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Abstract. We discuss the power monotonicity of the family {Fp,q| p, r ∈ R} of
parametrized representing functions of Kubo-Ando operator means, which is intro-
duced in our preceding paper. It includes several important representing functions, for
example, arithmetic, geometric, harmonic, logarithmic, power and Stolarsky means.
We shall discuss conditions of power monotonicity of functions.

1 Introduction. The theory of operator means is established by Kubo and Ando [4]:
An operator mean Am B for positive invertible operators A, B is defined by a positive
normalized operator monotone function f on (0,∞) by

Am B = A
1
2 f

(
A− 1

2 BA− 1
2

)
A

1
2 .

Here the normalization corresponds to f(1) = 1. One of the result of the Kubo-Ando
theory is to give a bijection between an operator mean and a positive normalized operator
monotone function on (0,∞) as above. In this bijection, f is often called the representing
function of an operator mean m; f(x) = 1m x.

Recently Wada [7] introduced the power monotonicity of the representing function f ,
and showed the relation to the Ando-Hiai inequality [8, 1]: f is called PMI (power monotone
increasing) (resp. PMD (power monotone decreasing)) if f satisfies

f(x)r ≤ f(xr) ( resp. f(x)r ≥ f(xr)) for all r ≥ 1 and x > 0.

It has not been known any characterization of a function satisfying PMI or PMD. But we
know some examples of PMI or PMD functions: For each p > 0 and λ ∈ (0, 1)

(1 − λ + λxp)
1
p

is PMI, and it is PMD for the case p < 0. Moreover,

lim
p→0

(1 − λ + λxp)
1
p = xλ

is both PMI and PMD.
Especially,

f(x) =
x − 1
log x

=
∫ 1

0

xλdλ,
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the representing function of the logarithmic mean is PMI. The above functions can be
unified into the following function Fp,q:

Fp,q(x) :=
(∫ 1

0

[1 − λ + λxp]
q
p dλ

) 1
q

=
(

p

p + q
· xp+q − 1

xp − 1

) 1
q

.

This extension is discussed in [6]. It is known that for p, q ∈ [−1, 1], Fp,q is operator
monotone on (0,∞) and monotone increasing on p, q ∈ [−1, 1] [6]. More precisely, it is
increasing on p, q ∈ R, but it is not operator monotone if p, q 6∈ [−1, 1]. Moreover Fp,q is
symmetric:

A mFp,qB = B mFp,qA, that is, Fp,q(x) = xFp,q

(
1
x

)
.

It includes several famous functions as in the following table.

(p, q) (−1,−1) (−1, 0) (0, 0) (0, 1) (1, 1) (p, p)

Fp,q
2x

1 + x

x log x

x − 1
√

x
x − 1
log x

1 + x

2

(
1 + xp

2

) 1
p

Here we consider the limit in the cases of (p, q) = (−1, 0), (0, 0), (0, 1). We can also get
important functions from Fp,q, too.

(1) (Power difference mean, [3]) Fp,1(x) =
p

p + 1
xp+1 − 1
xp − 1

.

(2) (Normalized power difference mean, [2, 5]) F 3p−1
2 ,1(x) =

3p − 1
3p + 1

x
3p+1

2 − 1

x
3p−1

2 − 1
.

In this note, we shall show power monotonicity of Fp,q, firstly. Then we give another
proof of power monotonicity of Fp,q via a lower bound of Fp,q(xn)−Fp,q(x)n in a restricted
case. Lastly, we shall discuss conditions of power monotonicity of each differentiable func-
tion.

2 Main result. In this section, we shall show power monotonicity of Fp,q.

Theorem 1. Fp,q is PMI for 2p + q ≥ 0 and is PMD for 2p + q ≤ 0

It is easy that Fp,q(x) =
√

x, the representing function of the geometric mean, if 2p+q =
0. Hence by the monotonicity of p, q, we can rewrite Theorem 1 into the following form.

Theorem 1’. Fp,q is PMI (resp. PMD) if and only if
√

x ≤ Fp,q(x) (resp.
√

x ≥ Fp,q(x))
for all x > 0.

To show Theorem 1, we note the following lemma. It follows from the definition of Fp,q,
easily.

Lemma 2. Fp,q(x−1)−1 = F−p,−q(x) holds for all p, q ∈ R and x > 0.
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Proof of Theorem 1. We shall divide 8 cases to prove Theorem 1 (see Figure 1, below).

(1) PMI

(2) PMD

(3) PMI

(4) PMI(5) PMD

(6) PMD

(8) PMD (7) PMI

Figure 1: We divided 8 cases to prove Theorem 1.

(1) The case of p, q > 0. We notice that f(x) = xr is a convex function for r ≥ 1. For r ≥ 1,

Fp,q(x)r =
(∫ 1

0

[1 − λ + λxp]
q
p dλ

) r
q

≤
(∫ 1

0

[1 − λ + λxp]
qr
p dλ

) 1
q

by q > 0

≤
(∫ 1

0

[1 − λ + λxpr]
q
p dλ

) 1
q

by p, q > 0

= Fp,q(xr).

Hence Fp,q is PMI for p, q > 0.
(2) The case of p, q < 0. By Lemma 2 and (1), we have

Fp,q(xr) = F−p,−q(x−r)−1 ≤ F−p,−q(x−1)−r = Fp,q(x)r.

Hence Fp,q is PMD for p, q < 0.

(3) The case of p + q > 0 and q < 0.

Fp,q(x) =
(

p

p + q
· xp+q − 1

xp − 1

) 1
q

=
(

p + q

p + q + (−q)
· xp+q+(−q) − 1

xp+q − 1

) 1
−q

= Fp+q,−q(x)

Hence by (1), Fp,q is PMI for p + q > 0 and q < 0.



4 J.I. Fujii and T. Yamazaki

(4) The case of p < 0 and 2p + q > 0. We notice that q > 0.

Fp,q(x) =
(

−p

p + q
· xp+q − 1

1 − xp

) 1
q

= x− p
q

(
−p

p + q
· xp+q − 1

x−p − 1

) 1
q

= x− p
q

(
−p

−p + 2p + q
· x−p+2p+q − 1

x−p − 1

) 1
2p+q ·

2p+q
q

= x− p
q {F−p,2p+q(t)}

2p+q
q .

Hence by (1), Fp,q is PMI for p < 0 and 2p + q > 0.

(5) The case of p + q > 0 and 2p + q < 0. We notice that q > 0.

Fp,q(x) = x− p
q

(
−p

p + q
· xp+q − 1

x−p − 1

) 1
q

= x− p
q

(
p + q

(p + q) + (−2p − q)
· x(p+q)+(−2p−q) − 1

xp+q − 1

) 1
−(2p+q) ·

2p+q
q

= x− p
q {Fp+q,−2p−q(x)}

2p+q
q .

Hence by (1), Fp,q is PMD for p + q > 0 and 2p + q < 0.

(6) The case of p+ q < 0 and q > 0. By Lemma 2, we have Fp,q(x−1)−1 = F−p,−q(x). Since
−p − q > 0 and −q < 0, we have that F−p,−q is PMI by (3), and therefore Fp,q is PMD.

(7) The case of p + q < 0 and 2p + q > 0. By Lemma 2, we have Fp,q(x−1)−1 = F−p,−q(x).
Since −p − q > 0 and −2p − q < 0, we have that F−p,−q is PMD by (5). Therefore Fp,q is
PMI.

(8) The case of 2p + q < 0 and p > 0. By Lemma 2, we have Fp,q(x−1)−1 = F−p,−q(x).
Since −2p − q > 0 and −p < 0, F−p,−q is PMI by (4), therefore Fp,q is PMD.

Thus we have the conclusion by combining 8 cases.

From Theorem 1, we have the following power monotonicity of well-known functions.

(1) The representing function sα(x) of the Stolarsky mean is defined by

sα(x) =
(

xα − 1
α(x − 1)

) 1
α−1

.

Wada [7, Proposition 3.2] showed that sα is PMD for α ∈ [−2,−1] and PMI for
α ∈ [−1, 2]. It is obtained by Theorem 1 since F1,α−1(x) = sα(x). More precisely,
sα(x) is PMI for 2 + α − 1 ≥ 0 (i.e., α ≥ −1) and PMD for 2 + α − 1 ≤ 0 (i.e.,
α ≤ −1). It is a generalization of Wada’s result. Here we remark that sα is operator
monotone for α ∈ [−2, 2]. Namely Wada considered only the case α ∈ [−2, 2]. But
Theorem 1 says that we can consider power monotonicity independent to the operator
monotonicity.
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(2) The representing function of the power difference mean

Fp,1(x) =
p

p + 1
xp+1 − 1
xp − 1

is PMI for 2p + 1 ≥ 0 (i.e., p ≥ − 1
2 ), and PMD for 2p + 1 ≤ 0 (i.e., p ≤ − 1

2 ). In other
words, the representing function of the normalized power difference mean

F 3p−1
2 ,1(x) =

3p − 1
3p + 1

x
3p+1

2 − 1

x
3p−1

2 − 1

is PMI for 2 3p−1
2 + 1 ≥ 0 (i.e., p ≥ 0), and PMD for 23p−1

2 + 1 ≤ 0 (i.e., p ≤ 0).

(3) The representing function of the identric mean

F0,1(x) = lim
α→1

sα(x) =
1
e
x

x
x−1

is PMI since 2 · 0 + 1 ≥ 0.

(4) The representing function of the logarithmic mean

F1,0(x) =
x − 1
log x

is PMI since 2 · 1 + 0 ≥ 0.

(5) The representing function of the power mean

Fp,p(x) =
(

1 + xp

2

) 1
p

is PMI for p ≥ 0, and PMD for p ≤ 0.

Remark. Suppose 0 < p < r ≤ q for a fixed q. Then the Jensen inequality shows

(1 − λ + λxp)
1
p < (1 − λ + λxr)

1
r ≤ (1 − λ + λxq)

1
q .

Thus we have the following monotonicity for PMI functions:

Fp,q(x) ↗ Fq,q(x) =
(

1 + xq

2

) 1
q

as 0 < p ↗ q.

Contrastively we have the monotonicity for PMD functions:

Fp,q(x) ↘ Fq,q(x) =
(

1 + xq

2

) 1
q

as 0 > p ↘ q.
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3 Difference between Fp,q(xn) and Fp,q(x)n. Restricting ourselves to the case r = n,
integers. Then, based on the above remark, we show the following partial result of Theorem
1 via the power means:

Theorem 3. Let n be a positive integer. For 0 ≤ p ≤ q,

Fp,q(xn) − Fp,q(x)n ≥ Fp,q(x)
(
Fq,q(x)n−1 − Fp,q(x)n−1

)
≥ 0

holds for all x > 0. For q ≤ p ≤ 0,

Fp,q(x)n − Fp,q(xn) ≥ Fp,q(x)
(
Fp,q(x)n−1 − Fq,q(x)n−1

)
≥ 0

holds for all x > 0.

To see this, we give a lemma:

Lemma 4. For a fixed q ∈ R and an positive integer n, a function gn(p) =
Pn−1

`=0 x`(p+q)

Pn−1
k=0 xkp

=(
Fp,q(xn)
Fp,q(x)

)q

is monotone increasing if q ≥ 0, and monotone decreasing if q ≤ 0.

Proof. At first we have

g′n+1(p) =

(∑n
k=0 xkp

) (∑n
`=0 ` log x · x`(p+q)

)
−

(∑n
`=0 x`(p+q)

) (∑n
k=0 k log x · xkp

)
(
∑n

k=0 xkp)2

=
x − 1

(
∑n

k=0 xkp)2
log x

x − 1

{(
n∑

k=0

xkp

) (
n∑

`=0

` · x`(p+q)

)
−

(
n∑

`=0

x`(p+q)

)(
n∑

k=0

k · xkp

)}

:=
x − 1

(
∑n

k=0 xkp)2
log x

x − 1
Gn+1(p),

(1)

in which Gn+1(p) becomes

Gn+1(p) =

(
n∑

k=0

xkp

)(
n∑

`=0

` · x`(p+q)

)
−

(
n∑

`=0

x`(p+q)

) (
n∑

k=0

k · xkp

)

=
n∑

k,`=0

`
(
x`(p+q)+kp − xk(p+q)+`p

)
=

n∑
`>k

`
(
x`(p+q)+kp − xk(p+q)+`p

)
+

n∑
k>`

`
(
x`(p+q)+kp − xk(p+q)+`p

)
=

n∑
`>k

`
(
x`(p+q)+kp − xk(p+q)+`p

)
−

n∑
k>`

`
(
xk(p+q)+`p − x`(p+q)+kp

)
.

(2)

Here let q ≥ 0 and x > 1. We note that

k(p + q) + `p − {`(p + q) + kp} = (k − `)q ≥ 0

for k > `. Then (2) gives that

Gn+1(p) =
n∑

`>k

`
(
x`(p+q)+kp − xk(p+q)+`p

)
−

n∑
k>`

`
(
xk(p+q)+`p − x`(p+q)+kp

)
≥

n∑
`>k

`
(
x`(p+q)+kp − xk(p+q)+`p

)
−

n∑
k>`

k
(
xk(p+q)+`p − x`(p+q)+kp

)
= 0



POWER MONOTONICITY FOR A PATH OF OPERATOR MEANS 7

for q ≥ 0 and x > 1. If q ≥ 0 and 0 < x < 1. Then Gn+1(p) ≤ 0 but (x − 1)Gn+1(p) ≥ 0.

Since log x
x−1 ≥ 0 for all x > 0, g′n+1(p) ≥ 0 and gn+1(p) is increasing for q ≥ 0.

Next, let q ≤ 0 and x > 1. Since

Gn+1(p) =
n∑

`>k

`
(
x`(p+q)+kp − xk(p+q)+`p

)
−

n∑
k>`

`
(
xk(p+q)+`p − x`(p+q)+kp

)
= −

n∑
`>k

`
(
xk(p+q)+`p − x`(p+q)+kp

)
+

n∑
k>`

`
(
x`(p+q)+kp − xk(p+q)+`p

)
and

k(p + q) + `p − {`(p + q) + kp} = (k − `)q ≥ 0

for ` > k, we have

Gn+1(p) = −
n∑

`>k

`
(
xk(p+q)+`p − x`(p+q)+kp

)
+

n∑
k>`

`
(
x`(p+q)+kp − xk(p+q)+`p

)
≤ −

n∑
`>k

k
(
xk(p+q)+`p − x`(p+q)+kp

)
+

n∑
k>`

`
(
x`(p+q)+kp − xk(p+q)+`p

)
= 0

for q ≤ 0 and x > 1. By the same argument as above, we have g′n+1(p) ≤ 0 for q ≤ 0 and
0 < x < 1. Hence gn+1(p) is increasing on p ∈ R if q > 0, and decreasing on p ∈ R if q < 0.

Another formula is:(
Fp,q(xn)
Fp,q(x)

)q

=
(xn(p+q) − 1)/(xp+q − 1)

(xnp − 1)/(xp − 1)
=

∑n−1
`=0 x`(p+q)∑n−1

k=0 xkp
= gn(p).

Proof of Theorem 3. Since F0,0(x) =
√

x, Theorem 3 holds for p = q = 0. Then we can
omit the case q = 0. First we see the case 0 ≤ p ≤ q. Noting that

Fp,q(xn) − Fp,q(x)n = Fp,q(x)
(
gn(p)

1
q − Fp,q(x)n−1

)
.

By g1(p) = 1, we have only to show the case n ≥ 2. Monotonicity of Fp,q on p, q ∈ R and
Lemma 4 show

gn(p) ≥ gn (0) =
1 + xq + · · · + xq(n−1)

n
=

xqn − 1
n(xq − 1)

= F1,n−1(xq)n−1

≥ F1,1(xq)n−1 =
(

1 + xq

2

)n−1

= Fq,q(x)q(n−1).

Thus we have

Fp,q(xn) − Fp,q(x)n = Fp,q(x)
(
gn(p)

1
q − Fp,q(x)n−1

)
≥ Fp,q(x)

(
Fq,q(x)n−1 − Fp,q(x)n−1

)
≥ 0

for q ≥ p ≥ 0 by monotonicity of Fp,q on p, q ∈ R. Next we show the case q ≤ p ≤ 0. In
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this case,

Fp,q(x)n − Fp,q(xn) = Fp,q(x)
(
Fp,q(x)n−1 − gn(p)

1
q

)
≥ Fp,q(x)

(
Fp,q(x)n−1 − gn(0)

1
q

)
(by gn is decreasing)

= Fp,q(x)
(
Fp,q(x)n−1 − F1,n−1(xq)

n−1
q

)
≥ Fp,q(x)

(
Fp,q(x)n−1 − F1,1(xq)

n−1
q

)
(by Fp,q is increasing on p, q ∈ R)

= Fp,q(x)
(
Fp,q(x)n−1 − Fq,q(x)n−1

)
≥ 0

for q ≤ p ≤ 0. It completes the proof.

4 Conditions to power monotonicity. In this section, we shall discuss some conditions
of a function f to satisfy power monotonicity. In the previous sections, we discussed power
monotonicity of Fp,q, and obtain that if Fp,q(x) ≥

√
x (resp. Fp,q(x) ≤

√
x), then it is PMI

(resp. PMD). In other word Fp,q(x) is PMI (resp. PMD) if and only if Fp,q(x) ≥
√

x (resp.
Fp,q(x) ≤

√
x). One might expect that power monotonicity of a function is closely related

to comparison of
√

x.
First of all, we shall show the following proposition.

Proposition 5. Let f be a differential function on (0,∞), such that, f(1) = 1, f ′(1) =
λ ∈ [0, 1]. If f is PMI (resp. PMD) on (0,∞), then xλ ≤ f(x) (resp. xλ ≥ f(x)) holds for
all x ∈ (0,∞).

Proof. Suppose that f is PMI on (0,∞). Then G(r) = f(xr)
1
r is an increasing function on

r > 0, and

log f(x) = log G(1) ≥ lim
r→+0

log G(r)

= lim
r→+0

log f(xr)
r

= lim
r→+0

f ′(xr)xr log x

f(xr)
(by the L’Hospital’s rule)

= log xλ.

Hence xλ ≤ f(x) holds for all x ∈ (0,∞). If f is PMD, then we can show f(x) ≤ xλ by the
same way.

However, it has not known whether the converse implication holds or not, yet. Instead
of this discussion, we can get a small contribution.

Proposition 6. Let f be a differential function on (0,∞), such that, f(1) = 1, f ′(1) =
λ ∈ [0, 1]. If xλ ≤ f(x) (resp. xλ ≥ f(x)) holds for all x ∈ (0,∞), then f is PMI (resp.
PMD) on a neighborhood of x = 1.

Proof. Let H(t) := log f(et). Then tλ ≤ f(t) is equivalent to

λt ≤ H(t).(3)

Since H(0) = 0 and H ′(0) = λ, y = λt is a tangent line of H(t) at t = 0. Hence by (3),
H(t) is convex on a neighborhood of t = 0. Hence for r ≥ 1,

(4) H

(
1
r
t

)
= H

((
1 − 1

r

)
0 +

1
r
t

)
≤

(
1 − 1

r

)
H(0) +

1
r
H(t) =

1
r
H(t)
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holds for all t in a neighborhood of t = 0. Put x = 1
r t. We have

rH(x) ≤ H(rx).

Since H(x) := log f(ex), f(x) is PMI on the neighborhood of x = 1. The remained part
can be proven by a similar way.

By Propositions 5 and 6, the following two statements are equivalent: (i) f is PMI on
a neighborhood of x = 0 and (ii) xλ ≤ f(x) for all x > 0. In addition, f is PMI on (0,∞)
if and only if rH(x) ≤ H(rx) holds for all r ≥ 1 and x > 0. It is a weaker condition than
the convexity of H which follows from (4). Moreover as in the proof of Proposition 6, (ii)
is equivalent to the convexity of H at x = 0. Hence we can conclude the following theorem.

Theorem 7. Let f be a differential function on (0,∞), such that, f(1) = 1, f ′(1) = λ ∈
[0, 1]. Then the following statements hold:

(i) If H(x) := log f(ex) is convex (resp. concave) on R, then f is PMI (resp. PMD),

(ii) if f is PMI (resp. PMD), then xλ ≤ f(x) (resp. f(x) ≤ xλ) holds for all x ∈ (0,∞).
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