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Abstract. The Ando-Hiai inequality says that if A#αB ≤ 1 for a fixed
α ∈ [0, 1] and positive invertible operators A,B on a Hilbert space, then

Ar#αB
r ≤ 1 for r ≥ 1, where #α is the α-geometric mean defined by A#αB =

A
1
2 (A− 1

2BA− 1
2 )αA

1
2 . In this note, we generalize it as follows: If A�αB ≤ 1 for

a fixed α ∈ [−1, 0] and positive invertible operators A,B on a Hilbert space,
then Ar#βB

s ≤ 1 for r ∈ [0, 1] and s ∈ [−2αr
−α , 1], where β = αr

αr+(1−α)s and

A�αB = A
1
2 (A− 1

2BA− 1
2 )αA

1
2 . As an application, we pose operator inequalities

of type of Furuta inequality and grand Furuta inequality. For instance, if
A ≥ B > 0, then A−r� 1+r

p+r
Bp ≤ A holds for p ≤ −1 and r ∈ [−1, 0], where

A�αB = A
1
2 (A− 1

2BA− 1
2 )αA

1
2 .

1 Introduction Throughout this note, an operator A means a bounded linear

operator acting on a complex Hilbert space H. An operator A is positive, denoted

by A ≥ 0, if (Ax, x) ≥ 0 for all x ∈ H. We denote A > 0 if A is positive and

invertible. The α-geometric mean #α is defined by A#αB = A
1
2 (A− 1

2BA− 1
2 )αA

1
2

for A > 0 and B ≥ 0.

A log-majorization theorem due to Ando-Hiai [1] is expressed as follows: For α ∈
[0, 1] and positive definite matrices A and B,

(A#αB)r �(log) A
r#αB

r (r ≥ 1).

The core in the proof is that A#αB ≤ 1 implies Ar#αB
r ≤ 1 for r ≥ 1. It holds for

positive operators A,B on a Hilbert space, and is called the Ando-Hiai inequality,
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simply (AH). Afterwards, it is generalized to two variable version: If A#αB ≤ 1

for α ∈ [0, 1] and positive operators A,B, then Ar#βB
s ≤ 1 for r, s ≥ 1, where

β = αr
αr+(1−α)s

. It is known that both one-sided versions are equivalent, and that

they are alterantive expressions of the Furuta inequality, see [4, 5].

A binary operation �α is defined by the same formula as the α-geometric mean for

α �∈ [0, 1], that is,

A�αB = A
1
2 (A− 1

2BA− 1
2 )αA

1
2 for A,B > 0.

Very recently (AH) is extended by Seo [17] and [13] as follows: For α ∈ [−1, 0],

A�αB ≤ 1 for A,B > 0 implies Ar�αB
r ≤ 1 for r ∈ [0, 1].

In this note, we present two variable version of it, presicely we show that if A�αB ≤ 1

for α ∈ [−1, 0] and positive invertible operators A,B, then Ar�βB
s ≤ 1 for r ∈

[0, 1] and s ∈ [−2αr
1−α

, 1], where β = αr
αr+(1−α)s

. As an application, we pose operator

inequalities of type of Furuta inequality and grand Furuta inequality.

2 Extensions of (AH) with negative power

In the beginning of this section, we mention the following useful identity on the

binary operation �: For β ∈ R and positive invertible operators X and Y ,

X�βY = X(X−1�−βY
−1)X. (2.1)

Lemma 2.1. If A�αB ≤ 1 for α ∈ [−1, 0] and positive invertible operators A and

B, then Ar�βB ≤ 1 for r ∈ [0, 1], where β = αr
αr+(1−α)

.

Proof. For convenience, we show that if A−1�αB ≤ 1, then A−r�βB ≤ 1 for

r ∈ [0, 1]. Thus the assumption ensures that Cα ≤ A, where C = A
1
2BA

1
2 . Note

that β ∈ [−1, 0].

Now we first assume that r = 1− ε ∈ [1
2
, 1], i.e., ε ∈ [0, 1

2
]. Then we have

Aε�βC = Aε(A−ε#−βC
−1)Aε

≤ Aε(C−αε#−βC
−1)Aε

= AεCα(1−2ε)Aε

≤ AεA1−2εAε = A.
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Hence it follows that

A−r�βB = A− 1
2 (Aε�βC)A− 1

2 ≤ A− 1
2AA− 1

2 = 1.

In particular, we note that Ar�βB ≤ 1 for r = 1
2
, that is, A− 1

2 �α1B ≤ 1 holds for

α1 =
α

2−α
. Hence it follows from the preceding paragragh that for r ∈ [1

2
, 1],

1 ≥ (A− 1
2 )r�β1B = A− r

2 �β1B,

where β1 =
α1r

α1r+(1−α1)
= αr/2

αr/2+(1−α)
. This means tht the desired inequality holds for

r ∈ [1
4
, 1
2
]. Finally we have the conclusion by the induction.

Lemma 2.2. If A�αB ≤ 1 for α ∈ [−1, 0] and positive invertible operators A and

B, then A�βB
s ≤ 1 for s ∈ [−2α

1−α
, 1], where β = α

α+(1−α)s
.

Proof. For convenience, we show that if A�αB
−1 ≤ 1, then A�βB

−s ≤ 1 for s ∈
[−2α
1−α

, 1]. Thus the assumption is understood as D1−α ≤ B, where D = B
1
2AB

1
2 .

We first note that β ∈ [−1, 0] by s ∈ [−2α
1−α

, 1]. So we put s = 1 − ε for some

ε ∈ [0, 1− −2α
1−α

]. Then we have

D�βB
ε = D(D−1#−βB

−ε)D ≤ D(D−1#−βD
−ε(1−α)D = D1−α ≤ B,

so that

A�βB
−s = B− 1

2 (D�βB
ε)B− 1

2 ≤ B− 1
2BB− 1

2 = 1.

Theorem 2.3. If A�αB ≤ 1 for α ∈ [−1, 0] and positive invertible operators A and

B, then Ar�βB
s ≤ 1 for r ∈ [0, 1] and s ∈ [−2αr

1−α
, 1], where β = αr

αr+(1−α)s
.

Proof. Suppose that A�αB ≤ 1. Then Lemma 2.1 says that Ar�γB ≤ 1 for r ∈ [0, 1],

where γ = αr
αr+(1−α)

. Next we apply Lemma 2.2 to this obtained inequality. Then

we have

1 ≥ Ar� γ
γ+(1−γ)s

Bs = Ar� αr
αr+(1−α)s

Bs

for s ∈ [−2γ
1−γ

, 1] = [−2αr
1−α

, 1].

As a special case s = r in the above, we obtain Seo’s original extension of (AH)

because β = α (by s = r) and r ∈ [−2αr
1−α

, 1].

Corollary 2.4. If A�αB ≤ 1 for α ∈ [−1, 0] and positive invertible operators A and

B, then Ar�βB
r ≤ 1 for r ∈ [0, 1].
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Remark 2.5. We here consider the condition s ∈ [−2α
1−α

, 1] in Lemma 2.2. In

particular, take α = −1. Then the assumption A�αB ≤ 1 means that B ≥ A2,

and β = α
α+(1−α)s

= 1
1−2s

. Though s = 1 in this case by s ∈ [−2α
1−α

, 1], the inequality

in Lemma 2.2 still holds for s ∈ [3
4
, 1]. We use the formula X�γY = Y �1−γX =

Y (Y −1�γ−1X
−1)Y . Note that −β ∈ [1, 2]. Therefore we have

A�βB
s = A(A−1�βB

−s)A = AB−s(Bs#β−1A)B
−sA

≤ AB−s(Bs#−β−1B
1
2 )B−sA = AB−1A ≤ AA−2A = 1.

On the other hand, it is false for s ∈ [0, 1
4
]. Note that β = 1

1−2s
∈ [1, 2]. Suppose to

the contrary that A�βB
s ≤ 1 holds under the assumption B ≥ A2. Then it follows

that 1 ≤ A�βB
s = Bs(B−s#β−1A

−1)Bs and so

B−2s ≥ B−s#β−1A
−1 ≥ B−s#β−1B

− 1
2 = B−2s,

so that B = A2 follows, which is imposible in general.

3 Operator inequalities of Furuta type In this section, we discuss represen-

tations of Furuta type associtated with extensions of Ando-Hiai inequality obtained

in the preceding section. For convenience for readers, we cite the Furuta inequality

which is a remarkable and amazing extension of Löwner-Heinz inequality (LH) in

[?], [?] and [?], i.e., if A ≥ B ≥ 0, then Aα ≥ Bα for α ∈ [0, 1].

Furuta Inequality (FI)

If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (B
r
2ApB

r
2 )

1
q ≥ (B

r
2BpB

r
2 )

1
q

and

(ii) (A
r
2BpA

r
2 )

1
q ≥ (A

r
2ApA

r
2 )

1
q

hold for p ≥ 0 and q ≥ 1 with (1 + r)q ≥
p+ r.

p

q

(0,−r)

(1, 1)

(1 + r)q = p+ r

q = p

(1, 0)

Related to Furuta inequality, see [2], [3], [6], [8], [9] and [18].
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Especially the optimal case (1+ r)q = p+ r is the most important, which is realized

as a beautiful formula by the use of the α-geometric mean:

If A ≥ B ≥ 0, then for each r ≥ 0

A−r # 1+r
p+r

Bp ≤ A

holds for p ≥ 1.

More precisely, the conclusion in above is improved by

A−r # 1+r
p+r

Bp ≤ B (≤ A)

holds for p ≥ 1, due to Kamei [12].

The following inequality is led by Lemma 2.1.

Theorem 3.1. If A ≥ B > 0, then

A−r� 1+r
p+r

Bp ≤ A

holds for p ≤ −1 and r ∈ [−1, 0].

Proof. As in the proof of Lemma 2.1, it says that if A−1�αB ≤ 1, then A−r�βB ≤ 1

for r ∈ [0, 1], where β = αr
αr+(1−α)

. Thus the assumption is that Cα ≤ A, where

C = A
1
2BA

1
2 . So we put B1 = Cα ≤ A, and moreover p = 1

α
, r1 = r − 1. Then

p ≤ −1 and r1 ∈ [−1, 0] and β = 1+r1
p+r1

. Moreover the conclusion is rephrased as

A−r+1�βC ≤ A, or A−r1� 1+r1
p+r1

B1
p ≤ A.

Now the Furuta inequality was generalized to so-called “grand Furuta inequality”

by the appearence of Ando-Hiai inequality, which is due to Furuta [10], see also [5] and

[6].

Grand Furuta inequality (GFI) If A ≥ B > 0 and t ∈ [0, 1], then

[A
r
2 (A− t

2BpA− t
2 )sA

r
2 ]

1−t+r
(p−t)s+r ≤ A1−t+r

holds for r ≥ t and p, s ≥ 1.

As a matter of fact, (GFI) interpolates (FI) with (AH), presicely
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(GFI) for t = 1, r = s ⇐⇒ (AH)

(GFI) for t = 0, (s = 1) ⇐⇒ (FI).

As well as (FI), (GFI) has also mean theoretic expression as follows:

If A ≥ B > 0 and t ∈ [0, 1], then

A−r+t # 1−t+r
(p−t)s+r

(At #s Bp) ≤ A

holds for r ≥ t and p, s ≥ 1.

In succession with the above discussion, Theorem 2.3 gives us the following inequality

of (GFI)-type.

Theorem 3.2. If A ≥ B > 0, then

A−r+1� r
r+(p−1)s

(A#sB
p) ≤ A

holds for p ≤ −1, r ∈ [0, 1] and s ∈ [−2r
p−1

, 1].

Proof. Theorem 2.3 says that if A−1�αB ≤ 1, then A−r�βB
s ≤ 1 for r ∈ [0, 1] and

s ∈ [−2αr
1−α

, 1], where β = αr
αr+(1−α)s

. So the assumption is that B1 = Cα ≤ A, where

C = A
1
2BA

1
2 . On the other hand, the conclusion is that, putting α = 1

p
,

1 ≥ A−r � αr
αr+(1−α)s

Bs = A−r � r
r+(p−1)s

(A− 1
2B1

pA− 1
2 )s

or equivalently

A ≥ A−r+1 � r
r+(p−1)s

(A#sB1
p).

Furthermore, from the viewpoint of (GFI), the following generalization is expected:

Conjecture 3.3. If A ≥ B > 0 and t ∈ [0, 1], then

A−r+t � 1−t+r
r+(p−t)s

(At#sB
p) ≤ A

holds for p ≤ −1, r ∈ [0, t] and s ∈ [−2r
p−t

, 1].

At present, we can prove it under a restriction:
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Theorem 3.4. If A ≥ B > 0 and t ∈ [0, 1], then

A−r+t � 1−t+r
r+(p−t)s

(At#sB
p) ≤ A

holds for p ≤ −1, r ∈ [0, t] and s ∈ [max{ −t
p−t

, −2r−(1−t)
p−t

}, 1].

Proof. First of all, we note that −1 ≤ 1−t+r
r+(p−t)s

≤ 0. Hence we have

Ar−t #−(1−t+r)
r+(p−t)s

(A−t#sB
−p) ≤ Ar−t #−(1−t+r)

r+(p−t)s

B−(p−t)s−t ≤ A2(r−t)+1.

The second inequality in above is shown as follows: The exponent −(p− t)s− t of B

is nonnegative by −t
p−t

≤ s. Thus, if −(p− t)s− t ≤ 1, the second inequality holds.

On the other hand, if −(p− t)s− t ≥ 1, then the Furuta inequality assures that

(A
t−r
2 B(−p+t)s−tA

t−r
2 )

1−t+r
(−p+t)s−r ≤ A1−t+r,

or equivalently

Ar−t # 1−t+r
(−p+t)s−r

B(−p+t)s−t ≤ A2(r−t)+1.

Hence, noting that X�−qY = X(X−1�qY
−1)X, it follows that

A−r+t � 1−t+r
r+(p−t)s

(At#sB
p) = A−r+t{Ar−t#−(1−t+r)

r+(p−t)s

(A−t#sB
−p)}A−r+t

≤ A−r+tA2(r−t)+1A−r+t = A.

Remark. On γ = max{ −t
p−t

, −2r−(1−t)
p−t

} in the statement, γ = −2r−(1−t)
p−t

is equivalent

to the condition t− r ≤ 1
2
, which appears in Theorem 3.4.

The following two theorems show that Theorem 3.4 is true at the critical points

s = −t
p−t

, −2r−(1−t)
p−t

.

Theorem 3.5. If A ≥ B > 0 and t ∈ [0, 1], then

A−r+t � 1−t+r
r+(p−t)s

(At#sB
p) ≤ A

holds for p ≤ −1, r ∈ [0, t] and s = −2r−(1−t)
p−t

.

Proof. First of all, we note that 1−t+r
r+(p−t)s

= −1 and X�−1Y = XY −1X. Therefore

the conclusion is arranged as

A−r+t �−1 (At#sB
p) ≤ A,

EXTENSIONS OF ANDO-HIAI INEQUALITY WITH NEGATIVE POWER
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A−r+t(A−t#sB
−p)A−r+t ≤ A

and so

A−t#sB
−p ≤ A1+2r−2t. (∗)

To prove this, we recall the Furuta inequality, i.e., if A ≥ B ≥ 0, then

(A
t
2BPA

t
2 )

1
q ≤ A

P+t
q

holds for t, P ≥ 0 and q ≥ 1 with (1 + t)q ≥ P + t. Taking P = −p and q = 1
s
, the

required condition (1 + t)q ≥ P + t is enjoyed and we obtain

(A
t
2B−pA

t
2 )s ≤ A1+2r−t,

which is equivalent to (*).

In succession to Theorem 3.5, the other case s = −t
p−t

can be proved:

Theorem 3.6. If A ≥ B > 0 and t ∈ [0, 1], then

A−r+t � 1−t+r
r+(p−t)s

(At#sB
p) ≤ A

holds for p ≤ −1, r ∈ [0, t] and s = −t
p−t

.

Since we have only to consider the case −t
p−t

< −2r−(1−t)
p−t

by the above theorems, that

is, 0 ≤ t− r < 1
2
can be assumed as cited in Remark of Theorem 3.4, we have

1− t+ r

r + (p− t)s
= 1− 1

t− r
< −1.

As a special case, we take t = 2
3
, r = 1

3
and p = −2. Then s = 1

4
and 1−t+r

r+(p−t)s
= −2.

Hence the statement in this case is arranged as follows:

If A ≥ B > 0, then

A
1
3 �−2(A

2
3# 1

4
B−2) ≤ A

holds? It is proved by using Furuta inequality twice: First of all, since A ≥ B > 0,

(FI) ensures that

(A
1
3B2A

1
3 )

5
8 ≤ A

5
3 .
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So we have

A
1
3 �−2(A

2
3# 1

4
B−2) = A

1
6 (A− 1

6 (A
2
3 # 1

4
B−2)A− 1

6 )−2A
1
6

= A
1
6 (A

1
6 (A− 2

3 # 1
4
B2)A

1
6 )2A

1
6

= A
1
6 (A− 1

3 # 1
4
A

1
6B2A

1
6 )2A

1
6

= A
1
6 (A− 1

6 (A
1
3B2A

1
3 )

1
4A− 1

6 )2A
1
6

= (A
1
3B2A

1
3 )

1
4A− 1

3 (A
1
3B2A

1
3 )

1
4

≤ (A
1
3B2A

1
3 )

1
2
− 1

8

≤ (A
1
3B2A

1
3 )

3
8

≤ A,

as desired.

To prove Theorem 3.6, we cite a lemma obtained by the Furuta inequality.

Lemma 3.7. If A ≥ B > 0, t ≥ 0 and p ≤ −1, then

(A
t
2B−pA

t
2 )

1+t
−p+t ≤ A1+t;

in particular, (A
t
2B−pA

t
2 )s ≤ At holds for s = t

−p+t
.

To show Theorem 3.6, we reformulate it as follows:

Theorem 3.8. If A ≥ B > 0, t ≥ c−1
c+1

for some c ≥ 2, 1 ≥ t > r ≥ 0 with

t− r = 1
c+1

and p ≤ −1, then

A
1

c+1 �−c (A
t#sB

p) ≤ A

holds for s = t
−p+t

.

Proof. Put α = t−r. Then α = 1
c+1

< 1
2
, c = 1−α

α
and the assumption t ≥ c−1

c+1
means

α(c − 1) ≤ t, which plays a role when we use the Löwner-Heinz inequality in the

below. We put X = A
t
2B−pA

t
2 and Y = A− r

2XsA− r
2 . Then A

1
c+1 �−c (At#sB

p) =

A
α
2 Y cA

α
2 , and X

s
t = X

1
−p+t ≤ A, in particular, Xs ≤ At and X

st′
t ≤ At′ for

0 ≤ t′ ≤ 1 + t by Lemma 3.7.

(1) First we suppose that 2n ≤ c < 2n + 1 for some n, i.e., c = 2n + ε for some

ε ∈ [0, 1). Since α(c−2) ≤ t−α = r by α(c−1) ≤ t, we have αε ≤ α(2(n−1)+ε) =

α(c− 2) ≤ r and so

−1 ≤ αε− r

t
≤ α(2(n− k) + ε)− r

t
≤ 0

EXTENSIONS OF ANDO-HIAI INEQUALITY WITH NEGATIVE POWER
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for k = 1, 2, · · · , n. Noting that 0 ≤ 2s+ [α(2(n− 1) + ε)− r]

s

t
≤ 1+t

−p+t
by c−1

c+1
≤ 1,

it follows that

Y c = Y nY εY n = Y n(A− r
2XsA− r

2 )εY n

≤ Y n(A− r
2AtA− r

2 )εY n = Y nAαεY n by Xs ≤ At and (LH)

= Y n−1A− r
2XsAαε−rXsA− r

2Y n−1

≤ Y n−1A− r
2X2s+(αε−r) s

tA− r
2Y n−1 by Xs ≤ At,

αε− r

t
∈ [−1, 0]

≤ Y n−1A2t+αε−2rY n−1 by putting t′ = 2t+ αε− r ≤ 1 + t

= Y n−1Aα(2+ε)Y n−1

≤ Y n−2Aα(4+ε)Y n−2

· · ·
≤ Y Aα(2(n−1)+ε)Y

≤ Aα(2n+ε)

= Aαc.

Hence we have

A
1

c+1 �−c (A
t#sB

p) = A
α
2 Y cA

α
2 ≤ Aαc+α = A,

as desired.

(2) Next we suppose that 2n + 1 ≤ c < 2n + 2 for some n, i.e., c = 2n + 1 + ε for

some ε ∈ [0, 1). For this case, we prepare the inequality

Y 1+ε ≤ Aα(1+ε).

It is proved as follows:

Y 1+ε = (A− r
2XsA− r

2 )1+ε

= A− r
2X

s
2 (X

s
2A−rX

s
2 )εX

s
2A− r

2

≤ A− r
2X

s
2 (X

s
2X− sr

t X
s
2 )εX

s
2A− r

2

= A− r
2Xs+(s− sr

t
)εA− r

2

≤ A− r
2At+αεA− r

2 = Aα(1+ε).

Now, if n = 0, i.e., c = 1 + ε, then

A
α
2 Y 1+εA

α
2 ≤ A

α
2 Aα(1+ε)A

α
2 = Aα(2+ε) = A.
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Next, if c = 2n+ 1 + ε for some ε ∈ [0, 1) with n �= 0, then

Y c = Y nY 1+εY n ≤ Y nAα(1+ε)Y n

= Y n−1A− r
2XsAα(1+ε)−rXsA− r

2Y n−1

≤ Y n−1A− r
2X2s+(α(1+ε)−r) s

tA− r
2Y n−1

≤ Y n−1A2t+α(1+ε)−2rY n−1

= Y n−1Aα(3+ε)Y n−1

≤ Y n−2Aα(5+ε)Y n−2

· · ·
≤ Y Aα(2(n−1)+1+ε)Y

≤ Aα(2n+1+ε) = Aαc,

in which (−1 ≤ −r ≤) α(2(n − 1) + 1 + ε) − r ≤ 0 is required in order to use the

Löwner-Heinz inequality. (Fortunately it is assured by the assumption t ≥ c−1
c+1

.)

Hence we have

A
1

c+1 �−c (A
t#sB

p) = A
α
2 Y cA

α
2 ≤ Aαc+α = A,

as desired.

4 Log-majorization In this section, we express operator inequalities obtained in

Section 2 as log-majorization inequalities.

Theorem 4.1. For α ∈ [−1, 0] and positive invertible operators A and B,

(A�αB)
rs

αr+(1−α)s �(log) A
r�βB

s

holds for r, s ∈ [0, 1], where β = αr
αr+(1−α)s

.

Theorem 4.2. For α ∈ [−1, 0] and positive invertible operators A and B,

(A�αB)
(1−t+r)s

αr+(1−αt)s �(log) A
r�βB

s

holds for r, s ∈ [0, 1], where β = α(1−t+r)
αr+(1−αt)s

.

EXTENSIONS OF ANDO-HIAI INEQUALITY WITH NEGATIVE POWER
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Method in Operator Inequalities, Element, Zagreb, Monographs in Inequalities 4,
2012.

[7] M. Fujii and E. Kamei, Ando-Hiai inequality and Furuta inequality, Linear Algebra
Appl., 416 (2006), 541-545.

[8] T. Furuta, A ≥ B ≥ 0 assures (BrApBr)1/q ≥ B(p+2r)/q for r ≥ 0, p ≥ 0, q ≥ 1 with
(1 + 2r)q ≥ p+ 2r, Proc. Amer. Math. Soc. 101 (1987), 85–88.

[9] T. Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad. 65
(1989), 126.

[10] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear
Algebra Appl., 219 (1995), 139-155.

[11] E. Heinz, Beitrage zur Storungstheorie der Spectral-zegung, Math. Ann., 123 (1951),
415–438.

[12] E. Kamei, A satellite to Furuta’s inequality, Math. Japon. 33 (1988), 883–886.

[13] M. Kian and Y. Seo, Norm inequalities related to the matrix geometric mean of neg-
ative power, Sci. Math. Japon. (in Editione Electronica), e-2018, article 2018-7.

[14] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980),
205-224.
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