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Abstract

Let Q be a bounded smooth domain of RY. By Ap with 1 < p < e we denote p-Laplacian. We
prove that if Apu is a finite measure in Q, then under suitable assumptions on u, Apu™ is also a finite
measure in Q up to the boundary Q. *

1 Introduction

Let Q be a bounded smooth domain of RY. By A, for p € (1,40) we denote p-Laplacian. The
classical Kato’s inequality for a Laplacian in [12] asserts that given any function u € LllOC (Q) such that
Au € L} _(Q), then A(u') is a Radon measure and the following holds:

loc

AW") > fusoAhu inD'(Q), (1.1)

where u™ = max{u,0}. In [5, 6], H.Brezis and A.Ponce intensively studied Kato’s inequalities with Au
being a Radon measure and established the strong maximum principle, the improved Kato’s inequality
and the inverse maximum principle (See also [8, 10]). Then, in [13, 14] Kato’s inequality was further
studied for A,u with p € (1,00) and most of the counter-parts were established under the assumption
that u is admissible in Wl(l)‘cp ’ (Q), where p* := max{1,p— 1}. For the admissibility in Wkl)’cp ’ (Q), see
Definition 4.1 in Appendix and see also [15]. We remark that when p = 2, the notion of admissibility
becomes trivial. On the other hand, H.Brezis and A. Ponce in [7] and A. Ancona in [1] studied Kato’s
inequality (1.1) up to the boundary for p =2. O

The purpose in the present paper is to study Kato’s inequality for A, up to the boundary of Q. As
a result, we will show that A,u™ is also a finite measure under suitable assumptions on u. In these
arguments it is crucial to introduce a class X, in Definition 1.1, which was originally introduced in
Brezis, Ponce [7] for A, and to use effectively a notion of admissibility in X, for A,,.

Definition 1.1. Wesay u € X, ifu € WP (Q) and if there exists a constant C > 0 such that

[ 9iSo| < Cllplia. forany 9 C'@) (12)
Q
in which case we set
[ulx, = sup / |VulP=2Vu-Vy. (1.3)
yec! (@) 79
lwl=<1

If u € X,,, then there exists a unique bounded linear functional T € [C(Q)]* = .#,(Q) such that

Ty) = [ Va2V vy (vyecl(@).
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On the other hand, by the Riesz Representation Theorem any T € .#,(€) admits a unique decomposi-
tion

Ty) = [ vav+ [ van (wyec@),

where U € #,(Q) and v € #,(dQ). By .#,(Q) and .#;,(dQ) we denote the space of all bounded
measures in Q and dQ, equipped with the standard norms || - || 4, ) and || - ||z, (a0 respectively. We
remark that measures in ./, (Q) are identified with measures in  which do not charge Q. More
precisely we have

[14]].4,(0) = sup {/Q Qdu; 9 € Co(Q) and ||9||=(q) < 1} :

where by Cy(Q) we denote the space of all continuous functions on Q vanishing on Q. On the other
hand .7 (Q) denotes the space of all Radon measures in Q. In other words u € .#(Q) if and only if,
for every @ CC Q, there is Cy, > 0 such that | [ @d| < Cp||@||w for all ¢ € Co(®). When u € X,,, we

will denote
p=2 @

on’

where n denotes the outer normal. In this paper, for u € X, we always use the notations A,u and

p=—Apu, v=|Vul

|Vu|p_2% in the above sense. Hence if u € X, then we have

d : 3
/\vuv’*zvu-w/:/ q/|vu|f’*2—”—/ vAu  (YyeCcl(Q)).
[} 2Q on  Jo

It follows from Theorem 3.1 that for every u € X,

= [ 1A vulr2| St
g, = [ g+ [ (V2|5

and if u is admissible in X, then [u]x, = 0 if and only if u = const. in Q.

2 Preliminaries: Admissibilities in X, and W, ” (Q)

We will work with the standard Sobolev spaces; W!?(Q) and WO1 (), where the space W!7(Q) is
equipped with the norm

ullwrr@) = 1IVulllr @) + [lullr @), 2.1)

and by WOl ”(Q) we denote the completion of C°(Q) in the norm || -||y1,(q)- Now we introduce two
admissiblities for A, to deal with Kato’s inequalities up to the boundary. We note that these notions
become trivial if p =2 and a local version was already introduced in [14].

Definition 2.1. (Admissibility in X, ) Let 1 < p < coand p* := max{1,p—1}. A function u is said to
be admissible in X, if u € X, and there exists a sequence {u;}7; C WP (Q)NL™(Q) such that:

1. up —uae. in Qand u, — uin WhHe' (Q) as k — oo.

2. Apuk GLl(Q) and ‘Vuk‘p_z% & Ll(ag) (k: 1727...) and

sup |[Apul|.z,() = sup / |Apug| < oo (2.2)
k k JQ

0 d
sup ’Vukl”zuk = sup / ’|Vukp2uk (2.3)
k on |l g0 koo an




Definition 2.2. (Admissibility in WOl » (Q) ) Let 1 < p < e and p* := max{1l,p—1}. A function
u is said to be admissible in WOI’”* (Q)ifue WOI”’* (Q), Apu € M,(Q) and there exists a sequence
(i}, € W, P(Q)NL=(Q) such that:

. .
L. up —wuae. inQand uy — uin Wy? (Q) as k — oo.

2. Apu € LN(Q) (k=1,2,---) and
SI;pHApuklljzb(Q) = sup /Q |Apur| < oo. (2.4)

Roughly speaking, if u is admissible in one of these definitions, then u can be approximated by a
sequence of good functions not only in the sense of the distributions but also in the sense of measures.
Moreover it is possible to approximate u by a sequence of C!-functions provided that u is admissible.
In fact in Proposition 4.1 in Appendix we collect such nice properties of admissible functions together

with a local version of the admissibility in Wkl)'cp (Q). In the subsequent we describe more remarks.

Remark 2.1. 1. For a general class of uniformly elliptic operators with a divergence form, one can
define the admissibility and establish similar results in parallel to the present paper (c.f. [15]).
Further it is possible to construct non-admissible functions in such cases. When p = 2, the ex-
istence of pathological solution, which is non-admissible, was initially shown by J Serrin in the
famous paper [20] (See also [11]).

2. Ifue Wkl)’cp* (Q), then Apu, Ap(u™) and A, (u~) are well-defined in D'(Q). Let {u} be the se-
quence in one of the definitions. It follows from the condition 1 that Apug = A (1) — A, (u; ) and
Apug — Apu (ie. Ap(u) = Ap(uF) ) in D' (Q) as k — o0. Moreover, it follows from the condi-
tion 2 and the weak compactness of measures that we have Ajux — Apu (ie. Ap(uf) — A, (u*)

) in the sense of measures as n — oo. (In the case of Definition 2.1, |Vuk\”*2% — |Vu|”*2% in
the sense of measures as well.) Therefore if u is admissible, then u* and u~ are so as well.

3. Let Q be a unit ball B;(0) of RV. Letu = |x|* — 1 for ¢ = (p—N)/(p—1) and p € (1,N). Then
u satisfies
Apu=alal’2exs  inD/(Q),

where 6 denotes a Dirac mass and ¢y denotes the surface area of the N-dimensional unit ball
Bj. Then u is admissible in Wol"l7 (Q) if pe (2—1/N,N) with N > 2. We note that when

1<p<2- % u is not admissible but regarded as a renormalized solution. For the detail see
[2,4,17, 18, 19]

3 Main results

Given M > 0, we denote a truncation function Ty;: R — R by
Ty (s) = max{—M,min{M,s}}. 3.1
Theorem 3.1. If u € X, then we have:

1.

u
— [ 1A % H(— . 3.2
= [ 18+ [ [vulr2| 5 (3.2)
2. If u is admissible in X, then for every M >0 Tyu € W!r(Q) and we have
/Q VT ()| < Mluls, . (3.3)



3. If uis admissible in X, then [u]x, = 0 if and only if u = const. in Q.

Theorem 3.2. If u is admissible in X, then ut e X, and we have
[u*]xp < [ulx,- (3.4)
Theorem 3.3. Assume that u is admissible in WO1 P (Q). Then we have the followings:
1. uis admissible in X, ( hence, u™ € X, ).
2. .
'/Q\Apuﬂ < /Q|A,,u\. (3.5)

Remark 3.1. If u does not vanish on d€, then the assertion (3.5) fails. To see this it suffices to take a
linear function u.

Theorem 3.4. Assume that u is admissible in X,. Moreover assume that A,u € L'(Q), |Vu|p_2% €
L'(9Q). Then

/|vu|ﬂ-2vu+-vwg/a Hl//—/ Gy (VyeC (Q),y>0inQ). (3.6)
Q Q Q

Here G € L' (Q) and H € L' (9Q) are given by

\Vu\p’z% on [u> 0]
A >0 "
G:{OP“ "”{”q&, H=1{0 on [u < 0] 3.7)
on (u
= min{|Vu[?~29% 0} on [u=0].

Thus, we have

Aput>G in Q
- 3.8
{ |Vu|p72% <H ondQ. 38
3.1 Proof of Theorem 3.1
Proof of Theorem 3.1 (1). This is a standard argument. Since u € X,, we have
/ \Vu|P*2Vu-Vy/:/ wv+/ vu  (Yyecl(Q)), (3.9)
Q Q. Q.

where yt = —Aju € A,(Q) and v = |Vu|P’2% € M,(dQ). From the definition we have

d
[M]Xp: sup /|V”|p_2VM’VII/§/ |A,,u|+/ \VM\P—Z‘J,
yec! (@) /@ Q 2Q on
lwl=<1

To see the opposite inequality, without the loss of generality we assume that 4t € C*(Q) and v € C°(RY)
with supp L Nsupp v = ¢. Define v =sgn (i) +sgn(Vv), where sgn () = 1, > 0;0,s =0;—1,7 < 0. Let
Ve be a mollification of y such that y, € C°(RY), |we| < 1 and we — y as € | 0. Then for any ) > 0
there exists a € > 0 such that we have

du
VulP2Vu-v >/ Au+/ Vup_zl— -1n.
vt 2V > [ sl [ va2| St -n

Since 7 is an arbitrary positive number, the desired inequality holds. O




Proofs of (2) and (3). The assertion (3) clearly follows from (2), we hence prove (2). Assume that u is
admissible in X,,. Then from Definition 2.1 there exists a sequence {uy } C WP (Q)NL>(Q) satisfying
the properties 1 and 2. Noting that V(Tyux) = X|u,|<mVik, We have

/Q VT ()P dx = /Q Vi) Viag - VT (g

d
:/ |Vuk|p_2ﬂTMuk—/ ApukTMuk
0Q dan Q
< M[I/tk]xp.

From the property 1 we see that A,u; — A,u in D'(Q) as k — co. From the property 2 together with
the weak compactness of Radon measures and the uniqueness of weak limit ( see also Remark 2.1.2 ),
limy_,.o Apuy = Apu in the sense of measures. Then by Fatou’s lemma the assertion is proved. O

3.2 Proof of Theorem 3.2
First we prove Theorem 3.2 assuming that u € C' (Q) and A,u € L' (Q). Then we treat the general case.
Lemma 3.1. Assume that u € C'(Q) and A,u € L'(Q) (in the sense of distribution). Then
. J _ B
/ VulP -2Vt Vo < /ag ¢|vu|f’*2—"‘—/ oA (Vo eC (D), >0inQ).  (3.10)
Q on Q
=) [4=0]

Proof. Let @ is a C? convex function in R, ' > 0 in R and & € L*(R).
First we assume that p > 2.
By a direct calculation we see that

A, ®(u) = @' ()P Apu+ (p— 1)@ (u)P 20" (u)|Vu|P  inD'(Q). (3.11)
Since " > 0, we have
Ay ®(u) > @' (u)P'Au inD(Q), (3.12)

in particular, A,®(u) € L'(Q). Hence, for any ¢ € C'(Q),¢ > 0 in Q we have

2
/Q VD (u) [P 2VD(u) - Vo — /a Q|Vc1>(u)|1’*2c1>’(u)a%q)—/Q Ay (i) (3.13)
< [ ol 2@ wivulr 25— [ o160

By the approximation argument, this is still valid for C! convex function ®. Now we take a & in R such
that ®(r) =rifr > 0, |®(r)| < 1ift < 0,0 <P’ < 1in R and lim;_,_oP' (1) = 0. Set D, (t) = P(nt)/n
fort € R and n = 1,2,.... Then we see that {®,} is a sequence of C!convex functions in R such that
(1) =1if t >0, |@,(r)| < 1ifr <0,0< P, <1in R. Then we see that ®,(t) — 1+ as n — oo.
Replacing @ by &, in (3.13) and letting n — oo, we have the desired inequality by the dominated
convergence theorem.

We proceed to the case where 1 < p < 2. We set ®7(r) := &(r) +n¢ forr € R with 17 > 0. Then we
see that for each n >0

sup(®1) (1)P~2(®")" (1) = sup(®' (1) + )P 2®" (1) < NP 2 sup®” (1) < oo. (3.14)
tER tER tER

Hence we can apply he previous argument with ®" instead of ®, so that in a similar way we reach to
the inequality (3.13) replaced @ by ®". Letting 7 — 0, we have (3.10) and this completes the proof. [J



Lemma 3.2. Assume that u € C'(Q) and A,u € L' (Q) (in the sense of distribution). Then u™ € X,, and
Wik, < [u]x, - (3.15)
Proof. We note that ut € W'»"(Q). For the proof of Lemma it suffices to show the following.

[ Va2Vt vy <l vl (wect@). (3.16)

For § € C'(Q), we apply (3.10) with y = || ||z~ + {. Then

8
[var2vat vy < ([ 1vur 25 / p )19

[u>0]

3.17)
Jr/aQ ¥|Vul|P~ 2 / WA u
[u>0]
Noting that
p—20u p—20U
/ag |Vu| %—/Q Apu:—/aQ |Vul > + [ o Apu
[u>0] [u=>0] [u<0] [u <O]
we have
—2v,,+ .U 2‘9“ 2
Va7 2Vut Vg <~ ([ 1Val Apt) Wz + 9 PV 250 — [ s
Q
[u<0] <0] [u >0
< p=2 —’ / |- = |z .
< (vl el [ il 1 g, 91
By replacing { by — 1y, we have the desired inequality (3.15). O

Secondly we assume that u is admissible in X,. We recall a lemma on Neumann boundary problem
for a monotone operator A,.

Lemma 3.3. Let 4 € C7(Q) and v € C7(RY). Assume that [o it + [V =0.
Then there exists a unique function u € C1:°(Q) for some ¢ € (0, 1) such that

—Apu=u in Q
Vu[P=29% = v on 0Q, (3.18)
Jou=0.

Proof. It follows from the standard theory that we have the unique solution u in W' (Q). For the detail,
refer to [16]; theorems 2.1 and 2.2 for example. Since i and v smooth, we see that u € C 1*(’(Q) for
some o € (0,1) (See e.g. DiBenedetto [9]). Here we note that u is p-harmonic near the boundary as
well. O

By Definition 2.1 of the admissibility in X, we have for each k > 1 that

/|Vuk|P 2V Vy = / |V P 2 / wAue (Yy e\ (@) . (3.19)
It follows from Remark 2.1(2) that in the sense of weak™* topology as n — oo

Apuy = Apuin M,(Q), [Apuil i) = [1Apull ) - (3.20)
u
on

dug « du 8
Va2 SE S Va2 S i (99), Vil 2 G oy — | IVl 250

~—

. (321
M,(0Q) (3-21)



By choosing ¥ =1 in (3.19), we have

/ Apitg = / |Vuk|p_2%. (3.22)

Letus set iy = —Apug and Vi = | Vi [P 2 ‘9”" . Let {[Jk} C CZ(Q) and {v{ '} € C2(RY) be two sequences
such that as j — o

u,{ S Ay weak™ in L'(Q), ||,LL,{||L1 = [|Apukl 1) - (3.23)
Buk

; du
vl 5 Va2 G weak in L'(9Q), V]l aq) = |V 5

vj:—/f Yik>1).
/89k Q'uk (J _)

It follows from Lemma 3.3 that for any n > 1 and k > 1, there exists wk € C1(Q) such that

3.24
L'(0Q) ( )

From (3.22) we assume that

—A,w! = inQ
Pk o He (3.25)
IV, |2 Sk =v]l onoQ,
or equivalently
/Q Vi P2Vl Yy = /Q wdu! + /a _vavl, forany y e C'(@), (3.26)

and without the loss of generality we also assume that for any j, k > 1

/Q wl = /Q u . (3.27)

Lemma 3.4. For each n > 1, there exists a function w, € W19(Q) for every g € [1, Ng’:ll)) such that

Under these preparations we have

wi converges to wy in wi, € W14(Q) as k — oo and wy satisfies (3.19).

Proof. Since for each k > 1, {y] }7., and {v] }7., are bounded in L'(Q) and L' (9Q) respectively, this
assertion follows from the same argument in the proof of Theorem 1 in [3] with an obvious modification.
In fact, one can show that {w}}%_, is bounded in W'4(Q), using similar test functions for y. Then by
the weak compactness, Poincaré’s inequality and the Rellich type theorem, one can see that there exists
a function w; € W'4(Q) such that

Vwi — Vw, inL? (weak)
w,’( —w  in L1
wi—we  ae.

Moreover one can see that Vwi — Vwy in L'(Q). Then by the dominated convergence theorem the
conclusion follows in a quite similar way. For the detail see [3]. [

Lemma 3.5. We have w; = uy ae. fork=1,2,---

Proof. We claim that w; = u, € W9(Q) for g € [1, ,(\f’ ]1))- Choose any M > 0. Recalling that

u € WIP(Q)NL*(Q), we use TM(wi —up) € WHP(Q)NL™(Q) as a test function in (3.19) and (3.26).
By a subtraction

/(|Vwk|p 2Vl = Vi [P~ Vag) - V (Tyg (W] — )

:/QTM(wi—uk)d(u,f—uk)—k/aQTM(wi—uk)d(v,{—vk).



The left hand side is estimated from below in the following way,
/Q (IVW[P=2Vw] — Vi |P72Viy) - VI (w] — i) > C /Q VT (w] — )| (3.28)

for some positive number C independent of each j, and the right hand side goes to 0 as j — oo. Since this
holds for all M > 0, we conclude by the monotonicity of A, that Vw; = Vi a.e. Taking into account
that wy, € W9(Q), u € W'P(Q) and (3.27), we conclude that u; = wy a.e.. O

End of proof of Theorem 3.2. By applying Lemma 3.2 we have
| [ 190D 29 0oy -V y] < bl vl (v e C'(@). (3.29)

From Lemma 3.4 and Lemma 3.5 we have, up to subsequence, that wi — uy a.e. and (w£)+ — (ug)4 in
W4(Q) as j — co. Letting j — oo, we have

[ 19t 1729t 5y < s, e vy e € @),

Finally letting k — o= we have the conclusion. O

3.3 Proof of Theorem 3.3

Proof of the assertion 1.

1st step. Assume that u is admissible in Wol’p ’ (Q), and hence both u™* and ™~ are admissible WO1 P (Q).
From the statement 4 of Proposition 4.1, we can assume that {u;};> | C WOl P(Q)NCY(Q) in Definition
2.2. We decompose u; € Wol’p(Q) NCH(Q) to obtain uy = u;” —u; , where u; = max{u,0}, u; =

max{—uy,0}. Then each uf € Wl"’(Q) ﬁCl‘O(Q) Since u;” >0 in Q and u;” = 0 on JQ, we see that

aa" < 0 on dQ. Similarly we have 9y ‘ < 0 on dQ. Therefore

+
[ wagp2| 2| - |v S22 [ A
o on | U >
| du”
_/agwuk - on :/aszw " & /Apuk
Hence
+
/ \Vu,ﬂp_z e /A w! / Vi, [P2 /A 7
2Q on

After all we have

/a Vi P2 / IApiae]. (3.30)
in particular \Vuk\f’*z% € L'(9Q). Hence we have
e, < [ [Vl [ Il <2 [ |yu] <. (3.31)

2nd step. Again assume that {u;} | C Wol’p(Q) NC}(Q) in Definition 2.2. By Definition 2.2 (1) we
have

/|vuk|f’*2vuk-vw—>/ |VulP~2Vu-Vy  forany y € C}(Q). (3.32)
Q Q



It follows from the weak compactness of bounded measures and the uniqueness of weak limit that
Apuy — Apu strongly in .7 (€2). By the previous step we have

i, gz/gm,,uk\ fork=1,2,--. (3.33)

Hence we see that |Vuk|p_2% € L'(9Q) converge to some measure v in M(9Q) up to subsequences.
Therefore by the lower semicontinuity of the norm || - |[3(q) With respect to the weak* convergence as
n — oo, we have

x, <2 [ 18,0
Therefore u is admissible in X,, and hence ut e X, by Theorem 3.2. O
Proof of the assertion 2. We claim that [, |A,u™| < [ |Apul.
Lemma 3.6. Assume that u € C}(Q) and Apu € L'(Q). Then Au" € .4,(Q) and
1™ || ) < [1Au]| 1) - (3.34)

Proof. By applying Lemma 3.2 with u+ €, where € > 0, we deduce that

((u+e)|x, < |u+telx, = |ulx,. (3.35)
Since (u+ €)™ = u+ € in a nelghborhood of €2,

0 4+ du
Sute) =51 onon. (3.36)

Noting that

50
[(u+8) [, = [1Ap(u+8) " [l + IV @+8) 772 (ut€) [l 90

_,0u
lulx, = ||Apull 1) + [ Vul? 2%”1) (09)

we immediately have

Ay (u+€) "y < |Apul[1(q)  forany € > 0. (3.37)
The results follows from the lower semicontinuity of the norm || - || 4 (q) with respect to the weak*
convergence as € — 0. O

3.4 Proof of Theorem 3.4
We prepare some fundamental lemmas.

Lemma 3.7. Let u € W7 (Q). Assume that for some » € L' (dQ) and g € L' (Q) we have
/ |Vu|"_2Vu~V(p§/a h(er/ gp forany ¢ € C1(Q),p > 0. (3.38)
Q Q Q

Then u € X,. Moreover —A,u < g in .# () and \Vu\”’z% <hin .Z(9Q).



Proof. By (3.38) we have

/|Vu|p Yy V(p</ h+<p+/g ¢ forany ¢ € C'(Q),¢ > 0. (3.39)

Using nonnegative test functions ||@||.=~ & ¢ as the argument in the proof of Lemma 3.2, it is easy to see
that

72990 < 201 o+l ol (340)

Then we see u € X,. The rest of the assertions are clear. O

Lemma 3.8. In the previous Lemma 3.7, we further assume that u is admissible in X,. Then we have
/ |Vu|P~2Vut - Vo < /ag h(er/Q gp forany @ € C1(Q), 0 > 0. (3.41)
[u>0] [4>0]

By the admissibility there exists a sequence {u;} C W"P_(Q) having the properties in Definition
2.1. By virtue of Proposition 4.1 we can assume that u; € C'(Q). Then it follows from Lemma 3.1 that

/|Vuk|p 294 V<p</aQ 0|V P~ 2—”*/9 oAy (V9 C(Q),9>0inQ) (3.42)

[146=0] [14e>0]
Taking a limit as kK — oo we have
/ VulP~2Vut Vo < /aQ o[Vulr-22 - /Q oAy (TP eCl(Q),p>0inQ)  (3.43)
[u>0] [4>0)]
Using Lemma 3.5 the conclusion holds. O
Lemma 3.9. Assume that u € C!(Q) is admissible in X, and
Vul[P~29% ¢ L1(9Q). Then
o |Vu|P=294 on [u> 0]
[Vut|P2—=— < {0 on [u < 0] (3.44)
min{|Vu[?~29%,0} on [u=0].

Proof. Put jt = (—Apu)™, h=|Vul[?~29. Then
/|Vu\p 2Vu. V(p</o7 h(p+/(pdu (Vo € C'(Q),0 >0in Q)

It follows from Lemma 3.8 that u* satisfies

/ |Vu|P~2Vu't . V(p</(99 h(p+/(pdu (Vo e C'(Q), p>0inQ) (3.45)
[u>0]

By Theorem 3.2 we have ut e Xp, hence

_,0ut _,0u
|Vu|? 2(9— < Xusoth = Loy Vul? 28— on 9Q. (3.46)
n n
By using u — €, where € > 0 instead of u we have in a similar way that
,ou’ ,0u
|VulP ™25 < usoph = Zuso[VulP 25 on 9Q. (3.47)
n n
In particular,
d
Vu|P~2 “n <0 onfu=0). (3.48)
Hence the conclusion follows. O

10



Corollary 3.1. Assume that u is admissible in X, and u € WOl P (Q). Ifu > 0in Q, then

|Vu|p_2? <0 ondQ.
n

Proof.
u=u"in Qand u =0 on dQ, hence applying the Lemma 3.9 we have
du Jut du
— = — <min{=—,0} <0 Q.
dn  dn min{ on’ F<0 o

O
Proof of Theorem 3.4. By Theorem 3.2 u™ € X,,. By applying Kato’s inequality ( Corollary 1.1 in [13]

)tou—a € X,, we havre
Ap(—a)" > YpsqApu=G inQ

for any a € R. Here we note thatt (A,u); = Apu, because A,u € L'(Q). Letting a | 0 we have
Aput > Aus0)dput =G in Q.

Combining this with Lemma 3.7, we have for any ¢ € C 1( ), >0inQ

/|Vu|p 2Vut Vo = / @|VulP~ 204" /<pAu+</ Hop— /G(p

4 Appendix ( Proposition 4.1)
We begin with recalling a local version of Admissibility in [14].

Definition 4.1. (Admissibility in W, Lpt (Q)) Let 1 < p < oo and p* = max{l,p—1}. A function u is

loc

said to be admissible in in W](])’Cp* (Q),ifuc Wl(l)‘cp* (Q), Apu € A (Q) ; the total measure is not necessarily
finite, and if there exists a sequence {ux};_ | C Wl(l)’cp (Q)NL*(Q) such that:

1. uy —uae.in Q and uk—>uinWlO’cp( ) as k — oo,

2. Apig € L1 (Q) (k=1,2,---) and

sup |Apu| (@) = sup/ |Apug| < oo forallw CC Q. “4.1)
k K Jo

Here we describe the following fundamental results, parts of which are already known.
Proposition 4.1. Let Q be a bounded smooth domain of R,

1. Assume that u is admissible in Wll’cp* (). Then, for every M > 0, Tyu € WL (Q).

2. A function u € Wy ”(Q) is admissible in Wol"p* (Q), if Apu € M(Q).

3. A function u € W, (Q) is admissible in W7 (Q), if A u € .#(Q).

4. Tn Definition 2.1, the sequence {u;} can be taken in C!(Q).

5. In Definition 2.2, the sequence {u} can be taken in C}(Q) = {¢ € C'(Q) : u=00n IQ}.
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The proof of assertion 1 for p = 2 is seen in [5] and [6]) and for p > 1 in [14], and the proof of
assertion 2 is seen in Appendix of [14]. The assertion 4 is already verified in the proof of Theorem 3.2.
Therefore we establish the assertions 3 and 5 in the rest of this section.

Proof of assertion 3. To use a diagonal argument, we choose and fix a family of open set {@;} such
that
0 CCwpCC-- CCwyx CC Wy CC--- CCQand Q=U,ay. 4.2)

Let p € C5(B1) be a radial, nonnegative and decreasing mollifier. By extending v € L'(Q) to the whole
space so that v = 0 outside Q, we define a mollification of v with € > 0 by

VE(x) := pe xv(x) = /ng (x=y)v(y)dy forx € Q. 4.3)

First we prove that u € Wol”’ (Q) is admissible in Wl(l)’cp ’ (), if Apu is a Radon measure on Q. Again
by extending u € Wol’p () and Apu € W17 to the whole space so that u = 0 and A,u = 0 outside Q

respectively. Let wy € WO1 7(Q)NC'(Q) be the unique weak solution of the boundary value problem for
the monotone operator A, (see e.g. [16]): Fork=1,2,--- and & > & > ---& > --- — 0, we set

(4.4)

Apwi = (Apu)& in Q,
wr =0 on dQ,

where |Vu|P~2Vu € (LF (Q))N with p’ = p/(p — 1), (|Vu|P2Vu)& € (C=(RN))N and (|Vu|P~2Vu)&
is a mollification of |Vu|P~2Vu defined by (4.3). Let us set A,u = p. We note that |i|(@) < oo for any
® CC Q. Then we have div (|Vu|P~2Vu)& = (div|Vu|P~2Vu)& = (A,u)% = u in @ provided that &
is sufficiently small. Hence we clearly have

[Apwil (@) = [u% (@) = [ul(@) as k — co.
Since p does not charge dQ, this proves the condition 2. Next we show

wi — uin Wy P (Q) as k — oo, (4.5)

Then we can choose a subsequence so that the condition 1 is satisfied. By using wy —u € WO1 P(Q)asa
test function, we have

—(Apwi — Apu, wp —uy = /Q |(Vwie| P2V — |VulP~2Vu) - V(wy — u)
>a [ [Vin—w)” (4.6)
In the left-hand side, using Young’s inequality for § > 0 we have
(AW — Dyt W — 1) = /Q (([VulP~2V0)% — [Vl ?~2Var) -V (g — 1)
<C(8) /Q (VP2 Vi) — [Vul P2Vl + 8 /Q IV (e — )P, @.7)

where C(8) > 0 is a constant depending only on §.

We note that || (|VulP~2Vu)% — |VulP~2Vul|, (@) — 0as k — oo. It follows from (4.6) and (4.7)
that Vw; — Vu in (LP(Q))N as n — oo, which implies (4.5). Then, taking a subsequence if necessary,
{wi} C WOI 7(Q)NC'(Q) satisfies the property wy — u a.e. in Q as k — oo.

Lastly we treat the case where u € Whl)"cp (). For each k we choose n; € Ci* (1) such that 0 <
N < 1 and 1 = 1 in some neighborhood of @y. Let us set vy = Mzu (k= 1,2,3,---) . Then we see that
Vi € WOLP((I)[(+1), Ve — u in Wl(l)’CP(Q) as k — co and A, € WL (Q) N My (). Moreover we have
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|Apvi|(@;) = |Apu|(w;) for any k > j. Hence u is admissible in W](l)cp* (ax) with A,u € A () having
an admissible sequence {v;}. By the previous step with obvious modification, one can approximate
each v inductively by & € W, 7 (2)NC'(Q) such that & — u in Wll’cp* (Q) ask — oo and ||A,&|(w;) —
|Apu|(w;)| < + for k > j. Therefore the assertion is now proved. O

Proof of assertion 5. We assume that u is admissible in WO1 2 (Q). Then we have a sequence of
functions {u} C WOl P(Q)NL?(Q) (k=1,2,...) satisfying the properties 1 and 2 in Definition 2.2.
By the previous step, we see that each u; is approximated as j — oo by a sequence of functions
{wi} C WO1 7(Q)NC'(Q) defined by (4.4) with wy = w,i u = uy and & = €;. Then we choose a suitable
subsequence of {wi"} as an approximation of u so that the assertion is verified. O
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