GEOMETRIC DESCRIPTION OF SCHREIER GRAPHS OF B-S GROUPS

Takamichi Sato

Received November 10, 2018; revised December 19, 2018 January 28, 2019

Abstract

Let $B S(1, n)=\left\langle A, B \mid A B=B^{n} A\right\rangle$ be the Baumslag-Solitar group, where $n \geq 2$. This group has the natural action on the real line. In this paper we explicitly construct Schreier coset graphs of the group for stabilizers of all points in the real line under the action. As its consequence, we classify the Schreier coset graphs up to isomorphism, and obtain a relevance to presentations for the stabilizers.

1. Introduction

Let m and n be non-zero integers. The group which has the presentation $\left\langle A, B \mid A B^{m}=B^{n} A\right\rangle$ is called the Baumslag-Solitar group and denoted by $B S(m, n)$. In 1962, G. Baumslag and D. Solitar [1] introduced these groups and showed that $B S(3,2)$ is a non-Hopfian group with one defining relation. It is the first example having such property. Since then these groups have served as a proving ground for many new ideas in combinatorial and geometric group theory (see [2, 3] for examples).

Schreier coset graphs are generalizations of the Cayley graph of a group G, which are constructed for each choice of a subgroup of G and a generating set of G. The detail is given in Section 2. In general, given a group G and its subgroup H, it is difficult to construct the Cayley graph of G or the Schreier coset graph of all left cosets of H in G. However once we have the appropriate Cayley or Schreier graphs, we can use them as discrete models and may learn, from combinatorial and geometric viewpoints, some properties of the original group or its subgroups. Recently, in [5, 6], D. Savchuk constructed Schreier graphs of Thompson's group F from a motivation to study the amenability of the group.

In this paper we focus on the solvable group $B S(1, n)$ for $n \geq 2$. It is known that $B S(1, n)$ is isomorphic to some subgroup G_{n} with the generator S_{n} of the affine group $\operatorname{Aff}(\mathbb{R})$ of the real line \mathbb{R}, thus it has the natural action on \mathbb{R} (see Section 2 for details). For any $x \in \mathbb{R}$, we explicitly construct the Schreier coset graph $\left(B S(1, n) / \operatorname{Stab}_{B S(1, n)}(x),\{A, B\}^{ \pm}\right)$for the stabilizer $\operatorname{Stab}_{B S(1, n)}(x)$ of x under the

[^0]action. First, we show that for any $x \in \mathbb{R}$, the Schreier graphs $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}, x\right)$ and $\left(B S(1, n) / \operatorname{Stab}_{B S(1, n)}(x),\{A, B\}^{ \pm}, \operatorname{Stab}_{B S(1, n)}(x)\right)$ is isomorphic as marked labelled directed graphs, where $\operatorname{Orb}_{G_{n}}(x)$ is the orbit of x under the natural action on \mathbb{R} (see Proposition 1 below). Hence, in most of this paper we consider the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}\right)$. Let \mathbb{Z}_{n}^{ω} be the set of all infinite words over the finite group \mathbb{Z}_{n}. The following theorem allows us to understand the structure of the Schreier graphs.

Theorem 1. Let $n \geq 2$ and x be a real number represented by $w \in \mathbb{Z}_{n}^{\omega}$. Then, there exists a homomorphism $h=(f, \psi, \gamma):\left(\operatorname{Orb}_{G_{n}}(x), S_{n}\right) \rightarrow \Gamma_{w}$ such that for every $v \in V_{w}$, the subgraph $h^{-1}(v)=\left(D_{v}, D_{v} \times\{b\}^{ \pm}, S_{n}, \alpha|, \beta|, l \mid\right)$ is isomorphic to $\Gamma_{\mathbb{Z}}$, where $h^{-1}(v)=\left(f^{-1}(v), \psi^{-1}(v), S_{n}, \alpha|, \beta|, l \mid\right)$.

See Definition 3 below for Γ_{w} and $\Gamma_{\mathbb{Z}}$. As its consequence, we classify the Schreier graphs up to isomorphism.

Theorem 2. Let $m, n \geq 2$ with $m \neq n$.
(1) For any $x, y \in \mathbb{R}$, the Schreier graph $\left(\operatorname{Orb}_{G_{m}}(x), S_{m}\right)$ is not isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(y), S_{n}\right)$ as labelled directed graphs.
(2) For any $\alpha_{1}, \alpha_{2} \in \mathbb{R} \backslash \mathbb{Q}$, the Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(\alpha_{1}\right), S_{n}, \alpha_{1}\right)$ is S_{n}-isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(\alpha_{2}\right), S_{n}, \alpha_{2}\right)$ as marked labelled directed graphs.
(3) For any $q \in \mathbb{Q}$ and any $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(q), S_{n}\right)$ is not isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(\alpha), S_{n}\right)$ as labelled directed graphs.
(4) Let $q_{1}, q_{2} \in \mathbb{Q}$. Then, the following statements are equivalent.
(a) The Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(q_{1}\right), S_{n}\right)$ is isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(q_{2}\right), S_{n}\right)$ as labelled directed graphs.
(b) $\operatorname{Orb}_{G_{n}}\left(q_{1}\right)=\operatorname{Orb}_{G_{n}}\left(q_{2}\right)$ or $\operatorname{Orb}_{G_{n}}\left(-q_{1}\right)=\operatorname{Orb}_{G_{n}}\left(q_{2}\right)$.

This result leads to a relevance to presentations for the stabilizers which turn out to be infinite index subgroups in $B S(1, n)$ (Theorem 5). Thus we expect that this idea may give a way to investigate infinite index subgroups in a suitable group.

In Section 2, we set up notation and terminology concerning Schreier graphs and Baumslag-Solitar groups. In Section 3, we start to construct Schreier graphs and give a complete description of Schreier graphs of $B S(1, n)$ with respect to any real numbers. In Section 4, we classify them up to isomorphism. In Section 5, by using the Schreier graphs we determine the group structure of the stabilizers and obtain a relevance to presentations for the stabilizers of rational numbers.

2. Schreier graphs and Baumslag-Solitar groups

A labelled directed graph denoted by ($V, E, L, \alpha, \beta, l$) consists of a nonempty set V of vertices, a set E of edges, a set L of labels and three mappings $\alpha: E \rightarrow V$,
$\beta: E \rightarrow V$, and $l: E \rightarrow L$. The vertices $\alpha(e)$ and $\beta(e)$ are called the initial and the terminal vertices of the edge e, respectively.

A marked labelled directed graph denoted by ($V, E, L, \alpha, \beta, l, v_{0}$) is a labelled directed graph with a distinguished vertex v_{0} called the marked vertex.

For $i \in\{1,2\}$ let $\Gamma_{i}=\left(V_{i}, E_{i}, L_{i}, \alpha_{i}, \beta_{i}, l_{i}\right)$ be a labelled directed graph. Let $f: V_{1} \rightarrow V_{2}, \psi: E_{1} \rightarrow E_{2} \sqcup V_{2}$ and $\gamma: L_{1} \rightarrow L_{2}$ be maps satisfying the following statements:
(1) If $\psi(e) \in E_{2}$, then $\alpha_{2}(\psi(e))=f\left(\alpha_{1}(e)\right), \beta_{2}(\psi(e))=f\left(\beta_{1}(e)\right)$, and $l_{2}(\psi(e))=$ $\gamma\left(l_{1}(e)\right) \in L_{2}$.
(2) If $\psi(e) \in V_{2}$, then $\psi(e)=f\left(\alpha_{1}(e)\right)=f\left(\beta_{1}(e)\right)$.

The triple (f, ψ, γ) of maps is called the homomorphism from Γ_{1} to Γ_{2}. Labelled directed graphs Γ_{1} and Γ_{2} are isomorphic if there exists a homomorphism (f, ψ, γ) : $\Gamma_{1} \rightarrow \Gamma_{2}$, called an isomorphism, such that both f and γ are bijections and ψ is a injection with $\psi\left(E_{1}\right)=E_{2}$. In particular, if $L_{1}=L_{2}=L$ and $\gamma=1_{L}, \Gamma_{1}$ is said to be L-isomorphic to Γ_{2}.

For $i \in\{1,2\}$ let Γ_{i} be a marked labelled directed graph. Γ_{1} is said to be isomorphic to Γ_{2} if Γ_{1} is isomorphic to Γ_{2} as labelled directed graphs and the mapping between vertices preserves the marked vertices.

Let S be a generating set of a group G. The generating set S is symmetric if $S=S^{-1}$.

Let G be a group with a symmetric finite generating set S, M be a set and φ : $G \rightarrow \operatorname{Aut}(M)$ be a homomorphism, where $\operatorname{Aut}(M)$ is the set of all bijections of M onto itself. The orbit of an element m of M is the set $\operatorname{Orb}_{G}(m)=\{\varphi(g)(m) \mid g \in G\}$. The stabilizer of an element m of M is the subgroup $\operatorname{Stab}_{G}(m)=\{g \in G \mid \varphi(g)(m)=m\}$.

Definition 1. Let G be a group with a symmetric finite generating set S, M be a set and $\varphi: G \rightarrow \operatorname{Aut}(M)$ be a homomorphism. The Schreier graph denoted by (M, S, φ) is a labelled directed graph $(M, M \times S, S, \alpha, \beta, l)$ such that $\alpha(m, s)=m$, $l(m, s)=s$, and $\beta(m, s)=\varphi(s)(m)$. The Schreier graph with a marked vertex denoted by $\left(M, S, \varphi, m_{0}\right)$ is a Schreier graph with a marked vertex $m_{0} \in M$.

Let G be a group with a symmetric finite generating set S, H be a subgroup of G and G / H be the set of all left cosets of H in G. The Schreier coset graph denoted by $(G / H, S)$ is a Schreier graph $\left(G / H, S, \varphi_{H}\right)$ where $\varphi_{H}: G \rightarrow \operatorname{Aut}(G / H)$ is the usual left action on G / H.

REmARK 1. For $i \in\{1,2\}$ let G_{i} be a group with a symmetric finite generateing set S_{i}. The Schreier graph $\left(M_{1}, S_{1}, \varphi_{1}\right)$ is isomorphic to $\left(M_{2}, S_{2}, \varphi_{2}\right)$ as labelled directed graphs if and only if there exist bijections $f: M_{1} \rightarrow M_{2}$ and $\gamma: S_{1} \rightarrow S_{2}$ such that $\varphi_{1}(s)=f^{-1} \varphi_{2}(\gamma(s)) f$ for all $s \in S_{1}$. In particular, if $S_{1}=S_{2}=S,\left(M_{1}, S, \varphi_{1}\right)$ is S-isomorphic to $\left(M_{2}, S, \varphi_{2}\right)$ as labelled directed graphs if and only if there exists a bijection $f: M_{1} \rightarrow M_{2}$ such that $\varphi_{1}(s)=f^{-1} \varphi_{2}(s) f$ for all $s \in S$.

The next proposition will help us to describe Schreier graphs explicitly in the later sections.

Proposition 1. Let G be a group with a symmetric finite generating set S, M be a set, $x_{0} \in M$, and $\varphi: G \rightarrow \operatorname{Aut}(M)$ be a homomorphism. Then the Schreier graph $\left(\operatorname{Orb}_{G}\left(x_{0}\right), S, \varphi, x_{0}\right)$ with the marked vertex x_{0} is S-isomorphic to the Schreier coset graph $(G / H, S, H)$ with the marked vertex $H=\operatorname{Stab}_{G}\left(x_{0}\right)$ as marked labelled directed graphs.

Proof. Define $f: G / H \rightarrow \operatorname{Orb}_{G}\left(x_{0}\right)$ by $f(g H)=\varphi(g)\left(x_{0}\right)$. Since $g^{-1} g^{\prime} \in H=$ $\operatorname{Stab}_{G}\left(x_{0}\right)$ implies $\varphi(g)\left(x_{0}\right)=\varphi\left(g^{\prime}\right)\left(x_{0}\right)$, its map is well-defined. Clearly f is a bijection. Since $f\left(\varphi_{H}(s)(g H)\right)=f(s g H)=\varphi(s g)\left(x_{0}\right)=\varphi(s) \varphi(g)\left(x_{0}\right)=\varphi(s)(f(g H))$, we have $\varphi_{H}(s)=f^{-1} \varphi(s) f$ for all $s \in S$, which is the desired conclusion by Remark 1.

Let m and n be nonzero integers. The group with the presentation $\langle A, B| A B^{m}=$ $\left.B^{n} A\right\rangle$ is called the Baumslag-Solitar group and it is denoted by $B S(m, n)$. For any $n \geq 2, B S(1, n)$ has a geometric representation. That is, we define two affine maps a and b of the real line \mathbb{R} by $a(x)=n x$ and $b(x)=x+1$ respectively. Let $n \geq 2, S_{n}=$ $\{a, b\}^{ \pm}$and $G_{n}=\left\langle S_{n}\right\rangle$ be the subgroup of the affine group Aff (\mathbb{R}). Then there exists the isomorphism $h_{n}: B S(1, n) \rightarrow G_{n}$ with $h_{n}(A)=a$ and $h_{n}(B)=b$ (see [4, p.100]). Thus, $B S(1, n)$ has the natural left action $\varphi_{n}: B S(1, n) \rightarrow G_{n} \hookrightarrow \operatorname{Aff}(\mathbb{R}) \hookrightarrow \operatorname{Aut}(\mathbb{R})$. By [4, p.102], we note that

$$
(*)_{n} \quad G_{n}=\left\{g: \mathbb{R} \rightarrow \mathbb{R} \mid g(x)=n^{i} x+j / n^{k}, i, j, k \in \mathbb{Z}\right\} .
$$

3. Schreier graphs of all real numbers

Let $x \in \mathbb{R}$ and $\phi_{x}: G_{n} \rightarrow \operatorname{Aut}\left(\operatorname{Orb}_{G_{n}}(x)\right)$ be the usual left action. By the isomorphism h_{n} and Proposition 1, the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}, \phi_{x}, x\right)$ and the Schreier coset graph $\left(B S(1, n) / \operatorname{Stab}_{B S(1, n)}(x),\{A, B\}^{ \pm}, \operatorname{Stab}_{B S(1, n)}(x)\right)$ with the marked vertexes are isomorphic, so we will consider the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}, \phi_{x}\right)$ for each $x \in \mathbb{R}$. For simplicity of notation, we write g and $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}\right)$ instead of $\phi_{x}(g)$ and the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}, \phi_{x}\right)$, respectively.

Remark 2. For any $x \in \mathbb{R}$ and any $f \in \operatorname{Stab}_{G_{n}}(x)$ with $f \neq 1_{\mathbb{R}}, b f b^{-1} \notin$ $\operatorname{Stab}_{G_{n}}(x)$. Thus $\operatorname{Stab}_{G_{n}}(x)$ is not a normal subgroup of G_{n}.

We notice that the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(\alpha), S_{n}\right)$ for $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ is S_{n}-isomorphic to the Cayley graph of $B S(1, n)$ relative to the generators $\{A, B\}^{ \pm}$by the above since the stabilizer $\operatorname{Stab}_{B S(1, n)}(\alpha)$ is trivial. However in this section we construct the Schreier graphs $\left(\operatorname{Orb}_{G_{n}}(q), S_{n}\right)$ for rational numbers q and will compare those descriptions in the later section (see Theorem 4). Therefore we employ the Schreier
graph $\left(\operatorname{Orb}_{G_{n}}(\alpha), S_{n}\right)$. We construct the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(\alpha), S_{n}\right)$ by an arrangement of elements in the orbit $\operatorname{Orb}_{G_{n}}(\alpha)$. The construction of the Cayley graph of $B S(1, n) \cong G_{n}$ given in [4] depends on the fact that the word problem for $B S(1, n)$ is solvable.

Let $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ be the finite group with the additive group structure. The set of all finite words over \mathbb{Z}_{n} and the set of all infinite words over \mathbb{Z}_{n} are denoted by \mathbb{Z}_{n}^{*} and \mathbb{Z}_{n}^{ω} respectively. Let $\widetilde{\mathbb{Z}_{n}}=\mathbb{Z}_{n}^{*} \backslash\{\varepsilon\}$, where ε denotes the empty word. For every word $w=w_{1} w_{2} \ldots w_{k}$ in \mathbb{Z}_{n}^{*}, the length of w, denoted by $|w|$, is the number k. Note that $|\varepsilon|$ is zero.

Definition 2. An element w of \mathbb{Z}_{n}^{ω} is called a rational element in \mathbb{Z}_{n}^{ω} if there exist $u \in \mathbb{Z}_{n}^{*}$ and $v \in \widetilde{\mathbb{Z}_{n}}$ such that
(1) $w=u v^{\infty}$,
(2) $v \neq t^{k}$ whenever $k \geq 2$ and $t \in \widetilde{\mathbb{Z}_{n}}$, and
(3) $u_{|u|} \neq v_{|v|}$ whenever $u \neq \varepsilon$.

Then, we say that the pair (u, v) of words satisfies (A). An element w of \mathbb{Z}_{n}^{ω} which is not rational is called an irrational element in \mathbb{Z}_{n}^{ω}. Let $x \in \mathbb{R}$. Then, there exists $w \in \mathbb{Z}_{n}^{\omega}$ such that $x-\lfloor x\rfloor=\sum_{i \geq 1} w_{i} / n^{i}$, where $\lfloor x\rfloor=\max \{k \in \mathbb{Z} \mid k \leq x\}$. We say that x is represented by $w \in \mathbb{Z}_{n}^{\omega}$. It is easy to see that x is a rational number if and only if it is represented by a rational element in \mathbb{Z}_{n}^{ω}.

Lemma 1. Let $x, x^{\prime} \in \mathbb{Z}_{n}^{*}$ and y be an irrational element of \mathbb{Z}_{n}^{ω} with $x y=x^{\prime} y$. Then $x=x^{\prime}$.

Proof. Without loss of generality, we can assume that $|x| \leq\left|x^{\prime}\right|$. By assumption, $y_{\left|x^{\prime}\right|-|x|+j}=y_{j}$ for each $j \geq 1$. Since y is an irrational element in $\mathbb{Z}_{n}^{\omega},\left|x^{\prime}\right|=|x|$. Therefore, $x=x^{\prime}$.

Lemma 2. Suppose that pairs (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ of words satisfy (A). Then $x y^{\infty}=x^{\prime} y^{\infty}$ if and only if $x=x^{\prime}$ and $y=y^{\prime}$.

Proof. Suppose that $x y^{\infty}=x^{\prime} y^{\prime \infty}$. It suffices to show that $x=x^{\prime}$ and $y=y^{\prime}$. First we show that $|x|=\left|x^{\prime}\right|$. On the contrary, suppose that $|x|<\left|x^{\prime}\right|$. For any $k \geq 1$, there exists a unique $\underline{k} \in\{1, \ldots,|y|\}$ such that $k \equiv \underline{k} \bmod |y|$. Then

$$
x_{\left|x^{\prime}\right|}^{\prime}=\left(x^{\prime} y^{\prime \infty}\right)_{\left|x^{\prime}\right|}=\left(x y^{\infty}\right)_{\left|x^{\prime}\right|}=\left(y^{\infty}\right)_{\left|x^{\prime}\right|-|x|}=y_{\underline{\left|x^{\prime}\right|-|x|}} .
$$

On the other hand,

$$
y_{\left|y^{\prime}\right|}^{\prime}=\left(x^{\prime} y^{\prime \infty}\right)_{\left|x^{\prime}\right|+\left|y^{\prime}\right|(|y| / g)}=\left(x y^{\infty}\right)_{\left|x^{\prime}\right|+|y|\left(\left|y^{\prime}\right| / g\right)}=\left(y^{\infty}\right)_{\left|x^{\prime}\right|-|x|+|y|\left(\left|y^{\prime}\right| / g\right)}=y_{\left|x^{\prime}\right|-|x|}
$$

where $g=\operatorname{gcd}\left(\left|y^{\prime}\right|,|y|\right)$. Since $x^{\prime} \neq \varepsilon$, by the assumption of x^{\prime}, we see $x_{\left|x^{\prime}\right|}^{\prime} \neq y_{\left|y^{\prime}\right|}^{\prime}$, a contradiction. Thus $|x|=\left|x^{\prime}\right|$. Hence we have that $x=x^{\prime}$ and $y^{\infty}=y^{\prime \infty}$.

Next we show that $|y|=\left|y^{\prime}\right|$. On the contrary, suppose that $|y|<\left|y^{\prime}\right|$. There exist $\alpha \in \mathbb{Z}$ and $\beta \geq 0$ such that $\left|y^{\prime}\right| \alpha+|y| \beta=g$. For any $i \geq 1$

$$
\left(y^{\prime \infty}\right)_{i+g}=\left(y^{\prime \infty}\right)_{i+\left|y^{\prime}\right| \alpha+|y| \beta}=\left(y^{\prime \infty}\right)_{i+|y| \beta}=\left(y^{\infty}\right)_{i+|y| \beta}=\left(y^{\infty}\right)_{i}=\left(y^{\prime \infty}\right)_{i}
$$

Since $y^{\prime \infty}$ has the period g, y^{\prime} has the period $g \leq|y|<\left|y^{\prime}\right|$. This contradicts the assumption of y^{\prime}. Since $|y|=\left|y^{\prime}\right|$, we conclude $y=y^{\prime}$.

Lemma 3. Let $x, y \in \widetilde{\mathbb{Z}_{n}}$. Suppose that $x_{|x|}=y_{|y|}$ and the word y satisfies the condition (2) in Definition 2. Then $x y^{\infty}=y^{\infty}$ if and only if $|x| \equiv 0 \bmod |y|$ and $x=$ $y^{|x| /|y|}$.

Proof. Suppose that $x y^{\infty}=y^{\infty}$. It suffices to show that $|x| \equiv$ $0 \bmod |y|$ and $x=y^{|x| /|y|}$. Let $m \geq 0$ and $1 \leq r \leq|y|$ such that $|x|=|y| m+r$. Then for any $i \geq 1$

$$
\begin{aligned}
\left(y^{\infty}\right)_{i+r}=\left(x y^{\infty}\right)_{|x|+i+r}=\left(x y^{\infty}\right)_{|x|+i+r+|y| m}=\left(x y^{\infty}\right)_{|x|+i+|x|} & =\left(y^{\infty}\right)_{i+|x|} \\
& =\left(x y^{\infty}\right)_{i+|x|} \\
& =\left(y^{\infty}\right)_{i}
\end{aligned}
$$

Thus y^{∞} has the period r and $\left(y_{1} \ldots y_{|y|}\right)^{\infty}=y^{\infty}=\left(y_{1} \ldots y_{r}\right)^{\infty}$. Since (ε, y) and $\left(\varepsilon, y_{1} \ldots y_{r}\right)$ satisfy (A), by Lemma 2 , we have $|y|=r$. Therefore $|x| \equiv 0 \bmod |y|$. Moreover, since $\left(x y^{\infty}\right)_{i}=\left(y^{\infty}\right)_{i}$ for all $1 \leq i \leq|x|$, we have $x=y^{|x| /|y|}$.

Let $\sigma: \mathbb{Z}_{n}^{\omega} \rightarrow \mathbb{Z}_{n}^{\omega}$ be the sift map defined by $\sigma\left(w_{1} w_{2} w_{3} \ldots\right)=w_{2} w_{3} w_{4} \ldots$ Write $\sigma^{k-1}=\underbrace{\sigma \sigma \cdots \sigma}_{k-1}$ for each $k \geq 1$, where σ^{0} is the identity map. We note that $\sigma^{k-1}(w)_{i}=$ w_{k-1+i} for any $k, i \geq 1$ and each $w \in \mathbb{Z}_{n}^{\omega}$.

Lemma 4. Let (x, y) be a pair of words satisfying (A). Then for $|x| \leq j<j^{\prime}$, $\sigma^{j}\left(x y^{\infty}\right)=\sigma^{j^{\prime}}\left(x y^{\infty}\right)$ if and only if $j^{\prime}-j \equiv 0 \bmod |y|$.

Proof. For any $k \geq 1$, there exists a unique $\underline{k} \in\{1, \ldots,|y|\}$ such that $k \equiv \underline{k}$ $\bmod |y|$. Then

$$
\begin{gathered}
\sigma^{j}\left(x y^{\infty}\right)=\sigma^{j-|x|}\left(y^{\infty}\right)=\left(\underline{y_{j-|x|+1}} \cdots \underline{y_{j^{\prime}-|x|}}\right) \sigma^{j^{\prime}-|x|}\left(y^{\infty}\right), \text { and } \\
\sigma^{j^{\prime}}\left(x y^{\infty}\right)=\sigma^{j^{\prime}-|x|}\left(y^{\infty}\right) .
\end{gathered}
$$

Thus $\sigma^{j}\left(x y^{\infty}\right)=\sigma^{j^{\prime}}\left(x y^{\infty}\right)$ if and only if $\left(y_{\underline{j-|x|+1}} \ldots y_{\underline{j^{\prime}-|x|}}\right) \sigma^{j^{\prime}-|x|}\left(y^{\infty}\right)=$ $\sigma^{j^{\prime}-|x|}\left(y^{\infty}\right)$. By Lemma 3, $\left(\underline{y_{j-|x|+1}} \cdots y_{\underline{j^{\prime}-|x|}}\right) \sigma^{j^{j^{\prime}-|x|}\left(y^{\infty}\right)}=\overline{\sigma^{j^{\prime}-|x|}}\left(y^{\infty}\right)$ if and only if $j^{\prime}-j \equiv 0 \bmod |y|$.

For any $v \in \mathbb{Z}_{n}^{\omega}$ and any $t \in \mathbb{Z}_{n}$, set $D_{v}=\mathbb{Z}+\sum_{i \geq 1} v_{i} / n^{i} \subset \mathbb{R}$, and $D_{v}^{t}=$ $n \mathbb{Z}+t+\sum_{i \geq 1} v_{i} / n^{i} \subset \mathbb{R}$. Note that $0 \leq \sum_{i \geq 1} v_{i} / n^{i} \leq 1$ and $D_{v}=\bigsqcup_{t \in X} D_{v}^{t}$.

Lemma 5. Let y and y^{\prime} be irrational elements in \mathbb{Z}_{n}^{ω}. Then, the following statements are equivalent.
(1) $D_{y} \cap D_{y^{\prime}} \neq \emptyset$.
(2) $\sum_{i \geq 1} y_{i} / n^{i}=\sum_{i \geq 1} y_{i}^{\prime} / n^{i}$.
(3) $y=y^{\prime}$.

Proof. It suffices to show that (2) implies (3). On the contrary, suppose that there exists $i \geq 1$ such that $y_{i} \neq y_{i}^{\prime}$. Let $i_{0}=\min \left\{i \mid y_{i} \neq y_{i}^{\prime}\right\}$. Then,

$$
y_{i_{0}} / n^{i_{0}}+\sum_{i \geq i_{0}+1} y_{i} / n^{i}=y_{i_{0}}^{\prime} / n^{i_{0}}+\sum_{i \geq i_{0}+1} y_{i}^{\prime} / n^{i} .
$$

Without loss of generality, we can assume that $y_{i_{0}}<y_{i_{0}}^{\prime}$. Since y and y^{\prime} are irrational elements,

$$
1 / n^{i_{0}}<y_{i_{0}}^{\prime} / n^{i_{0}}-y_{i_{0}} / n^{i_{0}}+\sum_{i \geq i_{0}+1} y_{i}^{\prime} / n^{i}=\sum_{i \geq i_{0}+1} y_{i} / n^{i}<1 / n^{i_{0}}
$$

a contradiction.
Lemma 6. Let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be pairs of words satisfying (A) such that $\min \left\{|y|,\left|y^{\prime}\right|\right\} \geq 2$ whenever $y \neq y^{\prime}$. Then, the following statements are equivalent.
(1) $D_{x y^{\infty}} \cap D_{x^{\prime} y^{\prime \infty}} \neq \emptyset$.
(2) $\sum_{i \geq 1}\left(x y^{\infty}\right)_{i} / n^{i}=\sum_{i \geq 1}\left(x^{\prime} y^{\infty}\right)_{i} / n^{i}$.
(3) $x y^{\infty}=x^{\prime} y^{\prime \infty}$.

Proof. Suppose that $\sum_{i \geq 1}\left(x y^{\infty}\right)_{i} / n^{i}=\sum_{i \geq 1}\left(x^{\prime} y^{\prime \infty}\right)_{i} / n^{i}$. It suffices to prove that $x y^{\infty}=x^{\prime} y^{\prime \infty}$. On the contrary, suppose that there exists $i \geq 1$ such that $\left(x y^{\infty}\right)_{i} \neq\left(x^{\prime} y^{\prime \infty}\right)_{i}$. Let $i_{0}=\min \left\{i \mid\left(x y^{\infty}\right)_{i} \neq\left(x^{\prime} y^{\prime \infty}\right)_{i}\right\}$. Then

$$
\left(x y^{\infty}\right)_{i_{0}} / n^{i_{0}}+\sum_{i \geq i_{0}+1}\left(x y^{\infty}\right)_{i} / n^{i}=\left(x^{\prime} y^{\prime \infty}\right)_{i_{0}} / n^{i_{0}}+\sum_{i \geq i_{0}+1}\left(x^{\prime} y^{\prime \infty}\right)_{i} / n^{i}
$$

Without loss of generality, we can assume that $\left(x y^{\infty}\right)_{i_{0}}<\left(x^{\prime} y^{\prime \infty}\right)_{i_{0}}$.
If $\min \left\{|y|,\left|y^{\prime}\right|\right\} \geq 2$, or if $y=y^{\prime} \in\{1, \ldots, n-2\}$, then we have

$$
1 / n^{i_{0}}<\left(x^{\prime} y^{\prime \infty}\right)_{i_{0}} / n^{i_{0}}-\left(x y^{\infty}\right)_{i_{0}} / n^{i_{0}}+\sum_{i \geq i_{0}+1}\left(x^{\prime} y^{\prime \infty}\right)_{i} / n^{i}=\sum_{i \geq i_{0}+1}\left(x y^{\infty}\right)_{i} / n^{i}<1 / n^{i_{0}}
$$

a contradiction.

If $y=y^{\prime}=0$, then $i_{0} \leq\left|x^{\prime}\right|$. Then
$1 / n^{i_{0}} \leq\left(x^{\prime} y^{\prime \infty}\right)_{i_{0}} / n^{i_{0}}-\left(x y^{\infty}\right)_{i_{0}} / n^{i_{0}}+\sum_{i \geq i_{0}+1}\left(x^{\prime} y^{\prime \infty}\right)_{i} / n^{i}=\sum_{i \geq i_{0}+1}\left(x y^{\infty}\right)_{i} / n^{i}<1 / n^{i_{0}}$, a contradiction.

If $y=y^{\prime}=n-1$, then $i_{0} \leq|x|$. Then
$1 / n^{i_{0}}<\left(x^{\prime} y^{\prime \infty}\right)_{i_{0}} / n^{i_{0}}-\left(x y^{\infty}\right)_{i_{0}} / n^{i_{0}}+\sum_{i \geq i_{0}+1}\left(x^{\prime} y^{\prime \infty}\right)_{i} / n^{i}=\sum_{i \geq i_{0}+1}\left(x y^{\infty}\right)_{i} / n^{i} \leq 1 / n^{i_{0}}$,
a contradiction. Therefore $x y^{\infty}=x^{\prime} y^{\prime \infty}$.
The proof of the following lemma is immediate, so the details are left to the reader.

Lemma 7. Let $v \in \mathbb{Z}_{n}^{\omega}$ and $t \in \mathbb{Z}_{n}$. Then,
(a) $a\left(D_{v}\right)=D_{\sigma(v)}^{v_{1}}, a^{-1}\left(D_{v}^{t}\right)=D_{t v}, a^{-1}\left(D_{v}\right)=\bigsqcup_{t \in \mathbb{Z}_{n}} D_{t v}$,
(b) $b^{ \pm 1}\left(D_{v}^{t}\right)=D_{v}^{t \pm 1}$, and $b^{ \pm 1}\left(D_{v}\right)=D_{v}$.

Definition 3. Let $w \in \mathbb{Z}_{n}^{\omega}$. Set $V_{w}=\left\{u \sigma^{j}(w) \mid j \geq 0, u \in \mathbb{Z}_{n}^{*}\right\}, E_{w}=V_{w} \times$ $\left(\{a\} \sqcup \mathbb{Z}_{n}\right)$, and $L_{w}=\{a\}^{ \pm}$. Define $\alpha_{w}: E_{w} \rightarrow V_{w}, \beta_{w}: E_{w} \rightarrow V_{w}$ and $l_{w}:$ $E_{w} \rightarrow L_{w}$ by $\alpha_{w}(v, a)=\alpha_{w}(v, k)=v, \beta_{w}(v, a)=\sigma(v), \beta_{w}(v, k)=k v, l_{w}(v, a)=a$ and $l_{w}(v, k)=a^{-1}$ for each $v \in V_{w}$ and each $k \in \mathbb{Z}_{n}$. The labelled directed graph $\left(V_{w}, E_{w}, L_{w}, \alpha_{w}, \beta_{w}, l_{w}\right)$ and the Schreier graph $(\mathbb{Z},\{ \pm 1\}, \phi)$ will be denoted by Γ_{w} and $\Gamma_{\mathbb{Z}}$ respectively, where $\phi: \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{Z})$ is the usual action.

Lemma 8. (1) If w is an irrational element in \mathbb{Z}_{n}^{ω}, then

$$
V_{w}=\bigsqcup_{j \geq 1}\left\{\sigma^{j}(w)\right\} \sqcup \bigsqcup_{u \in \mathbb{Z}_{n}^{*}}\{u w\} \sqcup \bigsqcup_{j \geq 1, s \in \mathbb{Z}_{n}^{*}, t \in \mathbb{Z}_{n}, t \neq w_{j}}\left\{s t \sigma^{j}(w)\right\}
$$

(2) If $w=u v^{\infty}$ is a rational element in \mathbb{Z}_{n}^{ω} as in Definition 2, then

$$
V_{w}=\bigsqcup_{|u| \leq j<|u|+|v|}\left\{\sigma^{j}(w)\right\} \sqcup \bigsqcup_{|u|<j \leq|u|+|v|, s \in \mathbb{Z}_{n}^{*}, t \in \mathbb{Z}_{n}, t \neq w_{j}}\left\{s t \sigma^{j}(w)\right\} .
$$

Proof. By Lemmas 2 and 4, we can easily show (2). Thus we prove (1). Let $j, j^{\prime} \geq 1, u, u^{\prime} \in \mathbb{Z}_{n}^{*}$, and $t, t^{\prime} \in \mathbb{Z}_{n}$ with $t \neq w_{j}$ and $t^{\prime} \neq w_{j^{\prime}}$. It suffices to show the following statements:
(a) $j=j^{\prime}$ whenever $\sigma^{j}(w)=\sigma^{j^{\prime}}(w)$.
(b) $u=u^{\prime}$ whenever $u w=u^{\prime} w$.
(c) $u=u^{\prime}, \quad t=t^{\prime}$, and $j=j^{\prime}$ whenever $u t \sigma^{j}(w)=u^{\prime} t^{\prime} \sigma^{j^{\prime}}(w)$.
(d) $\sigma^{j}(w) \neq u w$.
$(e) \sigma^{j}(w) \neq u t^{\prime} \sigma^{j^{\prime}}(w)$.
(f) $u w \neq u^{\prime} t \sigma^{j}(w)$.

The statements (b) and (d) directly follow from Lemma 1.
Suppose that $u t \sigma^{j}(w)=u^{\prime} t^{\prime} \sigma^{j^{\prime}}(w)$ and $j \leq j^{\prime}$. Since $\sigma^{j}(w)=w_{j+1} \ldots w_{j^{\prime}} \sigma^{j^{\prime}}(w)$, by Lemma 1 , we have $u t w_{j+1} \ldots w_{j^{\prime}}=u^{\prime} t^{\prime}$. Since $t^{\prime} \neq w_{j^{\prime}}$, we see $j=j^{\prime}$, thus $u=u^{\prime}$ and $t=t^{\prime}$, which proves (c). Similarly, we can show (a).

If $j \geq j^{\prime}$, by Lemma 1 , $u t^{\prime} \sigma^{j^{\prime}}(w)=u t^{\prime} w_{j^{\prime}+1} \ldots w_{j} \sigma^{j}(w) \neq \sigma^{j}(w)$. Suppose that $j \leq j^{\prime}$ and $\sigma^{j}(w)=u t^{\prime} \sigma^{j^{\prime}}(w)$. Since $\sigma^{j}(w)=w_{j+1} \ldots w_{j^{\prime}} \sigma^{j^{\prime}}(w), w_{j+1} \ldots w_{j^{\prime}} \sigma^{j^{\prime}}(w)=$ $u t^{\prime} \sigma^{j^{\prime}}(w)$. Hence by Lemma $1 w_{j+1} \ldots w_{j^{\prime}}=u t^{\prime}$. Thus $w_{j^{\prime}}=t^{\prime}$, a contradiction, and (e) is proved.

Since $w_{j} \neq t, u w_{1} \ldots w_{j} \neq u^{\prime} t$. By Lemma $1, u w=u w_{1} \ldots w_{j} \sigma^{j}(w) \neq u^{\prime} t \sigma^{j}(w)$, which proves (f).

Lemma 9. Let $n \geq 2$ and $x \in \mathbb{R}$ represented by $w \in \mathbb{Z}_{n}^{\omega}$. Then, $\operatorname{Orb}_{G_{n}}(x)=$ $\bigsqcup_{v \in V_{w}} D_{v}$.

Proof. By Lemmas 5,6 and 8, $\bigcup_{v \in V_{w}} D_{v}=\bigsqcup_{v \in V_{w}} D_{v}$. Thus it suffices to show that $\operatorname{Orb}_{G_{n}}(x)=\bigcup_{v \in V_{w}} D_{v}$. Since $x \in D_{w} \subset \bigcup_{v \in V_{w}} D_{v}$, by Lemma 7,

$$
\operatorname{Orb}_{G_{n}}(x) \subset \bigcup_{g \in G_{n}} \bigcup_{v \in V_{w}} g\left(D_{v}\right)=\bigcup_{v \in V_{w}} D_{v} .
$$

Let $j \geq 0$ and $u \in \mathbb{Z}_{n}^{*}$. It suffices to show that $D_{u \sigma^{j}(w)} \subset \operatorname{Orb}_{G_{n}}(x)$. We have

$$
\begin{aligned}
D_{u \sigma^{j}(w)} & =\mathbb{Z}+\sum_{i \geq 1}\left(u \sigma^{j}(w)\right)_{i} / n^{i} \\
& =\mathbb{Z}+\sum_{i=1}^{|u|} u_{i} / n^{i}+\sum_{l \geq j+1} w_{l} / n^{l-j+|u|} \\
& =\mathbb{Z}+\sum_{i=1}^{|u|} u_{i} / n^{i}+n^{j-|u|}\left(\sum_{l \geq 1} w_{l} / n^{l}-\sum_{l=1}^{j} w_{l} / n^{l}\right) \\
& =\mathbb{Z}+n^{-|u|}\left(\sum_{i=1}^{|u|} n^{|u|-i} u_{i}-\sum_{i=1}^{j} n^{j-i} w_{i}+n^{j}(x-\lfloor x\rfloor)\right) \\
& =\left\{b^{k} a^{-|u|} b^{\left(\sum_{i=1}^{|u|} n^{|u|-i} u_{i}-\sum_{i=1}^{j} n^{j-i} w_{i}\right)} a^{j} b^{-\lfloor x\rfloor}(x) \mid k \in \mathbb{Z}\right\} \subset \operatorname{Orb}_{G_{n}}(x) .
\end{aligned}
$$

Theorem 3. Let $n \geq 2$ and x be a real number represented by $w \in \mathbb{Z}_{n}^{\omega}$. Then, there exists a homomorphism $h=(f, \psi, \gamma):\left(\operatorname{Orb}_{G_{n}}(x), S_{n}\right) \rightarrow \Gamma_{w}$ such that for every
$v \in V_{w}$, the subgraph $h^{-1}(v)=\left(D_{v}, D_{v} \times\{b\}^{ \pm}, S_{n}, \alpha|, \beta|, l \mid\right)$ is isomorphic to $\Gamma_{\mathbb{Z}}$, where $h^{-1}(v)=\left(f^{-1}(v), \psi^{-1}(v), S_{n}, \alpha|, \beta|, l \mid\right)$.

Proof. It suffices to find a homomorphism $h=(f, \psi, \gamma):\left(\operatorname{Orb}_{G_{n}}(x), S_{n}\right) \rightarrow \Gamma_{w}$ such that for every $v \in V_{w}$, the subgraph $h^{-1}(v)$ is isomorphic to $\Gamma_{\mathbb{Z}}$. By Lemmas 8 and 9 , for any $y \in \operatorname{Orb}_{G_{n}}(x)$, there exists a unique $v_{y} \in V_{w}$ and $k \in \mathbb{Z}_{n}$ such that $y \in D_{v_{y}}^{k} \subset$ $D_{v_{y}}$. Thus, we can define $f: \operatorname{Orb}_{G_{n}}(x) \rightarrow V_{w}, \psi: \operatorname{Orb}_{G_{n}}(x) \times S_{n} \rightarrow E_{w} \sqcup V_{w}$ and $\gamma: S_{n} \rightarrow L_{w}$ by $f(y)=v_{y}, \psi(y, a)=(f(y), a), \psi\left(y, a^{-1}\right)=(f(y), k), \psi(y, b)=f(y)$, $\psi\left(y, b^{-1}\right)=f(y), \gamma(a)=a, \gamma\left(a^{-1}\right)=a^{-1}, \gamma(b)=a$, and $\gamma\left(b^{-1}\right)=a^{-1}$.

4. Classification of Schreier graphs

In this section we classify Schreier graphs described in the previous section.
Lemma 10. Let $v \in \widetilde{\mathbb{Z}_{n}}$. For $i \geq 1$ set $W_{i}=b^{-\left(v^{\infty}\right)_{i}} a$ and $Z_{i}=b^{\left(v^{\infty}\right)_{i}} a$. Then, for every $k \geq 1, W_{k} \cdots W_{1}$ and $Z_{k} \cdots Z_{1}$ are nontrivial affine maps with the slopes n^{k} such that

$$
\begin{aligned}
& \left(W_{k} \cdots W_{1}\right)\left(\sum_{j \geq 1}\left(v^{\infty}\right)_{j} / n^{j}\right)=\sum_{j \geq 1}\left(v^{\infty}\right)_{k+j} / n^{j} \text { and } \\
& \left(Z_{k} \cdots Z_{1}\right)\left(-\sum_{j \geq 1}\left(v^{\infty}\right)_{j} / n^{j}\right)=-\sum_{j \geq 1}\left(v^{\infty}\right)_{k+j} / n^{j} .
\end{aligned}
$$

Proof. The proof is by induction on k. The affine map W_{1} has the slope n such that

$$
\begin{aligned}
W_{1}\left(\sum_{j \geq 1}\left(v^{\infty}\right)_{j} / n^{j}\right)=b^{-\left(v^{\infty}\right)_{1}} a\left(\sum_{j \geq 1}\left(v^{\infty}\right)_{j} / n^{j}\right) & =b^{-\left(v^{\infty}\right)_{1}}\left(\left(v^{\infty}\right)_{1}+\sum_{j \geq 2}\left(v^{\infty}\right)_{j} / n^{j-1}\right) \\
& =\sum_{j \geq 1}\left(v^{\infty}\right)_{1+j} / n^{j}
\end{aligned}
$$

Assume the formula holds for $k-1$, we have

$$
\begin{aligned}
\left(W_{k} W_{k-1} \cdots W_{1}\right)\left(\sum_{j \geq 1}\left(v^{\infty}\right)_{j} / n^{j}\right) & =W_{k}\left(\sum_{j \geq 1}\left(v^{\infty}\right)_{k-1+j} / n^{j}\right) \\
& =b^{-\left(v^{\infty}\right)_{k}} a\left(\sum_{j \geq 1}\left(v^{\infty}\right)_{k-1+j} / n^{j}\right) \\
& =b^{-\left(v^{\infty}\right)_{k}}\left(\left(v^{\infty}\right)_{k}+\sum_{j \geq 2}\left(v^{\infty}\right)_{k-1+j} / n^{j-1}\right) \\
& =\sum_{j \geq 1}\left(v^{\infty}\right)_{k+j} / n^{j}
\end{aligned}
$$

and the affine map $W_{k} \cdots W_{1}$ has the slope n^{k}. Similarly, we can prove it for $Z_{k} \cdots Z_{1}$.

Remark 3. Let $x, y \in \mathbb{R}$. Then, by Remark 1, Schreier graphs $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}\right)$ and $\left(\operatorname{Orb}_{G_{n}}(y), S_{n}\right)$ are isomorphic if and only if there exist two bijections f : $\operatorname{Orb}_{G_{n}}(x) \rightarrow \operatorname{Orb}_{G_{n}}(y)$ and $\gamma: S_{n} \rightarrow S_{n}$ such that $\gamma(s)(f(z))=f(s(z))$ for each $z \in \operatorname{Orb}_{G_{n}}(x)$ and each $s \in S_{n}$.

Lemma 11. Let $x, y \in \mathbb{R}$. Suppose that the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}\right)$ is isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(y), S_{n}\right)$ by a bijection $\gamma: S_{n} \rightarrow S_{n}$. Then

$$
\gamma(a) \gamma(b) \gamma\left(a^{-1}\right) \gamma\left(b^{-1}\right)^{n}=1_{\mathbb{R}} \text { in } G_{n}
$$

if and only if

$$
\gamma=1_{S_{n}} \quad \text { or } \quad \gamma(a)=a, \gamma\left(a^{-1}\right)=a^{-1}, \gamma(b)=b^{-1}, \text { and } \gamma\left(b^{-1}\right)=b .
$$

Proof. Let $f: \operatorname{Orb}_{G_{n}}(x) \rightarrow \operatorname{Orb}_{G_{n}}(y)$ be a bijection as in Remark 3. For any $s \in S$ and any $x_{0} \in \operatorname{Orb}_{G_{n}}(x), \gamma(s) \gamma\left(s^{-1}\right)\left(f\left(x_{0}\right)\right)=f\left(s s^{-1}\left(x_{0}\right)\right)=f\left(x_{0}\right)$ by Remark 3. Since f is a bijection, $\gamma(s) \gamma\left(s^{-1}\right)=1_{\mathrm{Orb}_{G_{n}}(y)}$. Since $\gamma(s) \gamma\left(s^{-1}\right)$ is an affine map, $\gamma(s) \gamma\left(s^{-1}\right)=1_{\mathbb{R}}$, thus $\gamma(s)^{-1}=\gamma\left(s^{-1}\right) \in \operatorname{Aff}(\mathbb{R})$.

Suppose that $\gamma(a) \gamma(b) \gamma\left(a^{-1}\right) \gamma\left(b^{-1}\right)^{n}=1_{\mathbb{R}}$ and $\gamma \neq 1_{S_{n}}$. Since $a(x)=n x$ and $\gamma\left(b^{-1}\right)$ has the n-th power, $\gamma\left(b^{-1}\right) \in\{b\}^{ \pm}$.

Suppose that $\gamma\left(b^{-1}\right)=b^{-1}$. Then $\gamma(b)=b$. Since $\gamma \neq 1_{S_{n}}$, we have $\gamma(a)=a^{-1}$. Then $\gamma(a) \gamma(b) \gamma\left(a^{-1}\right) \gamma\left(b^{-1}\right)^{n}=a^{-1} b a b^{-n} \neq 1_{\mathbb{R}}$, a contradiction. Thus $\gamma\left(b^{-1}\right)=b$ and $\gamma(b)=b^{-1}$.

If $\gamma(a)=a^{-1}$, then $\gamma\left(a^{-1}\right)=a$ and $\gamma(a) \gamma(b) \gamma\left(a^{-1}\right) \gamma\left(b^{-1}\right)^{n}=a^{-1} b^{-1} a b^{n} \neq 1_{\mathbb{R}}$, a contradiction. Hence $\gamma(a)=a$ and $\gamma\left(a^{-1}\right)=a^{-1}$.

THEOREM 4. Let $m, n \geq 2$ with $m \neq n$.
(1) For any $x, y \in \mathbb{R}$, the Schreier graph $\left(\operatorname{Orb}_{G_{m}}(x), S_{m}\right)$ is not isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(y), S_{n}\right)$ as labelled directed graphs.
(2) For any $\alpha_{1}, \alpha_{2} \in \mathbb{R} \backslash \mathbb{Q}$, the Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(\alpha_{1}\right), S_{n}, \alpha_{1}\right)$ is S_{n}-isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(\alpha_{2}\right), S_{n}, \alpha_{2}\right)$ as marked labelled directed graphs.
(3) For any $q \in \mathbb{Q}$ and any $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(q), S_{n}\right)$ is not isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(\alpha), S_{n}\right)$ as labelled directed graphs.
(4) Let $q_{1}, q_{2} \in \mathbb{Q}$. Then, the following statements are equivalent.
(a) The Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(q_{1}\right), S_{n}\right)$ is isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(q_{2}\right), S_{n}\right)$ as labelled directed graphs.
(b) $\operatorname{Orb}_{G_{n}}\left(q_{1}\right)=\operatorname{Orb}_{G_{n}}\left(q_{2}\right)$ or $\operatorname{Orb}_{G_{n}}\left(-q_{1}\right)=\operatorname{Orb}_{G_{n}}\left(q_{2}\right)$.

Proof. On the contrary, suppose that the Schreier graphs $\left(\operatorname{Orb}_{G_{m}}(x), S_{m}\right)$ and $\left(\operatorname{Orb}_{G_{n}}(y), S_{n}\right)$ are isomorphic by bijections $f: \operatorname{Orb}_{G_{m}}(x) \rightarrow \operatorname{Orb}_{G_{n}}(y)$ and $\gamma: S_{m} \rightarrow$
S_{n} as in Remark 1. We check at once that $\gamma(a) \gamma(b) \gamma\left(a^{-1}\right) \gamma\left(b^{-1}\right)^{m} \neq 1_{\mathbb{R}} \in G_{n}$. By Remark 1, $\gamma(a) \gamma(b) \gamma\left(a^{-1}\right) \gamma\left(b^{-1}\right)^{m}(f(z))=f\left(a b a^{-1} b^{-m}(z)\right)=f(z)$ for each $z \in$ $\operatorname{Orb}_{G_{m}}(x)$, contradiction, which proves (1). Since $\operatorname{Stab}_{G_{n}}(\alpha)=1$ for any $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, by Proposition 1, the statement (2) is proved.

Let q be a rational number represented by $u v^{\infty}$ and $x \in \mathbb{R}$ such that the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(q), S_{n}\right)$ is isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}(x), S_{n}\right)$ as labelled directed graphs by bijections $f: \operatorname{Orb}_{G_{n}}(q) \rightarrow \operatorname{Orb}_{G_{n}}(x)$ and $\gamma: S_{n} \rightarrow S_{n}$ as in Remark 3. Let $q_{0}=\sum_{j \geq 1}\left(v^{\infty}\right)_{j} / n^{j} \in \operatorname{Orb}_{G_{n}}(q)$. Since $a b a^{-1} b^{-n}\left(q^{\prime}\right)=q^{\prime}$ for each $q^{\prime} \in$ $\operatorname{Orb}_{G_{n}}(q)$, by Remark 3, we have $\gamma(a) \gamma(b) \gamma\left(a^{-1}\right) \gamma\left(b^{-1}\right)^{n}\left(f\left(q^{\prime}\right)\right)=f\left(a b a^{-1} b^{-n}\left(q^{\prime}\right)\right)=$ $f\left(q^{\prime}\right)$. Hence, $\gamma(a) \gamma(b) \gamma\left(a^{-1}\right) \gamma\left(b^{-1}\right)^{n}=1_{\mathbb{R}}$. By Lemma 11,

$$
\begin{equation*}
\gamma=1_{S_{n}} \quad \text { or } \quad \gamma(a)=a, \gamma\left(a^{-1}\right)=a^{-1}, \gamma(b)=b^{-1}, \text { and } \gamma\left(b^{-1}\right)=b . \tag{E}
\end{equation*}
$$

On the other hand, by Lemma 10, there exists a nontrivial affine map $W_{|v|} \cdots W_{1}=$ $c_{k} \cdots c_{1}$ such that $c_{k} \cdots c_{1}\left(q_{0}\right)=q_{0}$, where $c_{i} \in\left\{a, b^{-1}\right\}$. By Remark 3, we have $\gamma\left(c_{k}\right) \cdots \gamma\left(c_{1}\right)\left(f\left(q_{0}\right)\right)=f\left(c_{k} \cdots c_{1}\left(q_{0}\right)\right)=f\left(q_{0}\right)$.
(i) If $\gamma=1_{S_{n}}$, then the nontrivial affine map $c_{k} \cdots c_{1}$ fixes both q_{0} and $f\left(q_{0}\right)$. Hence, $f\left(q_{0}\right)=q_{0}$.
(ii) If $\gamma(a)=a, \gamma\left(a^{-1}\right)=a^{-1}, \gamma(b)=b^{-1}$, and $\gamma\left(b^{-1}\right)=b$, then by Lemma 10, $\gamma\left(c_{k}\right) \cdots \gamma\left(c_{1}\right)\left(-q_{0}\right)=Z_{|v|} \cdots Z_{1}\left(-q_{0}\right)=-q_{0}$. Since the nontrivial affine map $\gamma\left(c_{k}\right) \cdots \gamma\left(c_{1}\right)$ fixes both $-q_{0}$ and $f\left(q_{0}\right)$, we have $-q_{0}=f\left(q_{0}\right)$.

We start to prove (3). On the contrary, if $x=\alpha \in \mathbb{R} \backslash \mathbb{Q}$, by the above, we see $f\left(q_{0}\right) \in \mathbb{Q}$, a contradiction, which proves (3).

Next we prove (4). Suppose that the statement (a) holds, i.e., $q=q_{1}, x=q_{2} \in \mathbb{Q}$ above. If $\gamma=1_{S_{n}}$, by (i) above, $\operatorname{Orb}_{G_{n}}\left(q_{1}\right)=\operatorname{Orb}_{G_{n}}\left(q_{0}\right)=\operatorname{Orb}_{G_{n}}\left(q_{2}\right)$. If $\gamma \neq 1_{S_{n}}$, by (ii) above, $\operatorname{Orb}_{G_{n}}\left(-q_{1}\right)=\operatorname{Orb}_{G_{n}}\left(-q_{0}\right)=\operatorname{Orb}_{G_{n}}\left(q_{2}\right)$, which proves (b).

Suppose that the statement (b) holds. We show that $\left(\operatorname{Orb}_{G_{n}}\left(q_{1}\right), S_{n}\right)$ and $\left(\operatorname{Orb}_{G_{n}}\left(q_{2}\right), S_{n}\right)$ are isomorphic. Without loss of generality, we can assume that $\operatorname{Orb}_{G_{n}}\left(-q_{1}\right)=\operatorname{Orb}_{G_{n}}\left(q_{2}\right)$. Define $\gamma: S_{n} \rightarrow S_{n}$ by $\gamma(a)=a, \gamma\left(a^{-1}\right)=$ $a^{-1}, \gamma(b)=b^{-1}$, and $\gamma\left(b^{-1}\right)=b$. In addition define $f: \operatorname{Orb}_{G_{n}}\left(q_{1}\right) \rightarrow \operatorname{Orb}_{G_{n}}\left(q_{2}\right)$ by $f\left(c_{k} \cdots c_{1}\left(q_{1}\right)\right)=\gamma\left(c_{k}\right) \cdots \gamma\left(c_{1}\right)\left(-q_{1}\right)$, where $c_{i} \in S_{n}$. By induction on k, we can show that $\left(c_{k} \cdots c_{1}\right)\left(q_{1}\right)+\left(\gamma\left(c_{k}\right) \cdots \gamma\left(c_{1}\right)\right)\left(-q_{1}\right)=0$ for each $k \geq 1$ and each $c_{i} \in S_{n}$. Hence, f is well-defined and an injection. By definition, f is a surjection satisfying that $f(s(z))=\gamma(s)(f(z))$ for each $z \in \operatorname{Orb}_{G_{n}}\left(q_{1}\right)$ and each $s \in S_{n}$. By Remark 3, the Schreier graphs $\left(\operatorname{Orb}_{G_{n}}\left(q_{1}\right), S_{n}\right)$ and $\left(\operatorname{Orb}_{G_{n}}\left(q_{2}\right), S_{n}\right)$ are isomorphic by f and γ.

Corollary 1. Let q_{1}, q_{2} be rational numbers. Then, the following statements are equivalent.
(a) The Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(q_{1}\right), S_{n}, q_{1}\right)$ is isomorphic to the Schreier graph $\left(\operatorname{Orb}_{G_{n}}\left(q_{2}\right), S_{n}, q_{2}\right)$ as marked labelled directed graphs.
(b) $\left|q_{1}\right|=\left|q_{2}\right|$.

Proof. From the latter part of the proof of Theorem 4, we can show that (b) implies (a). Suppose that $\left(\operatorname{Orb}_{G_{n}}\left(q_{1}\right), S_{n}, q_{1}\right)$ is isomorphic to $\left(\operatorname{Orb}_{G_{n}}\left(q_{2}\right), S_{n}, q_{2}\right)$ by bijections $f: \operatorname{Orb}_{G_{n}}\left(q_{1}\right) \rightarrow \operatorname{Orb}_{G_{n}}\left(q_{2}\right)$ with $f\left(q_{1}\right)=q_{2}$ and $\gamma: S_{n} \rightarrow S_{n}$ as in Remark 3. It suffices to show that $\left|q_{1}\right|=\left|q_{2}\right|$. Let us represent by $u v^{\infty} \in \mathbb{Z}_{n}^{\omega} q_{1} \in \mathbb{Q}$. Set $q_{0}=\sum_{j \geq 1}\left(v^{\infty}\right)_{j} / n^{j} \in \operatorname{Orb}_{G_{n}}\left(q_{1}\right)$. Then, there exist $d_{1}, \ldots, d_{j} \in S_{n}$ such that $\left(d_{j} \cdots d_{1}\right)\left(q_{1}\right)=q_{0}$. From the proof of Theorem 4, the map γ satisfies (E) in the proof of Theorem 4, and the map f satisfies

$$
f\left(q_{0}\right)= \begin{cases}q_{0} & \text { if } \gamma=1_{S_{n}} \\ -q_{0} & \text { if } \gamma \neq 1_{S_{n}}\end{cases}
$$

Moreover, there exist $c_{1}, \ldots, c_{k} \in S_{n}$ such that $\left(c_{k} \cdots c_{1}\right)\left(q_{0}\right)=q_{0}$ and $\gamma\left(c_{k}\right) \cdots \gamma\left(c_{1}\right)\left(f\left(q_{0}\right)\right)=f\left(q_{0}\right)$. Then

$$
\left(d_{j} \cdots d_{1}\right)^{-1}\left(c_{k} \cdots c_{1}\right)\left(d_{j} \cdots d_{1}\right)\left(q_{1}\right)=q_{1}
$$

By Remark 3

$$
\gamma\left(d_{1}\right)^{-1} \cdots \gamma\left(d_{j}\right)^{-1} \gamma\left(c_{k}\right) \cdots \gamma\left(c_{1}\right) \gamma\left(d_{j}\right) \cdots \gamma\left(d_{1}\right)\left(q_{2}\right)=q_{2}
$$

Thus $\gamma\left(c_{k}\right) \cdots \gamma\left(c_{1}\right)\left(\gamma\left(d_{j}\right) \cdots \gamma\left(d_{1}\right)\left(q_{2}\right)\right)=\gamma\left(d_{j}\right) \cdots \gamma\left(d_{1}\right)\left(q_{2}\right)$.
Suppose that $\gamma=1_{S_{n}}$. Then, $\left(c_{k} \cdots c_{1}\right)\left(\left(d_{j} \cdots d_{1}\right)\left(q_{2}\right)\right)=\left(d_{j} \cdots d_{1}\right)\left(q_{2}\right)$. Since the nontrivial affine map $c_{k} \cdots c_{1}$ fixes both $q_{0}=\left(d_{j} \cdots d_{1}\right)\left(q_{1}\right)$ and $\left(d_{j} \cdots d_{1}\right)\left(q_{2}\right)$, $\left(d_{j} \cdots d_{1}\right)\left(q_{1}\right)=\left(d_{j} \cdots d_{1}\right)\left(q_{2}\right)$. We conclude that $q_{1}=q_{2}$.

Suppose that $\gamma \neq 1_{S_{n}}$. By Remark 3, $\quad \gamma\left(d_{j}\right) \cdots \gamma\left(d_{1}\right)\left(q_{2}\right)=$ $\left(\gamma\left(d_{j}\right) \cdots \gamma\left(d_{1}\right)\right)\left(f\left(q_{1}\right)\right)=f\left(\left(d_{j} \cdots d_{1}\right)\left(q_{1}\right)\right)=f\left(q_{0}\right)=-q_{0}=-\left(d_{j} \cdots d_{1}\right)\left(q_{1}\right)$. Since the map γ satisfies (E) in the proof of Theorem 4, by induction on j, we can show $q_{1}=-q_{2}$.

5. Applications

First we determine the group structure of stabilizers for all rational numbers by using the Schreier graphs described in the previous section. The proof of next proposition allows us to understand a word stood for a generator as well as the group structure. We note that the the stabilizer $\operatorname{Stab}_{G_{n}}(q)$ is an infinite index subgroup of G_{n} since the orbit $\operatorname{Orb}_{G_{n}}(q)$ is an infinite set.

Proposition 2. Let $n \geq 2$ and q be a rational number represented by $u v^{\infty} \in$ \mathbb{Z}_{n}^{ω}. Then, there exists $f \in \operatorname{Aff}(\mathbb{R})$ such that $f(x)=n^{|v|}(x-q)+q$ for each $x \in \mathbb{R}$, and $\operatorname{Stab}_{G_{n}}(q)=\langle f\rangle \cong \mathbb{Z}$.

Proof. For $i \geq 1$ set $\widetilde{W}_{i}=b^{-\left(u v^{\infty}\right)_{i}} a$. By Lemma 10 we have

$$
\begin{aligned}
\widetilde{W}_{|u|+|v|} \cdots \widetilde{W}_{|u|+1} \widetilde{W}_{|u|} \cdots \widetilde{W}_{1}\left(b^{-\lfloor q\rfloor}(q)\right) & =\widetilde{W}_{|u|+|v|} \cdots \widetilde{W}_{|u|+1}\left(\sum_{i \geq 1}\left(v^{\infty}\right)_{i} / n^{i}\right) \\
& =W_{|v|} \cdots W_{1}\left(\sum_{i \geq 1}\left(v^{\infty}\right)_{i} / n^{i}\right) \\
& =\sum_{i \geq 1}\left(v^{\infty}\right)_{i} / n^{i} \\
& =\widetilde{W}_{|u|} \cdots \widetilde{W}_{1}\left(b^{-\lfloor q\rfloor}(q)\right)
\end{aligned}
$$

Set $f=b^{\lfloor q\rfloor} \widetilde{W}_{1}^{-1} \cdots \widetilde{W}_{|u|}^{-1} \widetilde{W}_{|u|+|v|} \cdots \widetilde{W}_{|u|+1} \widetilde{W}_{|u|} \cdots \widetilde{W}_{1} b^{-\lfloor q\rfloor}$. Then, f is an affine map with the slope $n^{|v|}$ such that $f(q)=q$. Hence $\langle f\rangle<\operatorname{Stab}_{G_{n}}(q)$.

Let $g \in \operatorname{Stab}_{G_{n}}(q)$. By $(*)_{n}$, there exists $i \in \mathbb{Z}$ such that $g(x)=n^{i}(x-q)+q$ for any $x \in \mathbb{R}$. If $|v|=1, f$ has the slope n, thus $g=f^{i}$. Hence, we may assume that $|v| \geq 2$. On the contrary, suppose that there exist $h \in \operatorname{Stab}_{G_{n}}(q) \backslash\langle f\rangle, 0<r<|v|$, $j \in \mathbb{Z}$, and $k \geq 0$ such that $h(x)=n^{r} x+j / n^{k}$ and $h(q)=q$. Then, we have

$$
q=\frac{-j}{n^{k}\left(n^{r}-1\right)}
$$

There exist $m \geq 0$ and $z=z_{1} z_{2} \ldots z_{r} \in \widetilde{\mathbb{Z}_{n}}$ with $z \neq(n-1)^{r}$ such that

$$
|j|=\left(\sum_{i=0}^{r-1}(n-1) n^{i}\right) m+\sum_{i=0}^{r-1} z_{r-i} n^{i}=n^{r}\left(m \sum_{i=1}^{r} \frac{n-1}{n^{i}}+\sum_{i=1}^{r} \frac{z_{i}}{n^{i}}\right) .
$$

Since

$$
\frac{n^{r}}{n^{r}-1}=\sum_{j \geq 0}\left(\frac{1}{n^{r}}\right)^{j}
$$

we have

$$
q n^{k}=m+\sum_{i \geq 1} \frac{\left(z^{\infty}\right)_{i}}{n^{i}} \quad \text { or } \quad q n^{k}=-(m+1)+\sum_{i \geq 1} \frac{\left(\bar{z}^{\infty}\right)_{i}}{n^{i}}
$$

where $\bar{z}=\left(n-1-z_{1}\right) \ldots\left(n-1-z_{r}\right) \in \widetilde{\mathbb{Z}_{n}}$. Thus, $q n^{k}$ has a repeating part whose length is the period of z^{∞}. However,

$$
q n^{k}=\left(\lfloor q\rfloor+\sum_{i \geq 1} \frac{\left(u v^{\infty}\right)_{i}}{n^{i}}\right) n^{k}=\left(\lfloor q\rfloor n^{k}+\sum_{i=1}^{k}\left(u v^{\infty}\right)_{i} n^{k-i}\right)+\sum_{i \geq 1} \frac{\left(u v^{\infty}\right)_{i+k}}{n^{i}}
$$

which contradicts (2) in Definition 2.

Next we introduce the definition of being isomorphic in presentations for subgroups in order to translate the graphical expression of the Schreier graphs into the algebraic expression of subgroups. Consequently, we get a relevance to presentations for the stabilizers from the previous result about the classification of the Schreier graphs (see Theorem 5).

For $i \in\{1,2\}$, let G_{i} be a group with a generating set T_{i}. Let $T_{i}^{-1}=\left\{t^{-1} \mid t \in T_{i}\right\}$ and $T_{i}^{ \pm}=T_{i} \cup T_{i}^{-1}$. We assume that
$(*) \quad t \in T_{i} \cap T_{i}^{-1} \quad$ if and only if $t \in T_{i}, \quad t^{2}=1$.
For $i \in\{1,2\}$ let $X_{i}=\left\{x_{t} \mid t \in T_{i}\right\}$. Set $X_{i}^{-1}=\left\{x_{t}^{-1} \mid t \in T_{i}\right\}$, where x_{t}^{-1} denotes a new symbol corresponding to the element x_{t}. We assume that $X_{i} \cap X_{i}^{-1}=\emptyset$ and that the expression $\left(x_{t}^{-1}\right)^{-1}$ denotes the element x_{t}. For $i \in\{1,2\}$ the free group with the basis X_{i} is denoted by $F\left(X_{i}\right)$, and for a subset R_{i} of $F\left(X_{i}\right)$ the normal closure of the set R_{i} in $F\left(X_{i}\right)$ is denoted by $\left\langle\left\langle R_{i}\right\rangle\right\rangle$. Let G_{i} be the group with the presentation $\left\langle X_{i} \mid R_{i}\right\rangle$ with respect to the epimorphism $\psi_{i}: F\left(X_{i}\right) \rightarrow G_{i}$ given by $\psi_{i}\left(x_{t}\right)=t$.

Definition 4. For $i \in\{1,2\}$, let H_{i} be a subgroup of $G_{i} . H_{1}$ and H_{2} are isomorphic in presentations $\left\langle X_{1} \mid R_{1}\right\rangle$ and $\left\langle X_{2} \mid R_{2}\right\rangle$ respectively if there exists a bijection $\gamma: X_{1}^{ \pm} \rightarrow X_{2}^{ \pm}$with $\gamma\left(x_{t}^{-1}\right)=\gamma\left(x_{t}\right)^{-1}$ such that $\widetilde{\gamma}\left(\psi_{1}^{-1}\left(H_{1}\right)\right)=\psi_{2}^{-1}\left(H_{2}\right)$ and $\widetilde{\gamma}\left(\left\langle\left\langle R_{1}\right\rangle\right\rangle\right)=\left\langle\left\langle R_{2}\right\rangle\right\rangle$, where $\widetilde{\gamma}: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right)$ is defined by $\widetilde{\gamma}\left(x_{t_{1}}^{\varepsilon_{1}} \cdots x_{t_{k}}^{\varepsilon_{k}}\right)=$ $\gamma\left(x_{t_{1}}\right)^{\varepsilon_{1}} \cdots \gamma\left(x_{t_{k}}\right)^{\varepsilon_{k}}$ for $\varepsilon_{i} \in\{ \pm 1\}$. Then, $\widetilde{\gamma}$ is an isomorphism and $H_{1} \cong H_{2}$. Conversely, if there exists an isomorphism $\widetilde{\gamma}: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right)$ such that $\widetilde{\gamma}\left(K_{1}\right)=K_{2}$ for each $K_{i} \in\left\{\psi_{i}^{-1}\left(H_{i}\right), \operatorname{Ker} \psi_{i}, X_{i}^{ \pm}\right\}$, then $\gamma=\left.\widetilde{\gamma}\right|_{X_{1}^{ \pm}}$satisfies the above condition.

Proposition 3. Let $\Gamma_{i}=\left(G_{i} / H_{i}, T_{i}^{ \pm}, H_{i}\right)$ and $\Gamma_{i}^{\prime}=\left(F\left(X_{i}\right) / \psi_{i}^{-1}\left(H_{i}\right), X_{i}^{ \pm}, \psi_{i}^{-1}\left(H_{i}\right)\right)$ be Schreier coset graphs for $i \in\{1,2\}$. Then, the following statements are equivalent.
(a) $\quad \Gamma_{1}$ is isomorphic to Γ_{2} as marked labelled directed graphs by a bijection γ : $T_{1}^{ \pm} \rightarrow T_{2}^{ \pm}$such that $\gamma\left(t^{-1}\right)=\gamma(t)^{-1}$ for every $t \in T_{1}$.
(b) $\quad \Gamma_{1}^{\prime}$ is isomorphic to Γ_{2}^{\prime} as marked labelled directed graphs by a bijection γ^{\prime} : $X_{1}^{ \pm} \rightarrow X_{2}^{ \pm}$with $\gamma^{\prime}\left(x_{t}^{-1}\right)=\gamma^{\prime}\left(x_{t}\right)^{-1}$ for every $x_{t} \in X_{1}$ satisfying the condition
(B) $\quad \psi_{1}\left(x_{t}\right)^{2}=1_{G_{1}} \quad$ if and only if $\psi_{2}\left(\gamma^{\prime}\left(x_{t}\right)\right)^{2}=1_{G_{2}}$.

Proof. Let $\varphi_{i}: G_{i} \rightarrow \operatorname{Aut}\left(G_{i} / H_{i}\right)$ and $\varphi_{i}^{\prime}: F\left(X_{i}\right) \rightarrow \operatorname{Aut}\left(F\left(X_{i}\right) / \psi_{i}^{-1}\left(H_{i}\right)\right)$ be the usual left actions for $i \in\{1,2\}$. We define $\Psi_{i}: F\left(X_{i}\right) / \psi_{i}^{-1}\left(H_{i}\right) \rightarrow G_{i} / H_{i}$ by $\Psi_{i}\left(y \psi_{i}^{-1}\left(H_{i}\right)\right)=\psi_{i}(y) H_{i}$. Since $y^{-1} y^{\prime} \in \psi_{i}^{-1}\left(H_{i}\right)$ is equivalent to $\psi_{i}(y)^{-1} \psi_{i}\left(y^{\prime}\right) \in H_{i}$, Ψ_{i} is well-defined and an injection. Since ψ_{i} is a surjection, Ψ_{i} is also a surjection.

Suppose that the statement (a) holds. Let $f: G_{1} / H_{1} \rightarrow G_{2} / H_{2}$ be a bijection between vertices such that $f\left(H_{1}\right)=H_{2}$ and $f \varphi_{1}(t)=\varphi_{2}(\gamma(t)) f$ for every $t \in T_{1}$.

Set $f^{\prime}=\Psi_{2}^{-1} f \Psi_{1}: F\left(X_{1}\right) / \psi_{1}^{-1}\left(H_{1}\right) \rightarrow F\left(X_{2}\right) / \psi_{2}^{-1}\left(H_{2}\right)$. Clearly f^{\prime} is bijective with $f^{\prime}\left(\psi_{1}^{-1}\left(H_{1}\right)\right)=\psi_{2}^{-1}\left(H_{2}\right)$.

Define $\gamma^{\prime}: X_{1}^{ \pm} \rightarrow X_{2}^{ \pm}$by

$$
\gamma^{\prime}\left(x_{t}^{\varepsilon}\right)= \begin{cases}x_{\gamma(t)}^{\varepsilon} & \text { if } \gamma(t) \in T_{2} \text { and } \varepsilon \in\{ \pm 1\} \\ x_{\gamma(t)^{-1}}^{-\varepsilon} & \text { if } \gamma(t) \notin T_{2} \text { and } \varepsilon \in\{ \pm 1\}\end{cases}
$$

Then we have $\gamma^{\prime}\left(x_{t}^{-1}\right)=\gamma^{\prime}\left(x_{t}\right)^{-1}$. To show that γ^{\prime} is bijective, we define $\sigma: X_{2}^{ \pm} \rightarrow X_{1}^{ \pm}$ by

$$
\sigma\left(x_{t}^{\varepsilon}\right)= \begin{cases}x_{\gamma^{-1}(t)}^{\varepsilon} & \text { if } \gamma^{-1}(t) \in T_{1} \text { and } \varepsilon \in\{ \pm 1\} \\ x_{\gamma^{-1}(t)^{-1}}^{-\varepsilon} & \text { if } \gamma^{-1}(t) \notin T_{1} \text { and } \varepsilon \in\{ \pm 1\}\end{cases}
$$

Then

$$
\sigma \gamma^{\prime}\left(x_{t}^{\varepsilon}\right)= \begin{cases}\sigma\left(x_{\gamma(t)}^{\varepsilon}\right) & \text { if } \gamma(t) \in T_{2} \text { and } \varepsilon \in\{ \pm 1\} \\ \sigma\left(x_{\gamma(t)^{-1}}^{-\varepsilon}\right) & \text { if } \gamma(t) \notin T_{2} \text { and } \varepsilon \in\{ \pm 1\}\end{cases}
$$

If $\gamma(t) \in T_{2}, \gamma^{-1}(\gamma(t))=t \in T_{1}$. If $\gamma(t) \notin T_{2}, \gamma^{-1}\left(\gamma(t)^{-1}\right)=\gamma^{-1}\left(\gamma\left(t^{-1}\right)\right)=t^{-1} \notin T_{1}$ by $(*)$. Since $\gamma\left(t^{-1}\right)=\gamma(t)^{-1}$, we have $\gamma^{-1}\left(s^{-1}\right)=\gamma^{-1}(s)^{-1}$. Hence we have

$$
\sigma \gamma^{\prime}\left(x_{t}^{\varepsilon}\right)= \begin{cases}x_{t}^{\varepsilon} & \text { if } \gamma(t) \in T_{2} \text { and } \varepsilon \in\{ \pm 1\} \\ x_{t}^{\varepsilon} & \text { if } \gamma(t) \notin T_{2} \text { and } \varepsilon \in\{ \pm 1\}\end{cases}
$$

thus $\sigma \gamma^{\prime}=1_{X_{1}^{ \pm}}$. The similar argument gives $\gamma^{\prime} \sigma=1_{X_{2}^{ \pm}}$. Thus γ^{\prime} is a bijection.
Since $\psi_{2}\left(\gamma^{\prime}\left(x_{t}\right)\right)=\gamma(t)$ and $t^{2}=1_{G_{1}}$ if and only if $\gamma(t)^{2}=1_{G_{2}}$, we have $\psi_{1}\left(x_{t}\right)^{2}=$ $1_{G_{1}}$ if and only if $\psi_{2}\left(\gamma^{\prime}\left(x_{t}\right)\right)^{2}=1_{G_{2}}$, which establishes (B).

Since $\Psi_{1} \varphi_{1}^{\prime}\left(x_{t}\right)=\varphi_{1}(t) \Psi_{1}$ and $\Psi_{2} \varphi_{2}^{\prime}\left(\gamma^{\prime}\left(x_{t}\right)\right)=\varphi_{2}(\gamma(t)) \Psi_{2}$, we have

$$
\begin{aligned}
\varphi_{2}^{\prime}\left(\gamma^{\prime}\left(x_{t}\right)\right) f^{\prime} \varphi_{1}^{\prime}\left(x_{t}\right)^{-1}=\varphi_{2}^{\prime}\left(\gamma^{\prime}\left(x_{t}\right)\right) \Psi_{2}^{-1} f \Psi_{1} \varphi_{1}^{\prime}\left(x_{t}\right)^{-1} & =\Psi_{2}^{-1} \varphi_{2}(\gamma(t)) f \varphi_{1}(t)^{-1} \Psi_{1} \\
& =\Psi_{2}^{-1} f \Psi_{1} \\
& =f^{\prime}
\end{aligned}
$$

By Remark 1 we obtain (b).
Suppose that the statement (b) holds. Let $f^{\prime}: F\left(X_{1}\right) / \psi_{1}^{-1}\left(H_{1}\right) \rightarrow$ $F\left(X_{2}\right) / \psi_{2}^{-1}\left(H_{2}\right)$ be a bijection between vertices such that $f^{\prime}\left(\psi_{1}^{-1}\left(H_{1}\right)\right)=\psi_{2}^{-1}\left(H_{2}\right)$ and $f^{\prime} \varphi_{1}^{\prime}\left(x_{t}\right)=\varphi_{2}^{\prime}\left(\gamma^{\prime}\left(x_{t}\right)\right) f^{\prime}$ for every $x_{t} \in X_{1}$. Set $f=\Psi_{2} f^{\prime} \Psi_{1}^{-1}: G_{1} / H_{1} \rightarrow G_{2} / H_{2}$. Clearly f is bijective with $f\left(H_{1}\right)=H_{2}$.

Define $\gamma: T_{1}^{ \pm} \rightarrow T_{2}^{ \pm}$by $\gamma\left(t^{\varepsilon}\right)=\psi_{2}\left(\gamma^{\prime}\left(x_{t}^{\varepsilon}\right)\right)$ for each $t \in T_{1}$ and $\varepsilon \in\{ \pm 1\}$. First we show that γ is well-defined. Suppose that $t_{1}^{\varepsilon_{1}}=t_{2}^{\varepsilon_{2}}$. If $\varepsilon_{1}=\varepsilon_{2}$ and $t_{1}=t_{2}$, then $\psi_{2}\left(\gamma^{\prime}\left(x_{t_{1}}^{\varepsilon_{1}}\right)\right)=\psi_{2}\left(\gamma^{\prime}\left(x_{t_{2}}^{\varepsilon_{2}}\right)\right)$. If $\varepsilon_{1} \neq \varepsilon_{2}$, then $t_{1}=t_{2}$. Since $\psi_{2}\left(\gamma^{\prime}\left(x_{t_{j}}\right)\right)^{2}=1_{G_{2}}$
by $(B), \psi_{2}\left(\gamma^{\prime}\left(x_{t_{1}}^{\varepsilon_{1}}\right)\right)=\psi_{2}\left(\gamma^{\prime}\left(x_{t_{1}}^{-\varepsilon_{1}}\right)\right)=\psi_{2}\left(\gamma^{\prime}\left(x_{t_{2}}^{\varepsilon_{2}}\right)\right)$. Thus γ is well-defined. Then we have $\gamma\left(t^{-1}\right)=\gamma(t)^{-1}$. Next we show that γ is bijective. We define $\rho: T_{2}^{ \pm} \rightarrow T_{1}^{ \pm}$by $\rho\left(t^{\varepsilon}\right)=\psi_{1}\left(\gamma^{\prime-1}\left(x_{t}^{\varepsilon}\right)\right)$ for each $t \in T_{2}$ and $\varepsilon \in\{ \pm 1\}$. Since γ^{\prime} satisfies the condition $(B), \psi_{2}\left(x_{t}\right)^{2}=1_{G_{2}}$ if and only if $\psi_{1}\left(\gamma^{\prime-1}\left(x_{t}\right)\right)^{2}=1_{G_{1}}$. Hence ρ is well-defined. We can easily see that $\gamma \rho=1_{T_{2}^{ \pm}}$and $\rho \gamma=1_{T_{1}^{ \pm}}$. Hence γ is a bijection.

Since $\Psi_{1} \varphi_{1}^{\prime}\left(x_{t}\right)=\varphi_{1}(t) \Psi_{1}$ and $\Psi_{2} \varphi_{2}^{\prime}\left(\gamma^{\prime}\left(x_{t}\right)\right)=\varphi_{2}(\gamma(t)) \Psi_{2}$,

$$
\begin{aligned}
\varphi_{2}(\gamma(t)) f \varphi_{1}(t)^{-1}=\varphi_{2}(\gamma(t)) \Psi_{2} f^{\prime} \Psi_{1}^{-1} \varphi_{1}(t)^{-1} & =\Psi_{2} \varphi_{2}^{\prime}\left(\gamma^{\prime}\left(x_{t}\right)\right) f^{\prime} \varphi_{1}^{\prime}\left(x_{t}\right)^{-1} \Psi_{1}^{-1} \\
& =\Psi_{2} f^{\prime} \Psi_{1}^{-1} \\
& =f .
\end{aligned}
$$

By Remark 1 we obtain (a).
Lemma 12. Let $\Gamma_{i}=\left(G_{i} / H_{i}, T_{i}^{ \pm}, H_{i}\right)$ be Schreier coset graphs for $i \in\{1,2\}$. Then the following statements are equivalent.
(a) Γ_{1} is isomorphic to Γ_{2} as marked labelled directed graphs by a bijection γ : $T_{1}^{ \pm} \rightarrow T_{2}^{ \pm}$satisfying the following condition: for any $t_{1}, \ldots, t_{k} \in T_{1}$ and any $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{ \pm 1\}$,

$$
\text { (C) } \quad t_{1}^{\varepsilon_{1}} \cdots t_{k}^{\varepsilon_{k}}=1_{G_{1}} \text { if and only if } \gamma\left(t_{1}^{\varepsilon_{1}}\right) \cdots \gamma\left(t_{k}^{\varepsilon_{k}}\right)=1_{G_{2}} .
$$

(b) H_{1} and H_{2} are isomorphic in presentations $\left\langle X_{1} \mid R_{1}\right\rangle$ and $\left\langle X_{2} \mid R_{2}\right\rangle$ respectively.

Proof. By Proposition 3, (a) is equivalent to the following statement.
(a^{\prime}) Γ_{1}^{\prime} is isomorphic to Γ_{2}^{\prime} as marked labelled directed graphs by a bijection γ^{\prime} : $X_{1}^{ \pm} \rightarrow X_{2}^{ \pm}$such that $\gamma^{\prime}\left(x_{t}^{-1}\right)=\gamma^{\prime}\left(x_{t}\right)^{-1}$ for every $x_{t} \in X_{1}$ and
$\left(C^{\prime}\right) \psi_{1}\left(x_{t_{1}}^{\varepsilon_{1}}\right) \cdots \psi_{1}\left(x_{t_{k}}^{\varepsilon_{k}}\right)=1_{G_{1}}$ if and only if $\psi_{2}\left(\gamma^{\prime}\left(x_{t_{1}}^{\varepsilon_{1}}\right)\right) \cdots \psi_{2}\left(\gamma^{\prime}\left(x_{t_{k}}^{\varepsilon_{k}}\right)\right)=1_{G_{2}}$.
In addition we note that the following statements are equivalent.
(1) There exists a bijection $\gamma^{\prime}: X_{1}^{ \pm} \rightarrow X_{2}^{ \pm}$with $\gamma^{\prime}\left(x_{t}^{-1}\right)=\gamma^{\prime}\left(x_{t}\right)^{-1}$ satisfying the condition $\left(C^{\prime}\right)$.
(2) There exists a group isomorphism $\delta: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right)$ such that $\delta\left(X_{1}^{ \pm}\right)=X_{2}^{ \pm}$ and $\delta\left(\left\langle\left\langle R_{1}\right\rangle\right\rangle\right)=\left\langle\left\langle R_{2}\right\rangle\right\rangle$.

Suppose that the statement (a) holds. By the above, we may suppose that the statement $\left(a^{\prime}\right)$ holds, and can take $\widetilde{\gamma^{\prime}}$ as δ in (2), where $\widetilde{\gamma^{\prime}}: F\left(X_{1}\right) \rightarrow F\left(X_{2}\right)$ given by $\widetilde{\gamma^{\prime}}\left(x_{t_{1}}^{\varepsilon_{1}} \cdots x_{t_{k}}^{\varepsilon_{k}}\right)=\gamma^{\prime}\left(x_{t_{1}}\right)^{\varepsilon_{1}} \cdots \gamma^{\prime}\left(x_{t_{k}}\right)^{\varepsilon_{k}}$. It suffices to prove that $\widetilde{\gamma^{\prime}}\left(\psi_{1}^{-1}\left(H_{1}\right)\right)$ $=\psi_{2}^{-1}\left(H_{2}\right)$. Let $f^{\prime}: F\left(X_{1}\right) / \psi_{1}^{-1}\left(H_{1}\right) \rightarrow F\left(X_{2}\right) / \psi_{2}^{-1}\left(H_{2}\right)$ be a bijection between vertices which preserves marked vertices. Now, we note that for $i \in\{1,2\}, \psi_{i}^{-1}\left(H_{i}\right)=$
$\left\{l(P) \mid P\right.$ is an edge path in Γ_{i}^{\prime} from $\psi_{i}^{-1}\left(H_{i}\right)$ to itself $\}$, where $l(P)=l\left(e_{n}\right) \ldots l\left(e_{1}\right)$ whenever $P=e_{1} \ldots e_{n}$.

Let $l(P) \in \psi_{1}^{-1}\left(H_{1}\right)$, where $e_{j}=\left(x_{t_{j-1}}^{\varepsilon_{j-1}} \cdots x_{t_{1}}^{\varepsilon_{1}} \psi_{1}^{-1}\left(H_{1}\right), x_{t_{j}}^{\varepsilon_{j}}\right)$ and $P=e_{1} \ldots e_{n}$. Since $x_{t_{n}}^{\varepsilon_{n}} \cdots x_{t_{1}}^{\varepsilon_{1}} \psi_{1}^{-1}\left(H_{1}\right)=\beta\left(e_{n}\right)=\psi_{1}^{-1}\left(H_{1}\right)$, by Remark 1 ,

$$
\begin{aligned}
\widetilde{\gamma^{\prime}}(l(P)) \psi_{2}^{-1}\left(H_{2}\right)=\gamma^{\prime}\left(x_{t_{n}}^{\varepsilon_{n}}\right) \cdots \gamma^{\prime}\left(x_{t_{1}}^{\varepsilon_{1}}\right) f^{\prime}\left(\psi_{1}^{-1}\left(H_{1}\right)\right) & =f^{\prime}\left(x_{t_{n}}^{\varepsilon_{n}} \cdots x_{t_{1}}^{\varepsilon_{1}} \psi_{1}^{-1}\left(H_{1}\right)\right) \\
& =f^{\prime}\left(\psi_{1}^{-1}\left(H_{1}\right)\right) \\
& =\psi_{2}^{-1}\left(H_{2}\right)
\end{aligned}
$$

Thus we have $\widetilde{\gamma^{\prime}}\left(\psi_{1}^{-1}\left(H_{1}\right)\right) \subset \psi_{2}^{-1}\left(H_{2}\right)$. Similarly ${\widetilde{\gamma^{\prime}}}^{-1}\left(\psi_{2}^{-1}\left(H_{2}\right)\right) \subset \psi_{1}^{-1}\left(H_{1}\right)$, which proves $\widetilde{\gamma^{\prime}}\left(\psi_{1}^{-1}\left(H_{1}\right)\right)=\psi_{2}^{-1}\left(H_{2}\right)$.

Suppose that the statement (b) holds. There exists a bijection $\gamma^{\prime}: X_{1}^{ \pm} \rightarrow X_{2}^{ \pm}$with $\gamma^{\prime}\left(x_{t}^{-1}\right)=\gamma^{\prime}\left(x_{t}\right)^{-1}$ such that $\tilde{\gamma^{\prime}}\left(\psi_{1}^{-1}\left(H_{1}\right)\right)=\psi_{2}^{-1}\left(H_{2}\right)$ and $\tilde{\gamma^{\prime}}\left(\left\langle\left\langle R_{1}\right\rangle\right\rangle\right)=\left\langle\left\langle R_{2}\right\rangle\right\rangle$, which establishes (2). Define $f^{\prime}: F\left(X_{1}\right) / \psi_{1}^{-1}\left(H_{1}\right) \rightarrow F\left(X_{2}\right) / \psi_{2}^{-1}\left(H_{2}\right)$ by $f^{\prime}\left(g \psi_{1}^{-1}\left(H_{1}\right)\right)$ $=\widetilde{\gamma^{\prime}}(g) \psi_{2}^{-1}\left(H_{2}\right)$. Since $g_{2}^{-1} g_{1} \in \psi_{1}^{-1}\left(H_{1}\right)$ is equivalent to $\widetilde{\gamma^{\prime}}\left(g_{2}^{-1} g_{1}\right) \in \widetilde{\gamma^{\prime}}\left(\psi_{1}^{-1}\left(H_{1}\right)\right)=$ $\psi_{2}^{-1}\left(H_{2}\right), f^{\prime}$ is well-defined and an injection. Since $\tilde{\gamma^{\prime}}$ is a surjection, f^{\prime} is also a surjection. Since

$$
\begin{aligned}
f^{\prime} \varphi_{1}^{\prime}\left(x_{t}\right)\left(g \psi_{1}^{-1}\left(H_{1}\right)\right)=f^{\prime}\left(x_{t} g \psi_{1}^{-1}\left(H_{1}\right)\right) & =\widetilde{\gamma^{\prime}}\left(x_{t} g\right) \psi_{2}^{-1}\left(H_{2}\right) \\
& =\widetilde{\gamma^{\prime}}\left(x_{t}\right) \widetilde{\gamma^{\prime}}(g) \psi_{2}^{-1}\left(H_{2}\right) \\
& =\varphi_{2}^{\prime}\left(\gamma^{\prime}\left(x_{t}\right)\right) f^{\prime}\left(g \psi_{1}^{-1}\left(H_{1}\right)\right),
\end{aligned}
$$

we have $f^{\prime} \varphi_{1}^{\prime}\left(x_{t}\right)=\varphi_{2}^{\prime}\left(\gamma^{\prime}\left(x_{t}\right)\right) f^{\prime}$ for every $x_{t} \in X_{1}$. Thus Γ_{1}^{\prime} is isomorphic to Γ_{2}^{\prime} as marked labelled directed graphs by a bijection $\gamma^{\prime}: X_{1}^{ \pm} \rightarrow X_{2}^{ \pm}$, which establishes (a^{\prime}), i.e., (a).

By Lemmas 11 and 12, Corollary 1, (1) in Theorem 4 and the isomorphism h_{n}, we obtain the following theorem.

Theorem 5. Let $m, n \geq 2$ and $q_{1}, q_{2} \in \mathbb{Q}$. Then the following statements are equivalent.
(a) $\operatorname{Stab}_{B S(1, m)}\left(q_{1}\right)$ and $\operatorname{Stab}_{B S(1, n)}\left(q_{2}\right)$ are isomorphic in presentations $B S(1, m)$ and $B S(1, n)$ respectively.
(b) $m=n$ and $\left|q_{1}\right|=\left|q_{2}\right|$.

Acknowledgment. The author would like to thank the anonymous referee for very careful reading of the manuscript and providing the precious suggestions that enhanced the paper.

References

[1] G. Baumslag, and D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199-201.
[2] B. Farb, and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups, with an appendix by Daryl Cooper, Invent. Math. 131 (1998), no. 2, 419-451.
[3] B. Farb, and L. Mosher, Quasi-isometric rigidity for the solvable Baumslag-Solitar groups II, Invent. Math. 137 (1999), no. 3, 613-649.
[4] J. Meier, Groups, Graphs and Trees, An Introduction to the Geometry of Infinite Groups, London Mathematical Society Student Texts 73, Cambridge University Press, Cambridge, 2008.
[5] D. SaVchuk, Some graphs related to Thompson's group F, Combinatorial and geometric group theory, Trends Math. Birkhäuser/Springer Basel AG, Basel, 2010, 279-296.
[6] D. Savchuk, Schreier graphs of actions of Thompson's group F on the unit interval and on the Cantor set, Geom. Dedicata 175 (2015), 355-372.

Communicated by Kohzo Yamada
Present Address:
Takamichi Sato
Graduate School of Fundamental Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
e-mail: improvement-tak@ruri.waseda.jp

[^0]: Mathematics Subject Classification: 20F65, 20F05, 05C25, 57M15.
 Key words and phrases: Schreier graphs, Baumslag-Solitar groups.

