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Abstract. In the preceding paper [21], we have introduced a tree-grass competition
model for describing the kinematics of forest-grassland system and have found that the
model admits some solutions showing coexistence of forest and grassland. The purpose
of the present paper is then to investigate the boundary curves which partition forest
patches and grassland patches. Through the investigations, we want to clarify the
properties of segregation patterns of tree-grass coexistence in terms of forest connec-
tivity. As it is very difficult to handle the very model equations in [21], we will make
a reduction of the full model by extremely restricting the range where the parameters
of equations can vary.

1 Introduction In the preceding paper [21], we have introduced a tree-grass competition
model for describing the kinematics of forest-grassland system from a viewpoint of compet-
itive system between trees and grass. We have also found after proving global existence of
solutions that the model admits some solutions showing coexistence of forest and grassland
which are partitioned each other by some clear boundary curves.

The purpose of the present paper is then to investigate the boundary curves partitioning
forest and grassland, in other words, the properties of segregation patterns of trees and grass.
It is, however, very difficult to handle the very model equations [21, (1.1)], for the dynamics
of solutions change drastically depending on the parameters contained in the equations
and the model equations actually contain so various parameters. Before investigating the
segregation patterns, we want to make some restrictions on the parameters as follows.

First, we will consider an extreme case when the reaction rates µ and γ in the equation of
grass of [21, (1.1)] are sufficiently large with respect to the diffusion rate dg and when they
are even sufficiently large with respect to the reaction rates f and h of the equation of old age
trees. In such a case, as discussed in the next section, the model equations can reasonably
be reduced into a smaller model. As a matter of fact, the reduced model coincides with the
classical kinematic model of forest presented by Kuznetsov-Antonovsky-Biktashev-Aponina
[11].

Second, we will choose only the mortality h of old age trees as a tuning parameter of our
investigations fixing other parameters suitably. The reduced model given by (2.3) below
with (2.4)-(2.5) coincides with the classical kinematic model of forest for which an extensive
study has already been made, see [12, 17, 20], including the series of papers [1, 2, 3]. Among
others, as reviewed in Section 3, the papers [1, 2, 3] clarified that the parameter h plays an
important role for determining the dynamics of solutions.

By numerical computations, we shall find that three types of tree-grass segregation
patterns, namely, high-connectivity forests, intermediate-connectivity forests and low con-
nectivity forests, are created depending mainly on the mortality of old age trees. We shall
also find some very interesting link between the characters of forest connectivity and the

2010 Mathematics Subject Classification. 35K55, 37L30, 74E15.
Key words and phrases. Segregation pattern, Numerical experiment, Forest connectivity.

TREE-GRASS SEGREGATION PATTERNS

Jian Yang1 and Atsushi Yagi2

Received December 3, 2018



2

instability-dimension of a unique homogeneous stationary solution, which is always unsta-
ble, showing coexistence of trees and grass (see Remark 3.1).

Those types of habitat patterns are actually observed in the real world by means of
satellite imagery, which is a conventional remote-sensing method. For instance, we can find
those patterns in a 100km height view of the Black Forest, Schwarzwald, Germany (see
Google Earth). As in [7], monitoring data are statistically processed in order to investigate
characters of habitat patterns. Devia-Murthya-Debnatha-Jhaa [4] reported that the forest
connectivity is playing an important role of regulating its ecological factors such as species
level biodiversity, wildlife movement, seed dispersion and so on.

2 Some Reduction of Tree-Grass Competition Model Let us argue a reduction of
the original tree-grass competition model introduced in our preceding paper [21].

We begin with recalling the following tree-grass interaction system:

(2.1)



∂u

∂t
= βδw − (λg + av2 + c)u− fu in Ω× (0,∞),

∂v

∂t
= fu− hv in Ω× (0,∞),

∂w

∂t
= dw∆w − βw + αv in Ω× (0,∞),

∂g

∂t
= dg∆g − µvg + γ

(
1− g

K

)
g in Ω× (0,∞),

∂w

∂n
=
∂g

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), g(x, 0) = g0(x) in Ω,

in a two-dimensional bounded, C2 or convex domain Ω. Here, the unknown functions u(x, t)
and v(x, t) denote tree densities of young and old age classes, respectively, at a position
x ∈ Ω and at time t ∈ [0,∞). The unknown function w(x, t) denotes a density of seeds in
the air at x ∈ Ω and t ∈ [0,∞). Meanwhile, g(x, t) denotes a density of grass at x ∈ Ω and
t ∈ [0,∞). The third equation describes the kinetics of seeds; dw > 0 is a diffusion constant,
and α > 0 and β > 0 are seed production and seed deposition rates, respectively. The first
equation describes growth of young age trees; here, 0 < δ ≤ 1 is a seed establishment rate,
λg + av2 + c is a mortality of young age trees which is proportional to the densities g and
v2 with coefficients λ > 0 and a > 0, c > 0 being a basic mortality. The second equation
describes growth of old age trees; f > 0 is an aging rate from young age to old age, and
h > 0 is a mortality. Finally, the fourth equation describes growth of grass that is basically
given by a reaction-diffusion equation with a diffusion constant dg > 0 and with a Fisher
growth function γ

(
1− g

K

)
g, where γ > 0 is a reaction rate and K is ground’s capacity for

grass, the term −µvg denotes suppression by the trees with a coefficient µ > 0. On w and
g, the homogeneous Neumann conditions are imposed on the boundary ∂Ω. Nonnegative
initial functions u0(x) ≥ 0, v0(x) ≥ 0, w0(x) ≥ 0 and g0(x) ≥ 0 are given in Ω for all
unknown functions. (Note that, for simplicity, the constant w∗ in [21, (1.1)] was taken as
w∗ = 0 and the cubic growth function for g was replaced by a square growth function of
Fisher type.)

We now want to consider the situation that the reaction rates µ and γ are sufficiently
large with respect to the diffusion rate dg. Then, the equation of density g(x, t) of grass
can be dominated by the reaction terms and reduced to the ordinary differential equation

∂g

∂t
=
[
−µv + γ

(
1− g

K

)]
g in (0,∞),
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for each spatial point x ∈ Ω. Furthermore, we assume that the reaction rates µ and γ are
sufficiently large with respect to the reaction rates f and h appearing in the equation of
v(x, t). Then, g(x, t) reaches its stability much faster than v(x, t). By the theory of ordinary
differential equations, we observe (v being given) the following dynamics. If µv > γ, then
∂g
∂t < 0 for every 0 < t < ∞ and g tends to 0 as t → ∞. If µv ≤ γ, then g tends to
K
γ (γ − µv) as t→∞. That is, g is represented as a function of v in the form

(2.2) g = g(v) ≡

{
K
γ (γ − µv) for 0 ≤ v < γ

µ ,

0 for γ
µ ≤ v <∞.

Let us substitute g(v) defined by (2.2) with the g in the equation for u of (2.1). Then,
(2.1) is reduced to

(2.3)



∂u

∂t
= βδw − ϕ(v)u− fu in Ω× (0,∞),

∂v

∂t
= fu− hv in Ω× (0,∞),

∂w

∂t
= dw∆w − βw + αv in Ω× (0,∞),

∂w

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), in Ω,

where ϕ(v) = av2 + λg(v) + c.

Let us next investigate the behavior of ϕ(v) for 0 ≤ v <∞. By the definition, g(v) is a
piecewise linear continuous function of v, therefore ϕ(v) is a piecewise quadratic continuous

function. For γ
µ ≤ v <∞, ϕ(v) = av2 + c. When a > Kλµ2

2γ2 , ϕ(v) takes a minimal value in

the interval 0 ≤ v < γ
µ . Indeed, ϕ(v) is written as

ϕ(v) = a

(
v − Kλµ

2aγ

)2

+
Kλ(4aγ2 −Kλµ2)

4aγ2
+ c, 0 ≤ v < γ

µ
.

Meanwhile, when a ≤ Kλµ
2γ2 , ϕ(v) is monotonously decreasing in the interval 0 ≤ v < γ

µ .

Therefore, in this case, ϕ(v) takes a minimal value at v = γ
µ and its value is given as

ϕ
(
γ
µ

)
= aγ2

µ2 + c. In this way, ϕ(v) has been seen to have a unique minimal value and to

behave as a quadratic function for large variables v, although it is not smooth at the point
v = γ

µ .

It is then natural to expect that the dynamics of solutions to (2.3) must be quite analo-
gous to that of solutions to the equations due to Kuznetsov-Antonovsky-Biktashev-Aponina
[11] in which ϕ(v) is just a quadratic function of the form

(2.4) ϕ(v) = a′(v − b′)2 + c′, 0 ≤ v <∞,

a′, b′ and c′ being some positive constants. In addition, we already know that when ϕ(v) is
as in (2.4) the solutions starting from initial functions v0(x) given in a neighborhood of b′

remain in some other neighborhood of b′ and perform very interesting asymptotic behavior.
By these arguments, we may be allowed to approximate our non smooth quadratic-like
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function ϕ(v) = av2 + λg(v) + c as a square function of form (2.4) by setting

(2.5)


a′ = a, b′ =

Kλµ

2aγ
, c′ =

Kλ(4aγ2 −Kλµ2)

4aγ2
+ c when a >

Kλµ2

2γ2
,

a′ = a, b′ =
γ

µ
, c′ =

aγ2

µ2
+ c when a ≤ Kλµ2

2γ2
.

We have thus verified that, when the assumptions on µ, γ, dg, f and h mentioned above
are satisfied, the tree-grass model equations of (2.1) can reasonably be reduced to the model
equations of (2.3). Here, the function ϕ(v) is given by a square function of form (2.4) with
the coefficients represented by (2.5).

3 Review of Known Analytical Results Let us review the known results for the
problem (2.3) which are obtained by the series of papers [1, 2, 3].

I) Global Existence. In order to handle (2.3) analytically, we set an underlying Banach
space X by

X ≡


uv
w

 ; u, v ∈ L∞(Ω) and w ∈ L2(Ω)

 .

Then, (2.3) can be formulated as the Cauchy problem

(3.1)


dU

dt
+AU = F (U), 0 < t <∞,

U(0) = U0

in X. Here, A denotes a closed linear operator of X of the form A ≡ diag{f, h, Λ}, where
Λ is a realization of the Laplace operator −dw∆ + β in L2(Ω) under the homogeneous
Neumann boundary conditions, and A has the domain D(A) = L∞(Ω)× L∞(Ω)×H2

N (Ω),
H2
N (Ω) standing for the subspace of H2(Ω) such that u ∈ H2

N (Ω) if and only if u ∈ H2(Ω)
satisfies the homogeneous Neumann boundary conditions on ∂Ω. Moreover, A is easily seen
to be a sectorial operator of X with angle 0, namely, its spectrum is contained in the half
real line (0,∞). Consequently, −A generates an analytic semigroup e−tA (0 ≤ t < ∞) on
X; actually, e−tA is given as e−tA = diag{e−tf , e−th, e−tΛ}.

In the meantime, F (U) denotes a nonlinear operator of X of the form

F (U) ≡

βδw − ϕ(v)u
fu
αv

 , U =

uv
w

 ∈ D(F ) = [L∞(Ω)]3.

Finally, U0 denotes an initial value which is taken in X.
We can then apply the theory of semilinear abstract parabolic evolution equations (see

[18, Chapter 4]). In fact, according to [1, Theorem 5.2], for any 0 ≤ u0 ∈ L∞(Ω), 0 ≤ v0 ∈
L∞(Ω) and 0 ≤ w0 ∈ Hs(Ω), where s > 1, (3.1) and hence (2.3) possesses a unique global
solution such that

(3.2)

{
0 ≤ u, v ∈ C([0,∞);L∞(Ω)) ∩ C1((0,∞);L∞(Ω)),

0 ≤ w ∈ C([0,∞);Hs(Ω)) ∩ C1((0,∞);L2(Ω)) ∩ C((0,∞);H2
N (Ω)).

II) Lyapunov Function.

J. Yang and A. Yagi
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Furthermore, as verified in [1, Section 7], the function

Ψ(U) =

∫
Ω

[α
2

(fu− hv)2 +
dwfβδ

2
|∇w|2 + hαΓ (v)

+
fβ2δ

2
w2 − (fαβδ)vw

]
dx, U ∈ D(A),

becomes a Lyapunov function for all the solutions of (2.3), where Γ (v) =
∫ v

0
[ϕ(v)v+ fv]dv

is a fourth order function for 0 ≤ v < ∞ due to (2.4). In fact, let U(t) be any solution of
(2.3) lying in (3.2). Then, the value Ψ(U(t)) is monotonously decreasing for 0 ≤ t <∞. In
addition, it holds that

U ∈ D(A) is a stationary solution (i.e., AU = F (U)), if and only if Ψ ′(U) = 0.

In particular, we notice that (2.3) admits no periodic solutions.

III) Asymptotic Behavior of Solutions. In general, when there exists a Lyapunov function
for the global solutions, one can prove that the global solutions tend to a stationary solution
as t→∞. In the present case, however, such a convergence is proved only for some special
cases. We can analytically claim only that, for any global solution U(t), there exists a
temporal sequence tn ↗∞ for which it holds true that

u(tn)→ u weak* in L∞(Ω),

v(tn)→ v weak* in L∞(Ω),

w(tn)→ w strongly in L2(Ω).

See [2, Section 4] and [19].
In spite of these analytical results, our numerical computations show that any global

solution tends weakly to a stationary solution as t→∞. Some of them are described in [2,
Section 6].

IV) Structure of Stationary Solutions. Now, we are naturally interested in investigating
the structure of stationary solutions, namely, U satisfying AU = F (U). We can use the
theory of stationary solutions to semilinear abstract parabolic evolution equations (see [18,
Section 6. 6]).

As a matter of fact, the structure of stationary solutions changes drastically depending
on the parameters of the equations. We here want to focus in the case when

(3.3) a′(b′)2 > 3(c′ + f).

In addition, fixing all the parameters except h, we treat h as a control parameter and
consider the four critical values 0 < h∗ < h− < h+ < h∗ <∞ of h which are defined by

h∗ =
fαδ

a′(b′)2 + c′ + f
, h∗ =

fαδ

c′ + f
,

and

h± =
fαδ {a′(b′)2 + 3(c′ + f)±

√
a′(b′)2[a′(b′)2 − 3(c′ + f)] }

2(c′ + f)[a′(b′)2 + c′ + f ]
,

respectively.
According [3, Section 2], we know under (3.3) the following results.

TREE-GRASS SEGREGATION PATTERNS
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1) When 0 < h < h∗, there exist two homogeneous stationary solutions O = (0, 0, 0) and

P+ =
(
h
f [b′ +

√
D], b′ +

√
D, α

δ [b′ +
√
D]
)
, where D = fαδ−(c′+f)h

a′h .

In this case, there exist no other (inhomogeneous) stationary solutions.
Furthermore, O is unstable and P+ is stable. So, as t→∞, the solutions U(t) of (2.3)

generally converge to P+.

2) When h∗ < h < h−, there exist three homogeneous stationary solutions O, P+ and

(3.4) P− =
(
h
f [b′ −

√
D], b′ −

√
D, α

δ [b′ −
√
D]
)
.

In addition, there exist many inhomogeneous stationary solutions.
In this case, O and P+ are both stable. But P− is unstable and its dimension of

instability is finite.

3) When h− < h < h+, there exist the three homogeneous stationary solutions O and P±
and there exist many inhomogeneous stationary solutions.

As before, O and P+ are stable and P− is unstable. But the dimension of instability of
P− is infinite.

4) When h+ < h < h∗, the situation is similar to that of Case 2. Indeed, there exist the
three homogeneous stationary solutions O and P± and there exist many inhomogeneous
stationary solutions.

As in Case 2, O and P+ are both stable, and P− is unstable. The dimension of instability
of P− is finite.

5) When h∗ < h < ∞, O = (0, 0, 0) is a globally stable stationary solution. That is, as
t→∞, every solution U(t) of (2.3) tends to O; in particular, there exist no other stationary
solutions.

Remark 3.1. When h∗ < h < h∗, we have as seen the unstable homogeneous stationary
solution P− given by (3.4) whose tree density v is equal to b′ −

√
D. Then, let us observe

what a grass density is at v = v by mean of the simplified equation (2.2) of g. According

to (2.5), if a > Kλµ2

2γ2 , then b′ < γ
µ , a fortiori, v < γ

µ . Hence, (2.2) yields that g(v) > 0.

Similarly, if a ≤ Kλµ2

2γ2 , then v < b′ = γ
µ . Hence, (2.2) again yields that g(v) > 0.

In this sense, P− is considered to be a homogeneous stationary state showing coexistence
of trees and grass. However, as announced in Cases 2, 3 and 4, such a homogeneous state
can never be stable.

4 Segregation Patterns This section is devoted to presenting our numerical results.
Throughout the numerical computations, the plot is set as Ω = (0, 1)×(0, 1) and discretized
by 1024× 1024. We adopted a central differencing scheme for the 2-dimensional space and
the implicit method for the time-dependent computation. About the parameters, we refer,
except a′, to a series of the study on forest ecology [5, 6, 8, 9, 10, 13, 14, 15, 16, 22]. Indeed,
those parameter values are listed in Table 1. Especially, we chose a value for a′ that satisfies
the condition shown by (3.3).

In this case, the four critical values of h are approximately computed as

h∗ = 0.0012, h− = 0.0026, h+ = 0.0334, h∗ = 0.0337,

respectively. For our numerical computations, we then choose three values hi (i = 1, 2, 3) of
h in such a way that h∗ < h1 < h− < h2 < h+ < h3 < h∗. Indeed,

h1 = 0.0019, h2 = 0.018, h3 = 0.0335.

J. Yang and A. Yagi
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Table 1: Model parameters (symbol, description, value and units)

Symbol Description Vaule Units

dw Seeds diffusion rate 0.01 mday−1

a′ - 20000 -
b′ Optimal seedling density 0.004 -
c′ Natural mortality of seedlings 0.0014 -
f Growth rate of young trees 0.01 -
α Producing rate of seeds 0.5 -
β Implantation rate of seeds 1 -
δ Surviving rate of seeds 0.0769 -

As for initial states, we want to design them by two manners. The first one is that
we place a certain number of circular grass patches onto the homogeneous stable forest
P+. The second one is that we place a certain number of circular tree patches onto the
homogeneous stable grassland O. The radii of tree patches and grass patches are both
0.025. Locations of centers of the circular patches are randomly selected. We choose the
number of patches which can lead the system to tree-grass coexisting stable states for each
value of h mentioned above.

1) When h = h1 = 0.0019, the stable stationary homogeneous solution P+ is (0.0013,
0.0071, 0.0035). (A) and (C) of Figure 1 show the final stabilized states of v at t = 1000
starting from the initial states where 612 grass patches are placed onto P+ and 232 tree
patches are placed onto O, respectively. Green color stands for habitats of trees, while
yellow color stands for vacant area (habitats of grass). Both of these two states have a
tree-area ratio rating at 32%. Actually if we place less than 612 grass patches onto P+ or
more than 232 tree patches onto O, then the system finally tends to P+.

Meanwhile, (B) and (D) of Figure 1 show the final stabilized states of v at t = 1000
starting from the initial states where 1400 grass patches are placed onto P+ and 4 tree
patches are placed onto O, respectively. Both of these two states have a tree-area ratio
rating at 1%.

In all these states, each of the habitats of trees looks isolated, namely with relatively low
spatial connectivity. We will consider these spatial patterns to be low-connectivity forests.

2) When h = h2 = 0.018, the stable stationary homogeneous solution P+ is (0.0085,
0.0047, 0.0024). (A) and (C) of Figure 2 show the final stabilized states of v at t = 1000
starting from the initial states where 260 grass patches are placed onto P+ and 580 tree
patches are placed onto O, respectively. Both of these two states have a tree-area ratio
rating at 59%. Actually if we place less than 260 grass patches onto P+ or more than 580
tree patches onto O, then the system finally tends to P+.

Meanwhile, (B) and (D) of Figure 2 show the final stabilized states of v at t = 1000
starting from the initial states where 580 grass patches are placed onto P+ and 260 tree
patches are placed onto O, respectively. Both of these two states have a tree-area ratio
rating at 34%. Actually if we place more than 580 grass patches onto P+ or less than 260
tree patches onto O, then the system finally tends to O.

In (A) and (C), habitats of trees are almost connected, but with not very high spatial
connectivity. We will consider these spatial patterns to be intermediate-connectivity forests.

3) When h = h3 = 0.0335, the stable stationary homogeneous solution P+ is (0.0136,
0.0041, 0.0020). (A) and (C) of Figure 3 show the final stabilized states of v at t = 1000

TREE-GRASS SEGREGATION PATTERNS
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(A) (B)

(C) (D)

Fig. 1: Graphs of stabilized states of v at t = 1000 for h = 0.0019.

(A) (B)

(C) (D)

Fig. 2: Graphs of stabilized states of v at t = 1000 for h = 0.018.

J. Yang and A. Yagi
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starting from the initial states where 4 grass patches are placed onto P+ and 1400 tree
patches are placed onto O, respectively. Both of these two states have a tree-area ratio
rating at 99%.

Meanwhile, (B) and (D) of Figure 3 show the final stabilized states starting from the
initial states where 232 grass patches are placed onto P+ and 612 tree patches are placed
onto O, respectively. Both of these two states have a tree-area ratio rating at 68%. Actually
if we place more than 232 grass patches onto P+ or less than 612 tree patches onto O, then
the system finally tends to O.

In all these states, habitats of trees look highly connected. We will consider these spatial
patterns to be high-connectivity forests.

(A) (B)

(C) (D)

Fig. 3: Graphs of stabilized states of v at t = 1000 for h = 0.0335.

Our numerical results show a clear correlation between the mortality of old age trees
h and the segregation patterns which are exhibiting tree-grass coexistence and are distin-
guished by different forest connectivity levels. We observe that, in order that tree-grass
coexistence takes place, a forest with a relatively high mortality of old age trees needs a
relatively high tree-area ratio, and its segregation pattern is of high connectivity. To the
contrary, a forest with a relatively low mortality of old age trees needs only a relatively low
tree-area ratio, and its segregation pattern is of low connectivity.
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