differential equations for each x ∈ Ω. Meanwhile, as for the third
and fourth equations which are diffusion equations, we handle them in the space L2(Ω).
Thereby, we set the following underlying space

(4.1) X ≡



u
v
w
g

 ; u, v ∈ L∞(Ω) and w, g ∈ L2(Ω)

 .

In the space X, (1.1) can be formulated as the Cauchy problem

(4.2)


dU

dt
+AU = F (U), 0 < t <∞,

U(0) = U0.

Here, A denotes a closed linear operator of X of the form

(4.3) A ≡


f 0 0 0
0 h 0 0
0 0 Λw 0
0 0 0 Λg

 = diag{f, h, Λw, Λg},

GLOBAL EXISTENCE FOR TREE-GRASS COMPETITION MODEL
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where Λw (resp. Λ) is a realization of the Laplace operator −dw∆+ β (resp. −dg∆+ 1) in
L2(Ω) under the homogeneous Neumann conditions on ∂Ω. The domain of A is given by

(4.4) D(A) = L∞(Ω)× L∞(Ω)×H2
N (Ω)×H2

N (Ω),

because of (3.6). As A is diagonal, A is easily seen to be a sectorial operator of X with angle
0, namely, its spectrum is contained in the half real line (0,∞) and its resolvent satisfies the
estimate ‖(z−A)−1‖L(X) ≤ M

|z|+1 for z 6∈ (0,∞) with some constant M > 0. Consequently,

−A generates an analytic semigroup e−tA (0 ≤ t < ∞) on X which is represented by
e−tA = diag{e−tf , e−th, e−tΛw , e−tΛg}.

Similarly, for 0 < θ < 1, the fractional power Aθ of A is represented by

(4.5) Aθ = diag{fθ, hθ, Λθw, Λθg} with D(Aθ) = L∞(Ω)× L∞(Ω)×D(Λθw)×D(Λθg),

(as for D(Λθw) and D(Λθg), see (3.7)).
In the meantime, F (U) denotes a nonlinear operator of X of the form

(4.6) F (U) ≡


βδ[Rew − w∗]+ − (λg + av2 + c)u

fu
αv

−µvg + γ(g − `)(1− g)g + g

 , U =


u
v
w
g

 ∈ D(F ),

where D(F ) = [L∞(Ω)]4. In what follows we fix an exponent ϑ arbitrarily so that

(4.7) 1
2 < ϑ < 3

4 .

Then, on account of (3.5), (3.8) and (4.5), we see that D(Aϑ) ⊂ D(F ) with continuous
embedding. In addition, since the entries of F (U) are a polynomial of u, v, w, g of at most
third order except the term [Rew−w∗]+ and since [Rew−w∗]+ is Lipschitz continuous for
w ∈ C, it is directly verified that

‖F (U)− F (V )‖L∞ ≤ C(‖U‖L∞ + ‖V ‖L∞ + 1)2‖U − V ‖L∞
for U = t(u1, v1, w1, g1), V = t(u2, v2, w2, g2) ∈ D(F ),

with some constant C > 0. This then readily implies that

(4.8) ‖F (U)−F (V )‖X ≤ C(‖AϑU‖X +‖AϑV ‖X +1)2‖Aϑ(U −V )‖X , U, V ∈ D(Aϑ).

Finally, U0 denotes an initial value which is taken from D(Aϑ).
We can then conclude the following result.

Theorem 4.1. Under (4.7) let U0 = t(u0, v0, w0, g0) be in D(Aϑ), i.e., u0, v0 ∈ L∞(Ω)
and w0, g0 ∈ H2ϑ(Ω). Then, (4.2) (and hence (1.1)) possesses a unique local solution in
the function space:

(4.9)


u, v ∈ C([0, TU0 ];L∞(Ω)) ∩ C1((0, TU0 ];L∞(Ω)),

w, g ∈ C([0, TU0
];H2ϑ(Ω)) ∩ C1((0, TU0

];L2(Ω)) ∩ C((0, TU0
];H2

N (Ω)),

t1−ϑw, t1−ϑg ∈ B((0, T0];H2
N (Ω)).

Here, TU0
> 0 is determined only by the norm

(4.10) ‖u0‖L∞ + ‖v0‖L∞ + ‖w0‖H2ϑ + ‖g0‖H2ϑ

of the initial value U0.
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Proof. The fundamental existence theorem [15, Theorem 4.1] (presented first in [7]) is
available. Indeed, (4.8) shows that the structural assumption [15, (4.2)] is fulfilled with
β = η = ϑ. Therefore, it is concluded that (4.2) possesses a unique local solution in the
function space:{

U ∈ C([0, TU0 ];D(Aϑ)) ∩ C1((0, TU0 ];X) ∩ C((0, TU0 ];D(A)),

t1−ϑU ∈ B((0, TU0 ];D(A)),

TU0
> 0 being determined by the norm ‖AϑU0‖X alone.

Hence, in view of (4.4), each entry of the solution U(t) = t(u(t), v(t), w(t), g(t)) belongs
to the function space (4.9). From (3.8) and (4.5) it seen that

C−1(‖u‖L∞ + ‖v‖L∞ + ‖w‖H2ϑ + ‖g‖H2ϑ) ≤ ‖AϑU‖X
≤ C(‖u‖L∞ + ‖v‖L∞ + ‖w‖H2ϑ + ‖g‖H2ϑ), U = t(u, v, w, g) ∈ D(Aϑ).

Hence, TU0
is determined by the norm of (4.10).

5 Nonnegativity of solutions We shall next verify that nonnegativity of initial func-
tions implies that of the local solution obtained in Theorem 4.1.

Theorem 5.1. Under (4.7) let U0 = t(u0, v0, w0, g0) ∈ D(Aϑ) satisfy u0 ≥ 0, v0 ≥ 0, w0 ≥
0 and g0 ≥ 0 in Ω. Then, the local solution U(t) = t(u(t), v(t), w(t), g(t)) constructed in
Theorem 4.1 is also nonnegative, i.e., u(t) ≥ 0, v(t) ≥ 0, w(t) ≥ 0 and g(t) ≥ 0 in Ω for
every 0 < t ≤ TU0

.

Proof. We want to introduce an auxiliary problem

(5.1)



∂u

∂t
= βδ[Rew − w∗]+ − [λχ(Re g) + av2 + c]u− fu in Ω× (0,∞),

∂v

∂t
= fu− hv in Ω× (0,∞),

∂w

∂t
= dw∆w − βw + αv in Ω× (0,∞),

∂g

∂t
= dg∆g − µvg + γ(g − `)(1− g)g in Ω× (0,∞),

∂w

∂n
=
∂g

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), g(x, 0) = g0(x) in Ω.

Here, χ(g′) is a cutoff function for −∞ < g′ <∞ given by

χ(g′) =

{
g′ if g′ ≥ 0,

0 if g′ < 0.

Since χ(Re g) is a uniformly Lipschitz continuous function of g ∈ C, it is possible to
construct a local solution to (5.1) on an interval [0, T̃U0

] which lies in the same function
space as (4.9) and is unique in the function space. Furthermore, the arguments as in the
proof of [2, Theorem 4.1] (cf. also [15, Subsec. 11.2.3]) are available to conclude that the
local solution satisfies that u(t) ≥ 0, v(t) ≥ 0 and w(t) ≥ 0 in Ω for every 0 < t ≤ T̃U0 .

GLOBAL EXISTENCE FOR TREE-GRASS COMPETITION MODEL
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So, let us here verify that g(t) ≥ 0 in Ω for every 0 < t ≤ T̃U0 . First, we notice
that, since the function (u(t), v(t), w(t), g(t)) is also a local solution of (5.1), uniqueness of
solution implies that (u(t), v(t), w(t), g(t)) = (u(t), v(t), w(t), g(t)) for every 0 < t ≤ T̃U0

.
In particular, g(t) is a real valued function of x ∈ Ω for each t. Second, in view of this fact,

we shall use another cutoff function. Let H(g) be a C1,1 function such that H(g) = g2

2 for
−∞ < g < 0 and H(g) = 0 for 0 ≤ g <∞. We consider the function

ψ(t) =

∫
Ω

H(g(x, t))dx, 0 ≤ t ≤ T̃U0
.

Clearly, ψ(t) is a nonnegative C1 function with the derivative

ψ′(t) =

∫
Ω

H ′(g(t))
dg

dt
(t)dx =

∫
Ω

H ′(g(t))dg∆g(t)dx

+

∫
Ω

H ′(g(t)) [−µv(t) + γ(g(t)− `)(1− g(t))] g(t)dx.

Consequently, there is a constant CU > 0 depending on U(t) such that

ψ′(t) ≤ −dg
∫

Ω

H ′′(g(t))|∇g(t)|2dx+ CU

∫
Ω

H ′(g(t))g(t)dx, 0 < t ≤ T̃U0
.

Since H ′′(g) ≥ 0 and H ′(g)g = 2H(g) for g ∈ R, it follows that ψ′(t) ≤ 2CUψ(t) . Hence,
0 ≤ ψ(t) ≤ e2CU tψ(0) for every 0 < t ≤ T̃U0

. Finally, g0 ≥ 0 implies ψ(0) = 0 and hence
ψ(t) = 0 for every t, i.e., g(t) ≥ 0 in Ω.

We have thus seen that the local solution to the auxiliary problem (5.1) is nonnegative.
This in turn shows that the local solution is as well a local solution of (1.1) (because of
χ(Re g(t)) = g(t)). Uniqueness of local solution for (1.1) then yields that the local solution
for (1.1) obtained by Theorem 4.1 coincides with that of (5.1) on the interval [0, T̃U0

]. This
means that the assertion of theorem is verified at least on the time interval [0, T̃U0

].
Consider the time t1 = sup{0 < t ≤ TU0 ; U(s) is nonnegative for any s ∈ [0, t]}. And

suppose that t1 < TU0 . Then we can repeat the similar arguments with initial time t1
and initial value U1 = U(t1) to conclude that U(t) is nonnegative for all t > t1 which
are sufficiently close to t1. But this contradicts the definition of the time t1. Hence,
t1 = TU0

.

6 Global solutions Let us first build up a priori estimates for the local solutions of
(1.1).

Proposition 6.1. Under (4.7) let 0 ≤ u0, v0 ∈ L∞(Ω) and 0 ≤ w0, g0 ∈ H2ϑ(Ω). Let
U = (u, v, w, g) denote any local solution of (1.1) on an interval [0, TU ] such that

(6.1)

{
0 ≤ u, v ∈ C([0, TU ];L∞(Ω)) ∩ C1((0, TU ];L∞(Ω)),

0 ≤ w, g ∈ C([0, TU ];H2ϑ(Ω)) ∩ C1((0, TU ];L2(Ω)) ∩ C((0, TU ];H2
N (Ω)).

Then, the estimate

(6.2) ‖u(t)‖L∞ + ‖v(t)‖L∞ + ‖w(t)‖H2ϑ + ‖g(t)‖H2ϑ

≤ C
[
‖u0‖L∞ + ‖v0‖L∞ + ‖w0‖H2ϑ + ‖g0‖2H2ϑ + 1

]
, 0 ≤ t ≤ TU ,

holds with some constant C independent of TU .



9

Proof. Throughout the proof, we shall use a universal notation C to denote positive con-
stants which are determined by the constants dw, dg, a, c, f, h, α, β, γ, δ, λ, µ, w∗ and `
and by Ω. So, C may change from occurrence to occurrence.

Step 1. Let us first estimate the norms ‖u(t)‖L2 , ‖v(t)‖L2 and ‖w(t)‖L2 . Multiply the
first equation of (1.1) by u and integrate the product in Ω. Then, we have

1

2

d

dt

∫
Ω

u2dx+ f

∫
Ω

u2dx = βδ

∫
Ω

[w − w∗]+u dx−
∫

Ω

(λg + av2 + c)u2dx

≤ f

2

∫
Ω

u2dx+
(βδ)2

2f

∫
Ω

(w2 + w2
∗)dx− a

∫
Ω

u2v2dx.

Therefore,

(6.3)
d

dt

∫
Ω

u2dx+ f

∫
Ω

u2dx ≤ (βδ)2f−1

∫
Ω

(w2 + w2
∗)dx− 2a

∫
Ω

u2v2dx.

Multiply the second equation of (1.1) by v and integrate the product in Ω. Then,

1

2

d

dt

∫
Ω

v2dx+ h

∫
Ω

v2dx = f

∫
Ω

uv dx,

or

(6.4)
d

dt

∫
Ω

v2dx+ 2h

∫
Ω

v2dx = 2f

∫
Ω

uv dx.

Finally, multiply the third equation of (1.1) by w and integrate the product in Ω. Then,

1

2

d

dt

∫
Ω

w2dx+ β

∫
Ω

w2dx = −dw
∫

Ω

|∇w|2dx+ α

∫
Ω

vw dx ≤ β

2

∫
Ω

w2dx+
α2

2β

∫
Ω

v2dx.

Therefore,

(6.5)
d

dt

∫
Ω

w2dx+ β

∫
Ω

w2dx ≤ α2β−1

∫
Ω

v2dx.

Introduce here two positive parameters ρ and η; and, multiply the inequalities (6.3)
and (6.5) by ρ and η, respectively. Then, summing up the resulting inequalities and the
equation (6.4), we obtain that

(6.6)
d

dt

∫
Ω

[ρu2 + v2 + ηw2]dx+

∫
Ω

[fρu2 + 2hv2 + βηw2]dx

≤
∫

Ω

[α2β−1ηv2 + (βδ)2f−1ρw2]dx+ 2

∫
Ω

[f(uv)− aρ(uv)2]dx+ (βδw∗)
2f−1|Ω|ρ.

Furthermore, fix η > 0 sufficiently small so that α2β−1η < 2h and then fix ρ > 0 sufficiently
small so that (βδ)2f−1ρ < βη. Then, as f(uv)−aρ(uv)2 ≤ f2(4aρ)−1 for u, v ≥ 0, it follows
that

d

dt

∫
Ω

[ρu2 + v2 + ηw2]dx+ ε

∫
Ω

[ρu2 + v2 + ηw2]dx ≤ [(βδw∗)
2f−1ρ+ f2(2aρ)−1]|Ω|

with some constant ε > 0. Solving this differential inequality, we conclude that

ρ‖u(t)‖2L2
+ ‖v(t)‖2L2

+ η‖w(t)‖2L2
≤ C

[
e−εt(ρ‖u0‖2L2

+ ‖v0‖2L2
+ η‖w0‖2L2

) + 1
]
,

GLOBAL EXISTENCE FOR TREE-GRASS COMPETITION MODEL
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or

(6.7) ‖u(t)‖2L2
+ ‖v(t)‖2L2

+ ‖w(t)‖2L2

≤ C1

[
e−εt(‖u0‖2L2

+ ‖v0‖2L2
+ ‖w0‖2L2

) + 1
]
, 0 ≤ t ≤ TU .

Step 2. The estimate (6.7) directly implies the estimate of ‖w(t)‖H2ϑ . In fact, it is
known by (3.11) that w(t) is represented by

w(t) = e−tΛww0 +

∫ t

0

e−(t−s)Λwαv(s)ds,

where Λw is a realization of −dw∆+β in L2(Ω) under the homogeneous Neumann conditions
on ∂Ω and where e−tΛw is the semigroup on L2(Ω) generated by −Λw. Operating Λϑw, we
have

Λϑww(t) = e−tΛw [Λϑww0] +

∫ t

0

Λϑwe
− t−s2 Λwe−

t−s
2 Λwαv(s)ds.

Therefore, by (3.9) and (3.10),

‖Λϑww(t)‖L2 ≤ Ce−βt‖Λϑww0‖L2 + C

∫ t

0

(t− s)−ϑe−
β
2 (t−s)ds max

0≤s≤t
‖v(s)‖L2 .

Since∫ t

0

(t− s)−ϑe−
β
2 (t−s)ds =

∫ t

0

σ−ϑe−
β
2 σdσ <

∫ ∞
0

σ−ϑe−
β
2 σdσ =

(
2

β

)1−ϑ

Γ (1− ϑ),

we obtain by (6.7) that

‖Λϑww(t)‖L2
≤ C

[
e−

β
2 t‖Λϑww0‖L2

+ ‖u0‖L2
+ ‖v0‖L2

+ ‖w0‖L2
+ 1
]
.

Hence, in view of (3.8),

(6.8) ‖w(t)‖H2ϑ ≤ C2

[
e−

β
2 t‖w0‖H2ϑ + ‖u0‖L2

+ ‖v0‖L2
+ ‖w0‖L2

+ 1
]
, 0 ≤ t ≤ TU .

Step 3. In view of (3.5), we see from (6.8) that

‖w(t)‖L∞ ≤ C[‖u0‖L2
+ ‖v0‖L2

+ ‖w0‖H2ϑ + 1], 0 ≤ t ≤ TU .

By use of this, let us estimate the norms ‖u(t)‖L∞ and ‖v(t)‖L∞ .
First, apply the formula (3.12) to the first equation of (1.1). Then, we have

u(t) = e−
∫ t
0

[λg(s)+av(s)2+c+f ]dsu0 +

∫ t

0

e−
∫ t
s

[λg(τ)+av(τ)2+c+f ]dτβδ[w(s)− w∗]+ds

in the space L∞(Ω). Therefore,

‖u(t)‖L∞ ≤ e−(c+f)t‖u0‖L∞ + βδ

∫ t

0

e−(c+f)(t−s)[‖w(s)‖L∞ + w∗]ds.
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Hence,

(6.9) ‖u(t)‖L∞ ≤ C3

[
e−(c+f)t‖u0‖L∞ + ‖u0‖L2 + ‖v0‖L2 + ‖w0‖H2ϑ + 1

]
, 0 ≤ t ≤ TU .

Second, the similar arguments yield from the second equation of (1.1) the estimate

(6.10) ‖v(t)‖L∞ ≤ C4

[
e−ht‖v0‖L∞ + ‖u0‖L∞ + ‖v0‖L2 + ‖w0‖H2ϑ + 1

]
, 0 ≤ t ≤ TU .

Of course, (6.9) is used for estimating the integral
∫ t

0
e−h(t−s)u(s)ds in L∞(Ω).

Step 4. The estimates for the norms of g(t) are carried out quite analogously. Let us
first estimate the norm ‖g(t)‖L6

.
Multiply the fourth equation of (1.1) by g(t)5 and integrate the product in Ω. Then,

after some calculations, we have

1

6

d

dt

∫
Ω

g6dx = −5dg

∫
Ω

g4|∇g|2dx− µ
∫

Ω

vg6dx+ γ

∫
Ω

(g − `)(1− g)g6dx.

In view of (3.1),

1

6

d

dt

∫
Ω

g6dx+
γ(1− `)

6

∫
Ω

g6dx ≤ γ(1− `)
6

∫
Ω

dx =
γ(1− `)

6
|Ω|.

Solving this differential inequality, we obtain that

(6.11) ‖g(t)‖6L6
≤ e−γ(1−`)t‖g0‖6L6

+ |Ω|, 0 ≤ t ≤ TU .

Step 5. Regarding g(t) as the solution to a linear evolution equation (i.e., the fourth
equation of (1.1)), we describe g(t) by the integral

g(t) = e−tΛgg0 +

∫ t

0

e−(t−s)Λg [−µv(s) + γ(g(s)− `)(1− g(s)) + 1] g(s)ds

in L2(Ω) (due to (3.11)), where Λg is a realization of −dg∆ + 1 in L2(Ω) under the ho-
mogeneous Neumann conditions on ∂Ω. Then, the similar arguments as in Step 2 yield
that

‖Λϑgg(t)‖L2
≤ C

[
e−t‖Λϑgg0‖L2

+ max
0≤s≤t

{
‖v(s)g(s)‖L2

+ ‖(1 + g(s))2g(s)‖L2

}]
.

Hence we obtain by (6.10) and (6.11) that

‖Λϑgg(t)‖L2
≤ C

[
e−t‖Λϑgg0‖L2

+ ‖u0‖L∞ + ‖v0‖L∞ + ‖w0‖H2ϑ + ‖g0‖3L6
+ 1
]
,

or due to (3.8),

(6.12) ‖g(t)‖H2ϑ ≤ C5

[
e−t‖g0‖H2ϑ + ‖u0‖L∞ + ‖v0‖L∞

+ ‖w0‖H2ϑ + ‖g0‖3L6
+ 1
]
, 0 ≤ t ≤ TU .

Combing (6.8), (6.9), (6.10) and (6.12), we conclude the desired estimate (6.2).

As an immediate consequence of the a priori estimates above, we can prove existence
and uniqueness of global solution for the problem (1.1).

GLOBAL EXISTENCE FOR TREE-GRASS COMPETITION MODEL
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Theorem 6.1. Let ϑ be as in (4.7), and let 0 ≤ u0, v0 ∈ L∞(Ω) and 0 ≤ w0, g0 ∈ H2ϑ(Ω).
Then, (1.1) possesses a unique global solution in the function space:{

0 ≤ u, v ∈ C([0,∞);L∞(Ω)) ∩ C1((0,∞);L∞(Ω)),

0 ≤ w, g ∈ C([0,∞);H2ϑ(Ω)) ∩ C1((0,∞);L2(Ω)) ∩ C((0,∞);H2
N (Ω)).

Of course, the global solution satisfies all the estimates (6.7)∼(6.12) on the interval [0,∞).

Proof. First, by Theorems 4.1 and 5.1, there exists a unique local solution (u, v, w, g) to
(1.1) on an interval [0, TU0

] which is nonnegative.
Second, consider any local solution of (1.1) on an interval [0, TU ] in the function space

(6.1). Then, Proposition 6.1 provides that the norm ‖AϑU(TU )‖X is estimated by ‖AϑU0‖X
alone (independently of the end time TU ). We can then apply Theorems 4.1 and 5.1 with
initial time TU and initial value U(TU ) and know that the solution (u, v, w, g) can be uniquely
extended as a nonnegative local solution on an interval [0, TU + τ ], where τ > 0 depends on
the norm ‖AϑU(TU )‖X and hence depends only on the norm ‖AϑU0‖X .

Thus, we have verified that any local solution on [0, TU ] in the function space (6.1) can
always be extended as a nonnegative local solution on a longer interval [0, TU + τ ] with a
fixed length τ > 0. This evidently means that the assertion of theorem is true.

Let us finally observe Lipschitz continuity of solutions U(t) in the initial values U0. Let
B be a bounded set of D(Aϑ) such that

(6.13) BR =
{
U0 ∈ D(Aϑ); ‖AϑU0‖X ≤ R and U0 ≥ 0

}
with radius R > 0. Then, there exists a unique global solution to (1.1) for each U0 ∈ B. As
a direct consequence of [15, Theorem 4.3], we observe the following result.

Proposition 6.2. Let U(t) (resp. V (t)) denote the global solution to (1.1) for initial value
U0 ∈ BR (resp. V0 ∈ BR). Then, for each fixed time T > 0, there exists some constants
CR,T > 0 depending on R and T alone such that

(6.14) ‖Aϑ[U(t)− V (t)]‖X ≤ CR,T ‖Aϑ[U0 − V0]‖X for any 0 ≤ t ≤ T.

7 Dynamical system This section is devoted to constructing a dynamical system gen-
erated by the problem (1.1). As for the phase space we set

K =
{
U0 ∈ D(Aϑ); U0 ≥ 0

}
⊂ D(Aϑ),

K being a metric space equipped with the distance induced by the norm ‖Aϑ · ‖X .
As shown by Theorem 6.1, for each U0 ∈ K, there exists a unique global solution U(t;U0)

of (1.1) with values in K. Therefore, we can define a nonlinear semigroup {S(t)}0≤t<∞
acting on K by the formula S(t)U0 = U(t;U0). As shown by Proposition 6.2, U0 7→ U(t;U0)
is locally Lipschitz continuous from K into itself. Furthermore, according to (6.14), the
Lipschitz constant is uniform on any bounded set BR of K and on any finite interval [0, T ].
It then easily follows that the mapping (t, U0) 7→ S(t)U0 is continuous from [0,∞) × K
into K, namely, S(t) is a continuous semigroup on K. Hence, (1.1) generates a dynamical
system (S(t),K,D(Aϑ)).

The a priori estimates (6.7)∼(6.12) we have established in the proof of Proposition 6.2
provide existence of a bounded absorbing set of K.



13

Theorem 7.1. The dynamical system (S(t),K,D(Aϑ)) possesses a bounded, invariant and

absorbing subset B̃ of K.

Proof. Let R > 0 and let BR be a bounded subset of the form (6.13). Let U0 ∈ BR be any
initial value and put S(t)U0 = t(u(t), v(t), w(t), g(t)).

From (6.7) we see that there is a time t1 > 0 depending only on R such that

‖u(t)‖2L2
+ ‖v(t)‖2L2

+ ‖w(t)‖2L2
≤ 2C1, t1 ≤ ∀t <∞.

Apply (6.8) to w(t) but with initial time t1 and initial value S(t1)U0. Then,

‖w(t)‖H2ϑ ≤ C2

[
e−

β
2 (t−t1)‖w(t1)‖H2ϑ

+ ‖u(t1)‖L2
+ ‖v(t1)‖L2

+ ‖w(t1)‖L2
+ 1
]
, t1 ≤ ∀t <∞.

From this we see that there is a time t2 > t1 depending only on R such that

‖w(t)‖H2ϑ ≤ C2

[√
3
√

2C1 + 2
]
, t2 ≤ ∀t <∞.

We repeat the similar arguments by using (6.9)∼(6.12) to see ultimately that there is a
time TR > 0 depending only on R such that

‖AϑS(t)U0‖X ≤ C̃, tR ≤ ∀t <∞,

here C̃ > 0 is a suitable universal constant determined by C1, C2, C3, C4, C5 alone.
Set B ≡ BC̃ = {U ∈ K; ‖AϑU‖X ≤ C̃}. Then, as shown above, B is an absorbing set

of (S(t),K,D(Aϑ)). Since B itself is a bounded subset of K, there is a time tC̃ such that
S(t)B ⊂ B for all t ≥ tC̃ . We then set

B̃ =
⋃

0≤t<∞

S(t)B =
⋃

0≤t≤tC̃

S(t)B.

It is clear that B̃ is an invariant set. Since B ⊂ B̃, B̃ is also an absorbing set. Proposition
6.1 means that B̃ is a bounded subset. Hence, B̃ is a subset to be constructed.

Let us now consider the ω-limit set. For each global solution S(t)U0, its ω-limit set is
usually defined by

ω(U0) =
⋂

0≤t<∞

{S(τ)U0; t ≤ τ <∞} (closure in the topology of K).

In the present case, however, the trajectory {S(t)U0; 0 ≤ t < ∞} is not necessarily a
relatively compact set of K. So, ω(U0) may be an empty set in general. So, we will
introduce another ω-limit set with respect to some weak topology of K.

We introduce the weak∗ topology of K: a sequence {(un, vn, wn, gn)} in K is said to be
weak∗ convergent to (u, v, w, g) as n→∞ if{

un → u and vn → v weak* in L∞(Ω),

wn → w and gn → g weakly in H2ϑ(Ω).

The weak∗ ω-limit set of S(t)U0 is then defined by

(7.1) w∗-ω(U0) =
{
U ∈ K; ∃tn ↗∞ such that S(tn)U0 → U in weak* topology

}
.
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Theorem 7.2. For each U0 ∈ K, w∗-ω(U0) is not an empty set.

Proof. Put S(t)U0 = t(u(t), v(t), w(t), g(t)). Since {(u(t), v(t)); 0 ≤ t < ∞} is a bounded
subset of L∞(Ω)×L∞(Ω), the Banach-Alaoglu theorem [11, p. 65] guarantees the trajectory
S(t)U0 to contain a sequence (u(tn), v(tn)), where tn ↗ ∞, which converges to (u, v) in
the weak* topology of L∞(Ω) × L∞(Ω). It is easy to see that u ≥ 0 and v ≥ 0 in Ω.
On the other hand, as H2ϑ(Ω) is a Hilbert space, (w(tn), g(tn)) contains a subsequence
(w(tn′), g(tn′)) which is convergent to (w, g) in the weak topology of H2ϑ(Ω) × H2ϑ(Ω).
It is clear that w ≥ 0 and g ≥ 0 in Ω. Hence, as n′ → ∞, S(tn′)U0 is weak* convergent
to U = t(u, v, w, g) ∈ K. Then, by the definition (7.1), we conclude that U belongs to
w*-ω(U0).

8 Numerical Examples We conclude this paper by presenting some numerical results.
These results show that our problem (1.1) can actually admit some coexisting solutions of
trees and grass together with the boundary which divides forest and grassland.

Throughout the numerical computations, the domain is set as Ω = (0, 1) × (0, 1). The
constants in (1.1) are fixed as dw = 0.1, dg = 1 × 10−6, a = 1, c = 0, f = 1, h = 0.5, α =
β = 1, γ = 40, δ = 1, λ = 9, µ = 50, w∗ = 0.1 and ` = 0.1.

As in Figure 1, the initial functions u0(x), v0(x), w0(x) and g0(x) are taken as

u0(x), v0(x) and w0(x) ≡

{
0 for x ∈ B(x0; r),

0.5 for x ∈ Ω−B(x0; r),

g0(x) ≡

{
0.1 for x ∈ B(x0; r),

0 for x ∈ Ω−B(x0; r),

where x0 denotes the central point (0.5, 0.5) of Ω and 0 < r < 0.5 denotes a radius of disk
to be adjusted in our simulations. Starting from such initial functions, computations are
continued until the approximate solution is stabilized numerically (almost T = 1000).

When r = 0.1, the solution tends to a state of homogeneous forest and no grass, see
Figure 2. When r = 0.2 the solution tends to a coexisting state of trees and grass, see
Figure 3. Finally, when r = 0.3, the solution tends to a state of homogeneous grass and no
trees, see Figure 4.
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(a) Graph of young trees (b) Graph of old trees

(c) Graph of seeds (d) Graph of grass

Fig. 1: Initial function.

(a) Graph of young trees (b) Graph of old trees

(c) Graph of seeds (d) Graph of grass

Fig. 2: When r = 0.1, the solution tends to a state of homogeneous forest and no grass.
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(a) Graph of young trees (b) Graph of old trees

(c) Graph of seeds (d) Graph of grass

Fig. 3: When r = 0.2 the solution tends to a coexisting state of trees and grass.

(a) Graph of young trees (b) Graph of old trees

(c) Graph of seeds (d) Graph of grass

Fig. 4: When r = 0.3, the solution tends to a state of homogeneous grass and no trees.
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