EXTENSIONS OF ANDO-HIAI INEQUALITY WITH NEGATIVE POWER

Dedicated to the 100th anniversary of the birth of the late Professor Masahiro Nakamura

Masatoshi Fujil and Ritsuo Nakamoto

Received February 19, 2019

Abstract

The Ando-Hiai inequality says that if $A \#_{\alpha} B \leq 1$ for a fixed $\alpha \in[0,1]$ and positive invertible operators A, B on a Hilbert space, then $A^{r} \#{ }_{\alpha} B^{r} \leq 1$ for $r \geq 1$, where $\#_{\alpha}$ is the α-geometric mean defined by $A \#_{\alpha} B=$ $A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}$. In this note, we generalize it as follows: If $A \natural_{\alpha} B \leq 1$ for a fixed $\alpha \in[-1,0]$ and positive invertible operators A, B on a Hilbert space, then $A^{r} \#_{\beta} B^{s} \leq 1$ for $r \in[0,1]$ and $s \in\left[\frac{-2 \alpha r}{-\alpha}, 1\right]$, where $\beta=\frac{\alpha r}{\alpha r+(1-\alpha) s}$ and $A \natural_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}$. As an application, we pose operator inequalities of type of Furuta inequality and grand Furuta inequality. For instance, if $A \geq B>0$, then $A^{-r} \underline{\bigsqcup}_{\frac{1+r}{p+r}} B^{p} \leq A$ holds for $p \leq-1$ and $r \in[-1,0]$, where $A \natural_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}$.

1 Introduction Throughout this note, an operator A means a bounded linear operator acting on a complex Hilbert space H. An operator A is positive, denoted by $A \geq 0$, if $(A x, x) \geq 0$ for all $x \in H$. We denote $A>0$ if A is positive and invertible. The α-geometric mean $\#_{\alpha}$ is defined by $A \#_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}$ for $A>0$ and $B \geq 0$.
A log-majorization theorem due to Ando-Hiai [1] is expressed as follows: For $\alpha \in$ $[0,1]$ and positive definite matrices A and B,

$$
\left(A \#_{\alpha} B\right)^{r} \succ(\log) A^{r} \#_{\alpha} B^{r} \quad(r \geq 1) .
$$

The core in the proof is that $A \#_{\alpha} B \leq 1$ implies $A^{r} \#_{\alpha} B^{r} \leq 1$ for $r \geq 1$. It holds for positive operators A, B on a Hilbert space, and is called the Ando-Hiai inequality,

2010 Mathematics Subject Classification. 47A63, 47A64.
Key words and phrases. Ando-Hiai inequality, generalized Ando-Hiai inequality, Furuta inequality, grand Furuta inequality, operator geometric mean .
simply (AH). Afterwards, it is generalized to two variable version: If $A \#{ }_{\alpha} B \leq 1$ for $\alpha \in[0,1]$ and positive operators A, B, then $A^{r} \#_{\beta} B^{s} \leq 1$ for $r, s \geq 1$, where $\beta=\frac{\alpha r}{\alpha r+(1-\alpha) s}$. It is known that both one-sided versions are equivalent, and that they are alterantive expressions of the Furuta inequality, see [4, 5].
A binary operation \hbar_{α} is defined by the same formula as the α-geometric mean for $\alpha \notin[0,1]$, that is,

$$
A \natural_{\alpha} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}} \quad \text { for } A, B>0 .
$$

Very recently (AH) is extended by Seo [17] and [13] as follows: For $\alpha \in[-1,0]$, $A \natural_{\alpha} B \leq 1$ for $A, B>0$ implies $A^{r} \natural_{\alpha} B^{r} \leq 1$ for $r \in[0,1]$.
In this note, we present two variable version of it, presicely we show that if $A \natural_{\alpha} B \leq 1$ for $\alpha \in[-1,0]$ and positive invertible operators A, B, then $A^{r}{ }_{{ }_{\beta}} B^{s} \leq 1$ for $r \in$ $[0,1]$ and $s \in\left[\frac{-2 \alpha r}{1-\alpha}, 1\right]$, where $\beta=\frac{\alpha r}{\alpha r+(1-\alpha) s}$. As an application, we pose operator inequalities of type of Furuta inequality and grand Furuta inequality.

2 Extensions of (AH) with negative power

In the beginning of this section, we mention the following useful identity on the binary operation t: For $\beta \in \mathbb{R}$ and positive invertible operators X and Y,

$$
\begin{equation*}
X \natural_{\beta} Y=X\left(X^{-1} \natural_{-\beta} Y^{-1}\right) X \tag{2.1}
\end{equation*}
$$

Lemma 2.1. If $A \natural_{\alpha} B \leq 1$ for $\alpha \in[-1,0]$ and positive invertible operators A and B, then $A^{r} \bigsqcup_{\beta} B \leq 1$ for $r \in[0,1]$, where $\beta=\frac{\alpha r}{\alpha r+(1-\alpha)}$.

Proof. For convenience, we show that if $A^{-1} \natural_{\alpha} B \leq 1$, then $A^{-r} \natural_{\beta} B \leq 1$ for $r \in[0,1]$. Thus the assumption ensures that $C^{\alpha} \leq A$, where $C=A^{\frac{1}{2}} B A^{\frac{1}{2}}$. Note that $\beta \in[-1,0]$.
Now we first assume that $r=1-\epsilon \in\left[\frac{1}{2}, 1\right]$, i.e., $\epsilon \in\left[0, \frac{1}{2}\right]$. Then we have

$$
\begin{aligned}
A^{\epsilon}{ }_{\beta} C & =A^{\epsilon}\left(A^{-\epsilon} \#_{-\beta} C^{-1}\right) A^{\epsilon} \\
& \leq A^{\epsilon}\left(C^{-\alpha \epsilon} \#_{-\beta} C^{-1}\right) A^{\epsilon} \\
& =A^{\epsilon} C^{\alpha(1-2 \epsilon)} A^{\epsilon} \\
& \leq A^{\epsilon} A^{1-2 \epsilon} A^{\epsilon}=A .
\end{aligned}
$$

Hence it follows that

$$
A^{-r} \text { Ł }_{\beta} B=A^{-\frac{1}{2}}\left(A^{\epsilon} \bigsqcup_{\beta} C\right) A^{-\frac{1}{2}} \leq A^{-\frac{1}{2}} A A^{-\frac{1}{2}}=1 .
$$

In particular, we note that $A^{r} \natural_{\beta} B \leq 1$ for $r=\frac{1}{2}$, that is, $A^{-\frac{1}{2}} \natural_{\alpha_{1}} B \leq 1$ holds for $\alpha_{1}=\frac{\alpha}{2-\alpha}$. Hence it follows from the preceding paragragh that for $r \in\left[\frac{1}{2}, 1\right]$,

$$
1 \geq\left(A^{-\frac{1}{2}}\right)^{r} \natural_{\beta_{1}} B=A^{-\frac{r}{2}} \natural_{\beta_{1}} B,
$$

where $\beta_{1}=\frac{\alpha_{1} r}{\alpha_{1} r+\left(1-\alpha_{1}\right)}=\frac{\alpha r / 2}{\alpha r / 2+(1-\alpha)}$. This means tht the desired inequality holds for $r \in\left[\frac{1}{4}, \frac{1}{2}\right]$. Finally we have the conclusion by the induction.

Lemma 2.2. If $A \natural_{\alpha} B \leq 1$ for $\alpha \in[-1,0]$ and positive invertible operators A and B, then $A \bigsqcup_{\beta} B^{s} \leq 1$ for $s \in\left[\frac{-2 \alpha}{1-\alpha}, 1\right]$, where $\beta=\frac{\alpha}{\alpha+(1-\alpha) s}$.

Proof. For convenience, we show that if $A \natural_{\alpha} B^{-1} \leq 1$, then $A \natural_{\beta} B^{-s} \leq 1$ for $s \in$ $\left[\frac{-2 \alpha}{1-\alpha}, 1\right]$. Thus the assumption is understood as $D^{1-\alpha} \leq B$, where $D=B^{\frac{1}{2}} A B^{\frac{1}{2}}$. We first note that $\beta \in[-1,0]$ by $s \in\left[\frac{-2 \alpha}{1-\alpha}, 1\right]$. So we put $s=1-\epsilon$ for some $\epsilon \in\left[0,1-\frac{-2 \alpha}{1-\alpha}\right]$. Then we have

$$
D \natural_{\beta} B^{\epsilon}=D\left(D^{-1} \#_{-\beta} B^{-\epsilon}\right) D \leq D\left(D^{-1} \#_{-\beta} D^{-\epsilon(1-\alpha)} D=D^{1-\alpha} \leq B,\right.
$$

so that

$$
A \bigsqcup_{\beta} B^{-s}=B^{-\frac{1}{2}}\left(D \bigsqcup_{\beta} B^{\epsilon}\right) B^{-\frac{1}{2}} \leq B^{-\frac{1}{2}} B B^{-\frac{1}{2}}=1 .
$$

Theorem 2.3. If $A \natural_{\alpha} B \leq 1$ for $\alpha \in[-1,0]$ and positive invertible operators A and B, then $A^{r} \natural_{\beta} B^{s} \leq 1$ for $r \in[0,1]$ and $s \in\left[\frac{-2 \alpha r}{1-\alpha}, 1\right]$, where $\beta=\frac{\alpha r}{\alpha r+(1-\alpha) s}$.

Proof. Suppose that $A \natural_{\alpha} B \leq 1$. Then Lemma 2.1 says that $A^{r} \natural_{\gamma} B \leq 1$ for $r \in[0,1]$, where $\gamma=\frac{\alpha r}{\alpha r+(1-\alpha)}$. Next we apply Lemma 2.2 to this obtained inequality. Then we have

$$
1 \geq A^{r} \square_{\frac{\gamma}{\gamma+(1-\gamma) s}} B^{s}=A^{r} \square_{\frac{\alpha r}{\alpha r+(1-\alpha) s}} B^{s}
$$

for $s \in\left[\frac{-2 \gamma}{1-\gamma}, 1\right]=\left[\frac{-2 \alpha r}{1-\alpha}, 1\right]$.
As a special case $s=r$ in the above, we obtain Seo's original extension of (AH) because $\beta=\alpha$ (by $s=r$) and $r \in\left[\frac{-2 \alpha r}{1-\alpha}, 1\right]$.

Corollary 2.4. If $A \natural_{\alpha} B \leq 1$ for $\alpha \in[-1,0]$ and positive invertible operators A and B, then $A^{r} \bigsqcup_{\beta} B^{r} \leq 1$ for $r \in[0,1]$.

Remark 2.5. We here consider the condition $s \in\left[\frac{-2 \alpha}{1-\alpha}, 1\right]$ in Lemma 2.2. In particular, take $\alpha=-1$. Then the assumption $A \natural_{\alpha} B \leq 1$ means that $B \geq A^{2}$, and $\beta=\frac{\alpha}{\alpha+(1-\alpha) s}=\frac{1}{1-2 s}$. Though $s=1$ in this case by $s \in\left[\frac{-2 \alpha}{1-\alpha}, 1\right]$, the inequality in Lemma 2.2 still holds for $s \in\left[\frac{3}{4}, 1\right]$. We use the formula $X \natural_{\gamma} Y=Y \natural_{1-\gamma} X=$ $Y\left(Y^{-1} \dagger_{\gamma-1} X^{-1}\right) Y$. Note that $-\beta \in[1,2]$. Therefore we have

$$
\begin{aligned}
A \bigsqcup_{\beta} B^{s} & =A\left(A^{-1} \natural_{\beta} B^{-s}\right) A=A B^{-s}\left(B^{s} \#_{\beta-1} A\right) B^{-s} A \\
& \leq A B^{-s}\left(B^{s} \#_{-\beta-1} B^{\frac{1}{2}}\right) B^{-s} A=A B^{-1} A \leq A A^{-2} A=1 .
\end{aligned}
$$

On the other hand, it is false for $s \in\left[0, \frac{1}{4}\right]$. Note that $\beta=\frac{1}{1-2 s} \in[1,2]$. Suppose to the contrary that $A \natural_{\beta} B^{s} \leq 1$ holds under the assumption $B \geq A^{2}$. Then it follows that $1 \leq A \bigsqcup_{\beta} B^{s}=B^{s}\left(B^{-s} \#_{\beta-1} A^{-1}\right) B^{s}$ and so

$$
B^{-2 s} \geq B^{-s} \#_{\beta-1} A^{-1} \geq B^{-s} \#_{\beta-1} B^{-\frac{1}{2}}=B^{-2 s}
$$

so that $B=A^{2}$ follows, which is imposible in general.

3 Operator inequalities of Furuta type In this section, we discuss representations of Furuta type associtated with extensions of Ando-Hiai inequality obtained in the preceding section. For convenience for readers, we cite the Furuta inequality which is a remarkable and amazing extension of Löwner-Heinz inequality (LH) in [?], [?] and [?], i.e., if $A \geq B \geq 0$, then $A^{\alpha} \geq B^{\alpha}$ for $\alpha \in[0,1]$.

Furuta Inequality (FI)

If $A \geq B \geq 0$, then for each $r \geq 0$,
(i) $\quad\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
and
(ii) $\quad\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$
hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq$
 $p+r$.
Related to Furuta inequality, see [2], [3], [6], [8], [9] and [18].

Especially the optimal case $(1+r) q=p+r$ is the most important, which is realized as a beautiful formula by the use of the α-geometric mean:

If $A \geq B \geq 0$, then for each $r \geq 0$

$$
A^{-r} \#_{\frac{1+r}{p+r}} B^{p} \leq A
$$

holds for $p \geq 1$.
More precisely, the conclusion in above is improved by

$$
A^{-r} \#_{\frac{1+r}{p+r}} B^{p} \leq B(\leq A)
$$

holds for $p \geq 1$, due to Kamei [12].
The following inequality is led by Lemma 2.1.
Theorem 3.1. If $A \geq B>0$, then

$$
A^{-r} \mathfrak{q}_{\frac{1+r}{p+r}} B^{p} \leq A
$$

holds for $p \leq-1$ and $r \in[-1,0]$.
Proof. As in the proof of Lemma 2.1, it says that if $A^{-1} \natural_{\alpha} B \leq 1$, then $A^{-r} \natural_{\beta} B \leq 1$ for $r \in[0,1]$, where $\beta=\frac{\alpha r}{\alpha r+(1-\alpha)}$. Thus the assumption is that $C^{\alpha} \leq A$, where $C=A^{\frac{1}{2}} B A^{\frac{1}{2}}$. So we put $B_{1}=C^{\alpha} \leq A$, and moreover $p=\frac{1}{\alpha}, r_{1}=r-1$. Then $p \leq-1$ and $r_{1} \in[-1,0]$ and $\beta=\frac{1+r_{1}}{p+r_{1}}$. Moreover the conclusion is rephrased as

$$
A^{-r+1} \bigsqcup_{\beta} C \leq A, \text { or } A^{-r_{1}} \dot{\varphi}_{\frac{1+r_{1}}{p+r_{1}}} B_{1}^{p} \leq A .
$$

Now the Furuta inequality was generalized to so-called "grand Furuta inequality" by the appearence of Ando-Hiai inequality, which is due to Furuta [10], see also [5] and [6].

Grand Furuta inequality (GFI) If $A \geq B>0$ and $t \in[0,1]$, then

$$
\left[A^{\frac{r}{2}}\left(A^{-\frac{t}{2}} B^{p} A^{-\frac{t}{2}}\right)^{s} A^{\frac{r}{2}}\right]^{\frac{1-t+r}{p-t) s+r}} \leq A^{1-t+r}
$$

holds for $r \geq t$ and $p, s \geq 1$.
As a matter of fact, (GFI) interpolates (FI) with (AH), presicely

$$
\begin{aligned}
& (\mathrm{GFI}) \text { for } t=1, r=s \Longleftrightarrow(\mathrm{AH}) \\
& (\mathrm{GFI}) \text { for } t=0,(s=1) \Longleftrightarrow(\mathrm{FI})
\end{aligned}
$$

As well as (FI), (GFI) has also mean theoretic expression as follows:
If $A \geq B>0$ and $t \in[0,1]$, then

$$
A^{-r+t} \#_{\frac{1-t+r}{(p-t) s+r}}\left(A^{t} \#_{s} B^{p}\right) \leq A
$$

holds for $r \geq t$ and $p, s \geq 1$.
In succession with the above discussion, Theorem 2.3 gives us the following inequality of (GFI)-type.

Theorem 3.2. If $A \geq B>0$, then

$$
A^{-r+1} \varphi_{\frac{r}{r+(p-1) s}}\left(A \#{ }_{s} B^{p}\right) \leq A
$$

holds for $p \leq-1, r \in[0,1]$ and $s \in\left[\frac{2 r}{p-1}, 1\right]$.
Proof. Theorem 2.3 says that if $A^{-1} \mathfrak{\natural}_{\alpha} B \leq 1$, then $A^{-r} \natural_{\beta} B^{s} \leq 1$ for $r \in[0,1]$ and $s \in\left[\frac{-2 \alpha r}{1-\alpha}, 1\right]$, where $\beta=\frac{\alpha r}{\alpha r+(1-\alpha) s}$. So the assumption is that $B_{1}=C^{\alpha} \leq A$, where $C=A^{\frac{1}{2}} B A^{\frac{1}{2}}$. On the other hand, the conclusion is that, putting $\alpha=\frac{1}{p}$,

$$
1 \geq A^{-r} \square_{\frac{\alpha r}{\alpha r+(1-\alpha) s}} B^{s}=A^{-r} \square_{\frac{r}{r+(p-1) s}}\left(A^{-\frac{1}{2}} B_{1}{ }^{p} A^{-\frac{1}{2}}\right)^{s}
$$

or equivalently

$$
A \geq A^{-r+1} \dot{\square}_{\frac{r}{r+(p-1) s}}\left(A \#_{s} B_{1}{ }^{p}\right) .
$$

Furthermore, from the viewpoint of (GFI), the following generalization is expected:
Conjecture 3.3. If $A \geq B>0$ and $t \in[0,1]$, then

$$
A^{-r+t} \mathfrak{q}_{\frac{1-t+r}{r+(p-t) s}}\left(A^{t} \#_{s} B^{p}\right) \leq A
$$

holds for $p \leq-1, r \in[0, t]$ and $s \in\left[\frac{-2 r}{p-t}, 1\right]$.
At present, we can prove it under a restriction:

Theorem 3.4. If $A \geq B>0$ and $t \in[0,1]$, then

$$
A^{-r+t} দ_{\frac{1-t+r}{r+(p-t) s}}\left(A^{t} \#_{s} B^{p}\right) \leq A
$$

holds for $p \leq-1, r \in[0, t]$ and $s \in\left[\max \left\{\frac{-t}{p-t}, \frac{-2 r-(1-t)}{p-t}\right\}, 1\right]$.
Proof. First of all, we note that $-1 \leq \frac{1-t+r}{r+(p-t) s} \leq 0$. Hence we have

$$
A^{r-t} \#_{\frac{-(1-t+r)}{r+(p-t) s}}\left(A^{-t} \#_{s} B^{-p}\right) \leq A^{r-t} \#_{\frac{-(1-t+r)}{r+(p-t) s}} B^{-(p-t) s-t} \leq A^{2(r-t)+1}
$$

The second inequality in above is shown as follows: The exponent $-(p-t) s-t$ of B is nonnegative by $\frac{-t}{p-t} \leq s$. Thus, if $-(p-t) s-t \leq 1$, the second inequality holds. On the other hand, if $-(p-t) s-t \geq 1$, then the Furuta inequality assures that

$$
\left(A^{\frac{t-r}{2}} B^{(-p+t) s-t} A^{\frac{t-r}{2}}\right)^{\frac{1-t+r}{(-p+t) s-r}} \leq A^{1-t+r}
$$

or equivalently

$$
A^{r-t} \#_{\frac{1-t+r}{(-p+t) s-r}} B^{(-p+t) s-t} \leq A^{2(r-t)+1}
$$

Hence, noting that $X \natural_{-q} Y=X\left(X^{-1} \natural_{q} Y^{-1}\right) X$, it follows that

$$
\begin{aligned}
A^{-r+t} \square_{\frac{1-t+r}{r+(p-t) s}}\left(A^{t} \#_{s} B^{p}\right) & =A^{-r+t}\left\{A^{r-t} \#_{\frac{-(1-t+r)}{r+(p-t) s}}\left(A^{-t} \#_{s} B^{-p}\right)\right\} A^{-r+t} \\
& \leq A^{-r+t} A^{2(r-t)+1} A^{-r+t}=A .
\end{aligned}
$$

Remark. On $\gamma=\max \left\{\frac{-t}{p-t}, \frac{-2 r-(1-t)}{p-t}\right\}$ in the statement, $\gamma=\frac{-2 r-(1-t)}{p-t}$ is equivalent to the condition $t-r \leq \frac{1}{2}$, which appears in Theorem 3.4.

The following two theorems show that Theorem 3.4 is true at the critical points $s=\frac{-t}{p-t}, \frac{-2 r-(1-t)}{p-t}$.

Theorem 3.5. If $A \geq B>0$ and $t \in[0,1]$, then

$$
A^{-r+t} দ_{\frac{1-t+r}{r+(p-t) s}}\left(A^{t} \#_{s} B^{p}\right) \leq A
$$

holds for $p \leq-1, r \in[0, t]$ and $s=\frac{-2 r-(1-t)}{p-t}$.
Proof. First of all, we note that $\frac{1-t+r}{r+(p-t) s}=-1$ and $X \natural_{-1} Y=X Y^{-1} X$. Therefore the conclusion is arranged as

$$
A^{-r+t} \text { দ-1 }\left(A^{t} \#_{s} B^{p}\right) \leq A,
$$

$$
A^{-r+t}\left(A^{-t} \#_{s} B^{-p}\right) A^{-r+t} \leq A
$$

and so

$$
A^{-t} \#_{s} B^{-p} \leq A^{1+2 r-2 t} . \quad(*)
$$

To prove this, we recall the Furuta inequality, i.e., if $A \geq B \geq 0$, then

$$
\left(A^{\frac{t}{2}} B^{P} A^{\frac{t}{2}}\right)^{\frac{1}{q}} \leq A^{\frac{P+t}{q}}
$$

holds for $t, P \geq 0$ and $q \geq 1$ with $(1+t) q \geq P+t$. Taking $P=-p$ and $q=\frac{1}{s}$, the required condition $(1+t) q \geq P+t$ is enjoyed and we obtain

$$
\left(A^{\frac{t}{2}} B^{-p} A^{\frac{t}{2}}\right)^{s} \leq A^{1+2 r-t}
$$

which is equivalent to $\left({ }^{*}\right)$.
In succession to Theorem 3.5, the other case $s=\frac{-t}{p-t}$ can be proved:

Theorem 3.6. If $A \geq B>0$ and $t \in[0,1]$, then

$$
A^{-r+t} \emptyset_{\frac{1-t+r}{r+(p-t) s}}\left(A^{t} \#_{s} B^{p}\right) \leq A
$$

holds for $p \leq-1, r \in[0, t]$ and $s=\frac{-t}{p-t}$.
Since we have only to consider the case $\frac{-t}{p-t}<\frac{-2 r-(1-t)}{p-t}$ by the above theorems, that is, $0 \leq t-r<\frac{1}{2}$ can be assumed as cited in Remark of Theorem 3.4, we have

$$
\frac{1-t+r}{r+(p-t) s}=1-\frac{1}{t-r}<-1
$$

As a special case, we take $t=\frac{2}{3}, r=\frac{1}{3}$ and $p=-2$. Then $s=\frac{1}{4}$ and $\frac{1-t+r}{r+(p-t) s}=-2$. Hence the statement in this case is arranged as follows:
If $A \geq B>0$, then

$$
A^{\frac{1}{3}} \mathfrak{\natural}_{-2}\left(A^{\frac{2}{3}} \#_{\frac{1}{4}} B^{-2}\right) \leq A
$$

holds? It is proved by using Furuta inequality twice: First of all, since $A \geq B>0$, (FI) ensures that

$$
\left(A^{\frac{1}{3}} B^{2} A^{\frac{1}{3}}\right)^{\frac{5}{8}} \leq A^{\frac{5}{3}}
$$

So we have

$$
\begin{aligned}
A^{\frac{1}{3}} \natural_{-2}\left(A^{\frac{2}{3}} \#_{\frac{1}{4}} B^{-2}\right) & =A^{\frac{1}{6}}\left(A^{-\frac{1}{6}}\left(A^{\frac{2}{3}} \#_{\frac{1}{4}} B^{-2}\right) A^{-\frac{1}{6}}\right)^{-2} A^{\frac{1}{6}} \\
& =A^{\frac{1}{6}}\left(A^{\frac{1}{6}}\left(A^{-\frac{2}{3}} \#_{\frac{1}{4}} B^{2}\right) A^{\frac{1}{6}}\right)^{2} A^{\frac{1}{6}} \\
& =A^{\frac{1}{6}}\left(A^{-\frac{1}{3}} \#_{\frac{1}{4}}^{\frac{1}{6}} B^{2} A^{\frac{1}{6}}\right)^{2} A^{\frac{1}{6}} \\
& =A^{\frac{1}{6}}\left(A^{-\frac{1}{6}}\left(A^{\frac{1}{3}} B^{2} A^{\frac{1}{3}}\right)^{\frac{1}{4}} A^{-\frac{1}{6}}\right)^{2} A^{\frac{1}{6}} \\
& =\left(A^{\frac{1}{3}} B^{2} A^{\frac{1}{3}}\right)^{\frac{1}{4}} A^{-\frac{1}{3}}\left(A^{\frac{1}{3}} B^{2} A^{\frac{1}{3}}\right)^{\frac{1}{4}} \\
& \leq\left(A^{\frac{1}{3}} B^{2} A^{\frac{1}{3}}\right)^{\frac{1}{2}-\frac{1}{8}} \\
& \leq\left(A^{\frac{1}{3}} B^{2} A^{\frac{1}{3}}\right)^{\frac{3}{8}} \\
& \leq A,
\end{aligned}
$$

as desired.

To prove Theorem 3.6, we cite a lemma obtained by the Furuta inequality.
Lemma 3.7. If $A \geq B>0, t \geq 0$ and $p \leq-1$, then

$$
\left(A^{\frac{t}{2}} B^{-p} A^{\frac{t}{2}}\right)^{\frac{1+t}{p+t}} \leq A^{1+t}
$$

in particular, $\left(A^{\frac{t}{2}} B^{-p} A^{\frac{t}{2}}\right)^{s} \leq A^{t}$ holds for $s=\frac{t}{-p+t}$.
To show Theorem 3.6, we reformulate it as follows:
Theorem 3.8. If $A \geq B>0, t \geq \frac{c-1}{c+1}$ for some $c \geq 2,1 \geq t>r \geq 0$ with $t-r=\frac{1}{c+1}$ and $p \leq-1$, then

$$
A^{\frac{1}{c+1}} \natural_{-c}\left(A^{t} \#_{s} B^{p}\right) \leq A
$$

holds for $s=\frac{t}{-p+t}$.
Proof. Put $\alpha=t-r$. Then $\alpha=\frac{1}{c+1}<\frac{1}{2}, c=\frac{1-\alpha}{\alpha}$ and the assumption $t \geq \frac{c-1}{c+1}$ means $\alpha(c-1) \leq t$, which plays a role when we use the Löwner-Heinz inequality in the below. We put $X=A^{\frac{t}{2}} B^{-p} A^{\frac{t}{2}}$ and $Y=A^{-\frac{r}{2}} X^{s} A^{-\frac{r}{2}}$. Then $A^{\frac{1}{c+1}} \natural_{-c}\left(A^{t} \#{ }_{s} B^{p}\right)=$ $A^{\frac{\alpha}{2}} Y^{c} A^{\frac{\alpha}{2}}$, and $X^{\frac{s}{t}}=X^{\frac{1}{-p+t}} \leq A$, in particular, $X^{s} \leq A^{t}$ and $X^{\frac{s t^{\prime}}{t}} \leq A^{t^{\prime}}$ for $0 \leq t^{\prime} \leq 1+t$ by Lemma 3.7.
(1) First we suppose that $2 n \leq c<2 n+1$ for some n, i.e., $c=2 n+\epsilon$ for some $\epsilon \in[0,1)$. Since $\alpha(c-2) \leq t-\alpha=r$ by $\alpha(c-1) \leq t$, we have $\alpha \epsilon \leq \alpha(2(n-1)+\epsilon)=$ $\alpha(c-2) \leq r$ and so

$$
-1 \leq \frac{\alpha \epsilon-r}{t} \leq \frac{\alpha(2(n-k)+\epsilon)-r}{t} \leq 0
$$

for $k=1,2, \cdots, n$. Noting that $0 \leq 2 s+[\alpha(2(n-1)+\epsilon)-r]_{\bar{t}} \leq \frac{1+t}{-p+t}$ by $\frac{c-1}{c+1} \leq 1$, it follows that

$$
\begin{aligned}
Y^{c} & =Y^{n} Y^{\epsilon} Y^{n}=Y^{n}\left(A^{-\frac{r}{2}} X^{s} A^{-\frac{r}{2}}\right)^{\epsilon} Y^{n} \\
& \leq Y^{n}\left(A^{-\frac{r}{2}} A^{t} A^{-\frac{r}{2}}\right)^{\epsilon} Y^{n}=Y^{n} A^{\alpha \epsilon} Y^{n} \quad \text { by } X^{s} \leq A^{t} \text { and }(\mathrm{LH}) \\
& =Y^{n-1} A^{-\frac{r}{2}} X^{s} A^{\alpha \epsilon-r} X^{s} A^{-\frac{r}{2}} Y^{n-1} \\
& \leq Y^{n-1} A^{-\frac{r}{2}} X^{2 s+(\alpha \epsilon-r) \frac{s}{t}} A^{-\frac{r}{2}} Y^{n-1} \quad \text { by } X^{s} \leq A^{t}, \frac{\alpha \epsilon-r}{t} \in[-1,0] \\
& \leq Y^{n-1} A^{2 t+\alpha \epsilon-2 r} Y^{n-1} \quad \text { by putting } t^{\prime}=2 t+\alpha \epsilon-r \leq 1+t \\
& =Y^{n-1} A^{\alpha(2+\epsilon)} Y^{n-1} \\
& \leq Y^{n-2} A^{\alpha(4+\epsilon)} Y^{n-2} \\
& \cdots \\
& \leq Y A^{\alpha(2(n-1)+\epsilon)} Y \\
& \leq A^{\alpha(2 n+\epsilon)} \\
& =A^{\alpha c} .
\end{aligned}
$$

Hence we have

$$
A^{\frac{1}{c+1}} \natural_{-c}\left(A^{t} \#_{s} B^{p}\right)=A^{\frac{\alpha}{2}} Y^{c} A^{\frac{\alpha}{2}} \leq A^{\alpha c+\alpha}=A,
$$

as desired.
(2) Next we suppose that $2 n+1 \leq c<2 n+2$ for some n, i.e., $c=2 n+1+\epsilon$ for some $\epsilon \in[0,1)$. For this case, we prepare the inequality

$$
Y^{1+\epsilon} \leq A^{\alpha(1+\epsilon)} .
$$

It is proved as follows:

$$
\begin{aligned}
Y^{1+\epsilon} & =\left(A^{-\frac{r}{2}} X^{s} A^{-\frac{r}{2}}\right)^{1+\epsilon} \\
& =A^{-\frac{r}{2}} X^{\frac{s}{2}}\left(X^{\frac{s}{2}} A^{-r} X^{\frac{s}{2}}\right)^{\epsilon} X^{\frac{s}{2}} A^{-\frac{r}{2}} \\
& \leq A^{-\frac{r}{2}} X^{\frac{s}{2}}\left(X^{\frac{s}{2}} X^{-\frac{s r}{t}} X^{\frac{s}{2}}\right)^{\epsilon} X^{\frac{s}{2}} A^{-\frac{r}{2}} \\
& =A^{-\frac{r}{2}} X^{s+\left(s-\frac{s r}{t}\right) \epsilon} A^{-\frac{r}{2}} \\
& \leq A^{-\frac{r}{2}} A^{t+\alpha \epsilon} A^{-\frac{r}{2}}=A^{\alpha(1+\epsilon)} .
\end{aligned}
$$

Now, if $n=0$, i.e., $c=1+\epsilon$, then

$$
A^{\frac{\alpha}{2}} Y^{1+\epsilon} A^{\frac{\alpha}{2}} \leq A^{\frac{\alpha}{2}} A^{\alpha(1+\epsilon)} A^{\frac{\alpha}{2}}=A^{\alpha(2+\epsilon)}=A
$$

Next, if $c=2 n+1+\epsilon$ for some $\epsilon \in[0,1)$ with $n \neq 0$, then

$$
\begin{aligned}
Y^{c} & =Y^{n} Y^{1+\epsilon} Y^{n} \leq Y^{n} A^{\alpha(1+\epsilon)} Y^{n} \\
& =Y^{n-1} A^{-\frac{r}{2}} X^{s} A^{\alpha(1+\epsilon)-r} X^{s} A^{-\frac{r}{2}} Y^{n-1} \\
& \leq Y^{n-1} A^{-\frac{r}{2}} X^{2 s+(\alpha(1+\epsilon)-r) \frac{s}{t}} A^{-\frac{r}{2}} Y^{n-1} \\
& \leq Y^{n-1} A^{2 t+\alpha(1+\epsilon)-2 r} Y^{n-1} \\
& =Y^{n-1} A^{\alpha(3+\epsilon)} Y^{n-1} \\
& \leq Y^{n-2} A^{\alpha(5+\epsilon)} Y^{n-2} \\
& \cdots \\
& \leq Y A^{\alpha(2(n-1)+1+\epsilon)} Y \\
& \leq A^{\alpha(2 n+1+\epsilon)}=A^{\alpha c},
\end{aligned}
$$

in which $(-1 \leq-r \leq) \alpha(2(n-1)+1+\epsilon)-r \leq 0$ is required in order to use the Löwner-Heinz inequality. (Fortunately it is assured by the assumption $t \geq \frac{c-1}{c+1}$.) Hence we have

$$
A^{\frac{1}{c+1}} \natural_{-c}\left(A^{t} \#{ }_{s} B^{p}\right)=A^{\frac{\alpha}{2}} Y^{c} A^{\frac{\alpha}{2}} \leq A^{\alpha c+\alpha}=A,
$$

as desired.

4 Log-majorization In this section, we express operator inequalities obtained in Section 2 as log-majorization inequalities.

Theorem 4.1. For $\alpha \in[-1,0]$ and positive invertible operators A and B,

$$
\left(A \natural_{\alpha} B\right)^{\frac{r r s}{\alpha r+(1-\alpha) s}} \succ_{(\log)} A^{r} \natural_{\beta} B^{s}
$$

holds for $r, s \in[0,1]$, where $\beta=\frac{\alpha r}{\alpha r+(1-\alpha) s}$.
Theorem 4.2. For $\alpha \in[-1,0]$ and positive invertible operators A and B,

$$
\left(A \bigsqcup_{\alpha} B\right)^{\frac{(1-t+r) s}{\alpha r+(1-\alpha t) s}} \succ_{(\log)} A^{r} \natural_{\beta} B^{s}
$$

holds for $r, s \in[0,1]$, where $\beta=\frac{\alpha(1-t+r)}{\alpha r+(1-\alpha t) s}$.

References

[1] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197, 198 (1994), 113-131.
[2] M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory, 23 (1990), 67-72.
[3] M. Fujii, Furutas inequality and its related topics, Ann. Funct. Anal., 1 (2010), 28-45.
[4] M. Fujii, M. Ito, E. Kamei and A. Matsumoto, Operator inequalities related to Ando-Hiai inequality, Sci. Math. Japon., 70 (2009), 229-232.
[5] M. Fujii and E. Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 2751-2756.
[6] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent Developments of Mond-Pečarić Method in Operator Inequalities, Element, Zagreb, Monographs in Inequalities 4, 2012.
[7] M. Fujii and E. Kamei, Ando-Hiai inequality and Furuta inequality, Linear Algebra Appl., 416 (2006), 541-545.
[8] T. Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
[9] T. Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad. 65 (1989), 126.
[10] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl., 219 (1995), 139-155.
[11] E. Heinz, Beitrage zur Storungstheorie der Spectral-zegung, Math. Ann., 123 (1951), 415-438.
[12] E. Kamei, A satellite to Furuta's inequality, Math. Japon. 33 (1988), 883-886.
[13] M. Kian and Y. Seo, Norm inequalities related to the matrix geometric mean of negative power, Sci. Math. Japon. (in Editione Electronica), e-2018, article 2018-7.
[14] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
[15] K. Löwner, Über monotone Matrix function, Math. Z., 38 (1934), 177-216.
[16] G. K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc., 36 (1972), 309-310.
[17] Y. Seo, Matrix trace inequalities related to the Tsallis relative entropy of negative order, J. Math. Anal. Appl., 472 (2019), 1499-1508.
[18] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 141-146.

Communicated by Junichi Fujii
(M. Fujii) Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan

E-mail address: mfujii@cc.osaka-kyoiku.ac.jp
(R. Nakamoto) Daihara-cho, Hitachi 316-0021, Japan

E-mail address: r-naka@net1.jway.ne.jp

