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ABSTRACT. The Ando-Hiai inequality says that if A#.,B < 1 for a fixed
a € [0,1] and positive invertible operators A, B on a Hilbert space, then

A"#,B" < 1forr > 1, where #,, is the a-geometric mean defined by A#,B =
A%(A_EBA )‘)‘Az In this note, we generalize it as follows: If A, B <1 for
a fixed o € [—1,0] and positive invertible operators A, B on a Hilbert space,

then A"#3B* < 1 for r € [0,1] and s € [Z227 1], where 3 = m and

At B = Az (A~ IBA- )O‘Az As an application, we pose operator inequalities
of type of Furuta inequality and grand Furuta inequality. For instance, if
A > B > 0, then A*’”ulﬁ-B” < A holds for p < —1 and r € [—1,0], where

AtoB = A3 (A"3BA™ )aAz

1 Introduction Throughout this note, an operator A means a bounded linear
operator acting on a complex Hilbert space H. An operator A is positive, denoted
by A > 0, if (Az,z) > 0 for all + € H. We denote A > 0 if A is positive and
invertible. The a-geometric mean #, is defined by A#.,B = A%(A_%BA_%)QA%
for A>0and B > 0.

A log-majorization theorem due to Ando-Hiai [1] is expressed as follows: For o €

[0,1] and positive definite matrices A and B,
(A#QB)T >~ (log) AT#QBT (7’ > 1)

The core in the proof is that A#,B < 1 implies A"#.,B" < 1 for r > 1. It holds for
positive operators A, B on a Hilbert space, and is called the Ando-Hiai inequality,
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simply (AH). Afterwards, it is generalized to two variable version: If A#,B <1
for @ € [0, 1] and positive operators A, B, then A"#zB* < 1 for r,s > 1, where
b = m It is known that both one-sided versions are equivalent, and that
they are alterantive expressions of the Furuta inequality, see [4, 5].

A binary operation f, is defined by the same formula as the a-geometric mean for

a ¢ 10, 1], that is,
At,B = A2(A"2BA2)*Az for A, B > 0.

Very recently (AH) is extended by Seo [17] and [13] as follows: For « € [—1,0],
AboB <1 for A, B > 0 implies A5, B" <1 for r € [0, 1].
In this note, we present two variable version of it, presicely we show that if A, B <1

for a« € [—1,0] and positive invertible operators A, B, then A™qzB* < 1 for r €

[0,1] and s € [72%,1], where § = pram R As an application, we pose operator

inequalities of type of Furuta inequality and grand Furuta inequality.

2 Extensions of (AH) with negative power
In the beginning of this section, we mention the following useful identity on the

binary operation f: For § € R and positive invertible operators X and Y,
XY = X (X' 5V HX. (2.1)

Lemma 2.1. If Aj,B < 1 for a € [—1,0] and positive invertible operators A and

B, then A™1zB <1 for r € [0, 1], where f = #{_a)

Proof.  For convenience, we show that if A~'3,B < 1, then A"fgB < 1 for
r € [0,1]. Thus the assumption ensures that C* < A, where C' = A3BA:. Note
that 8 € [-1,0].

Now we first assume that r =1 — ¢ € [,1], i.e., € € [0, 3]. Then we have

AuC = A (A 4O A
S Ae(c—ae#iﬂc—l)Ae
_ AeCa(l—2e)Ae
< ATATA = A,
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Hence it follows that
ATaB = A3 (A0)A T < ATTAATE = 1

In particular, we note that A"j3B < 1 for r = %, that is, A’%halB < 1 holds for

ay = 5%=. Hence it follows from the preceding paragragh that for r € [%7 1],

1> (A2)5 B = A 34 B,

where 5, = o f‘(llial) = — /zoigfa)' This means tht the desired inequality holds for
r € [§,3]. Finally we have the conclusion by the induction.

Lemma 2.2. If Ay, B <1 for a € [—1,0] and positive invertible operators A and

B, then AygB® <1 for s € [%, 1], where 8 = m

Proof. For convenience, we show that if Aj,B~' < 1, then AfjzB~* < 1 for s €
[722,1]. Thus the assumption is understood as D'~ < B, where D = B2AB:.
We first note that 3 € [~1,0] by s € [722,1]. So we put s = 1 — ¢ for some

1-a”’
€ € 10,1 — 722]. Then we have

et
DB = D(D'# 3B~)D < D(D™'# _zD<0=¥D = p'~* < B,
so that
AtgB~* = B 2(DijsB)B ™2 < B'*BB 2 = 1.
Theorem 2.3. If Af,B <1 for a € [—1,0] and positive invertible operators A and

B, then A™tB* <1 forr € [0,1] and s € [7225,1], where 8 = —2

1—-a ar+(1—a)s”

Proof. Suppose that A, B < 1. Then Lemma 2.1 says that A", B < 1 forr € [0,1],

where v = — +?La)' Next we apply Lemma 2.2 to this obtained inequality. Then
we have
1>A"_+ B°=A"f o B
S arF(1-a)s
for s € [%7 1] = [$225,1].

As a special case s = r in the above, we obtain Seo’s original extension of (AH)

because 3 =« (by s =7r) and 7 € [ﬂ 1.

1-a?

Corollary 2.4. If Aj,B <1 for a € [—1,0] and positive invertible operators A and
B, then A™qsB" <1 forr € [0, 1].
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Remark 2.5. We here consider the condition s € [%, 1] in Lemma 2.2. In
particular, take & = —1. Then the assumption Aj,B < 1 means that B > A2
and g = m = 1%23 Though s = 1 in this case by s € [%, 1], the inequality
in Lemma 2.2 still holds for s € [3,1]. We use the formula XY = Vi, X =
Y (Y 'h,1 X 1)Y. Note that —3 € [1,2]. Therefore we have

AfgB® = A(A 3B~ *)A = AB™*(B*#5_1A)B A
< AB™*(B*#_5_1B?)B*A=AB 'A< AATA=1.

On the other hand, it is false for s € [0, 1]. Note that 3 = == € [1,2]. Suppose to
the contrary that AfzB* < 1 holds under the assumption B > A?. Then it follows
that 1 < AigB® = B¥(B*#3_1A7")B* and so

B% > B #s A > B #5 B"F = B>,

so that B = A2 follows, which is imposible in general.

3 Operator inequalities of Furuta type In this section, we discuss represen-
tations of Furuta type associtated with extensions of Ando-Hiai inequality obtained
in the preceding section. For convenience for readers, we cite the Furuta inequality
which is a remarkable and amazing extension of Lowner-Heinz inequality (LH) in

[?], [?] and [?], i.e., if A > B >0, then A* > B for a € [0, 1].

Furuta Inequality (FI) . (I+r)g=p+r
q=7p
If A> B >0, then for each r > 0,
() (BSABY)i > (B3BrBY):
and (1,1)
(i)  (AZBPA)c > (A2 APAR)a P
(1,0)
hold for p > 0 and ¢ > 1 with (1 +r)g > (0, -7)
p+r.

Related to Furuta inequality, see [2], [3], [6], [8], [9] and [18].
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Especially the optimal case (1+7)g = p+r is the most important, which is realized

as a beautiful formula by the use of the a-geometric mean:

If A> B >0, then for each r >0

A7 i BP< A

ptr

holds for p > 1.

More precisely, the conclusion in above is improved by

A7 41 B* < B (< A)

p+r

holds for p > 1, due to Kamei [12].
The following inequality is led by Lemma 2.1.

Theorem 3.1. If A> B >0, then

AThaBY < A

p+r

holds for p < —1 and r € [—1,0].

Proof. As in the proof of Lemma 2.1, it says that if A=, B <1, then A~"fzB < 1

for r € [0,1], where § = ari(i—ay- Thus the assumption is that C* < A, where

C = A3BA:. So we put B; = C* < A, and moreover p = 1, r; =7 — 1. Then

o’

p<—landr €[-1,0] and 5 = ;i—:i. Moreover the conclusion is rephrased as

ATH,C < A, or A e ByP < A

p+ry

Now the Furuta inequality was generalized to so-called “grand Furuta inequality”
by the appearence of Ando-Hiai inequality, which is due to Furuta [10], see also [5] and
[6].

Grand Furuta inequality (GFI) IfA> B >0 andt € [0,1], then
[A3 (A3 BPA-3)sAS|mnetr < Al-t+
holds forr >t and p,s > 1.

As a matter of fact, (GFI) interpolates (FI) with (AH), presicely
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(GFI) fort =1, r=s <= (AH)
(GFI) fort =0, (s=1) < (FI).
As well as (FI), (GFI) has also mean theoretic expression as follows:

IfA>B>0andte|0,1], then

AT, (A4, BP) < A

(p—t)s+r

holds forr >t and p,s > 1.

In succession with the above discussion, Theorem 2.3 gives us the following inequality

of (GFI)-type.
Theorem 3.2. If A> B >0, then

AT (A#,B7) < A

r+(p 1)s

holds for p < =1, r € [0,1] and s € [= =2t ],

Proof. Theorem 2.3 says that if A~'f,B <1, then A™"j3B* < 1 for r € [0, 1] and
5 € [T Qm , 1], where g = m So the assumption is that B; = C* < A, where
C=A> BA?. On the other hand, the conclusion is that, putting o = %,

1> A7 B =AT¢ (AT2BPAT:)

Fa—ars TFp-Ds

or equivalently

A> AT (A#:B1").

+(p D)s

Furthermore, from the viewpoint of (GFT), the following generalization is expected:
Conjecture 3.3. IfA> B >0 andt € [0,1], then

AT ﬂ 1-tir (At#sBp) <A

r+(p—t)s

holds for p < =1, r € [0,1] and s € [525,1].

At present, we can prove it under a restriction:
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Theorem 3.4. I[f A> B >0 and t € [0,1], then

AT, (A'#,BP) < A

TH(p—t)s

holds for p < —1, 7 € [0,t] and s € [max{-—L 6~ (1 =2y ),

p—t’

Proof. First of all, we note that —1 < Ti?ptftr)s < 0. Hence we have

A i (AT BTP) < AT yyy BTS20

r+(p—t)s r+(p—t)s

The second inequality in above is shown as follows: The exponent —(p—t)s—t of B
is nonnegative by p’ftt <'s. Thus, if —(p —t)s —t < 1, the second inequality holds.
On the other hand, if —(p —t)s — ¢ > 1, then the Furuta inequality assures that

—r t—r 1—t+r
(Atz B(_p”)s_tAfT)(—pft)sfr < ATt

or equivalently

Arft # Ltir B(fpntt)sft §A2(r7t)+1.

(=p+t)s—r

Hence, noting that Xt Y = X(X ',V 1) X, it follows that

AT e (ARBY) = A AT e (AT BT} ATTH

TH(p—1t)s r+(p—t)s

< A*’!‘thAQ(Tft +1A7r+t — A.

M} in the statement, v =

Remark. On vy = max{-—=L %

p e is equivalent

to the condition t —r < 1 3, which appears in Theorem 3.4.

The following two theorems show that Theorem 3.4 is true at the critical points
—t —2r—(1—1%)

5= o p—t

Theorem 3.5. If A> B >0 and t € [0,1], then

AT Boaeer (A #SBP) <A

r+(p—t)s

holds forp < —1, r € [0,t] and s = —27%:—0

Proof. First of all, we note that Ti?pt:;s = —1 and Xf_,Y = XY 'X. Therefore

the conclusion is arranged as

AT (AT#BP) < A,
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A7T+t(A7t#SB7p)A7r+t S A

and so
Aft#stp < A1+2r72t. (*)
To prove this, we recall the Furuta inequality, i.e., if A > B > 0, then
P+t

(A:BPAS)s < A'a

holds for ¢, P > 0 and ¢ > 1 with (1+¢)q > P +t. Taking P = —p and ¢ = %, the

S

required condition (1 +t)qg > P+t is enjoyed and we obtain
(A%prAg)s < Al
which is equivalent to (*).

In succession to Theorem 3.5, the other case s = p’ftt can be proved:

Theorem 3.6. If A> B >0 andt € [0, 1], then

AT 0 a—ttr (At#sBp) <A

r+(p—t)s

holds for p < —1, r € [0,t] and s = p’—ft.

Since we have only to consider the case p%tt < 72%(:7’5) by the above theorems, that

5, 0<t—r< % can be assumed as cited in Remark of Theorem 3.4, we have

I—t+r 1
T - <1
r+(p—1t)s t—r

1—t4+r
r+(p—t)s 2

As a special case, we take t = %, r= % and p = —2. Then s = i and
Hence the statement in this case is arranged as follows:
If A> B >0, then

AS (A3 BT < A
holds? It is proved by using Furuta inequality twice: First of all, since A > B > 0,
(FI) ensures that

oolet
wlon

(AT B2A3)% < A
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So we have
AT 5 a(ASfEy BT) = AF(ATH (AT 4 B%)A70) 248
S(AF(ATE #, B AR A
(A75 #1ASB2As)’ As
(

as desired.

To prove Theorem 3.6, we cite a lemma obtained by the Furuta inequality.
Lemma 3.7. [fA>B>0,t>0 and p < —1, then
(ASBPAR) =t < A

in particular, (A%B_pA%)s < At holds for s = ﬁ.

To show Theorem 3.6, we reformulate it as follows:

Theorem 3.8. If A > B > 0, t > i;—}farsomecz 2, 1 >t >r >0 wih
1
t—r=_5 andp < —1, then

A g, (A'4£,BP) < A

holds for s = —L

—ptt-

Proof. Puta=1t—r. Then a = c% < %, c= 1776“ and the assumption ¢t > % means
a(c — 1) < t, which plays a role when we use the Lowner-Heinz inequality in the
below. We put X = AsBPA% and Y = A"5X*A~5. Then A& §_, (A'#,BP) =
A3YCA?, and X7 = X=5 < A, in particular, X* < A' and X% < A" for
0<t <1+tbyLemma 3.7.

(1) First we suppose that 2n < ¢ < 2n + 1 for some n, i.c., ¢ = 2n + ¢ for some
e €10,1). Since a(c—2) <t—a =rby a(c—1) <t, we have ae < a(2(n—1)+e¢) =

alc—2) <rand so
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for k=1,2,--- ,n. Noting that 0 < 2s + [(2(n — 1) +€) —r]; < 2L by &5 <1,
it follows that
ye — YYVeEYyn — Yn(A—%XsA—%)eyn
SYMATRZATATE)Y" = YPACY" by X® < A and (LH)
_ Yn_lA_%XSAaE_TXSA_%YTL_l

< Yn—lA—%XQS-F(oze—r)%A—%yn—l by X° < At’ ae—7r

€ [-1,0]
< ynolg¥traecsiryn=l by putting t' = 2t +ae —r < 1+t

— yn—lga+eyn-1

< yn2getdtoyn-—2

< YAa<2(n71)+E)Y
< A(x(2n+e)
— A,

Hence we have

A, (A'4,BP) = ASY°AS < A°°te = 4

)

as desired.
(2) Next we suppose that 2n + 1 < ¢ < 2n + 2 for some n, i.e., ¢ = 2n+ 1 + € for

some € € [0,1). For this case, we prepare the inequality
ylte < goli+e),
It is proved as follows:
Y = (A5 XS ATE) e
= ATEX3(X2ATX3)X2A:
<ATEXI(X2XTTX3) XA
— A"z XsH=F)e4—3
< AT3 AR AT = A0,

Now, if n =0, i.e., c =1+ ¢, then

ATYTHAT < A5 AMITIAT = A°CH) = 4
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Next, if ¢ = 2n + 1 + € for some € € [0,1) with n # 0, then

Ye=yryltyn <yrAettoyn
=Yl AT X AT X ATy !
<yl g5 x2stero-n3 g-5yn-l
< Yyl g2ta(lte—2ryn—1
— yn1gaB+oyn—1
< yn—2 ga(5+e)yn—2

< YAa(Q(nfl)JrlJre)Y
SAa(QnJrlJre) :Aac’

in which (=1 < —r <) a(2(n — 1) + 14 ¢) —r < 0 is required in order to use the

. . . . . . . C_l
Lowner-Heinz inequality. (Fortunately it is assured by the assumption ¢ > £ +1.)

Hence we have
AFT b, (A',B7) = AFY°AR < A% = A,

as desired.

4 Log-majorization In this section, we express operator inequalities obtained in

Section 2 as log-majorization inequalities.
Theorem 4.1. For o € [—1,0] and positive invertible operators A and B,
(AhaB> arF=a)s >'(log;) AThBBS
holds for r,s € [0, 1], where § = m
Theorem 4.2. For o € [—1,0] and positive invertible operators A and B,
(1—t+r)s , s
(Ao B) = #0707 - (10g) A" B

holds for r,s € [0,1], where 8 = a(l—t+r)

ar+(1—at)s”
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