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Abstract. The variety DQD of dually quasi-De Morgan semi-
Heyting algebras and several of its subvarieties were investigated
in the series [26] - [31]. In this paper we define and investigate
a new subvariety JID of DQD, called “JI-distributive, dually
quasi-De Morgan semi-Heyting algebras”, defined by the identity:
x′ ∨ (y → z) ≈ (x′ ∨ y) → (x′ ∨ z), as well as the (closely re-
lated) variety DSt of dually Stone semi-Heyting algebras. Firstly,
we prove that DSt and JID are discriminator varieties of level 1
and level 2 respectively. Secondly, we give a characterization of
subdirectly irreducible algebras of the subvariety JID1 of JID of
level 1. As applications, we derive that the variety JID1 is the join
of the variety DSt and the variety of De Morgan Boolean semi-
Heyting algebras, give a concrete description of the subdirectly
irreducible algebras in the subvariety JIDL1 of JID1 defined by
the linear identity: (x → y) ∨ (y → x) ≈ 1, and deduce that
the variety JIDL1 is the join of the variety DStHC generated
by the dually Stone Heyting chains and the variety generated by
the 4-element De Morgan Boolean Heyting algebra. Furthermore,
we present an explicit description of the lattice of subvarieties of
JIDL1 and equational bases for all subvarieties of JIDL1. Finally,
we prove that the amalgamation property holds for all subvarieties
of DStHC.

1. Introduction

The De Morgan (strong) negation and the pseudocomplement are
two of the fairly well known negations that generalize the classical
negation. A common generalization of these two negations led to a
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new variety of algebras, called “semi-De Morgan algebras”, which was
investigated in [24]. Several subvarieties of this variety, including a
subvariety called “(upper) quasi-De Morgan algebras” were also studied
in [24].

In a different vein, semi-Heyting algebras were introduced in [25] as
an abstraction of Heyting algebras. Using the dual version of quasi-De
Morgan negation, an expansion of semi-Heyting algebras, called “du-
ally quasi-De Morgan semi-Heyting algebras (DQD, for short)” was
defined and investigated in [26], as a common generalization of De
Morgan (or symmetric) Heyting algebras [23] (see also [19]) and dually
pseudocomplemented Heyting algebras [22]. It may also be mentioned
here that [8] has proposed recently a propositional logic, called “Du-
ally quasi-De Morgan semi-Heyting logic”, which has dually quasi-De
Morgan semi-Heyting algebras as an equivalent algebraic semantics.

Several new subvarieties of DQD were studied in [26]- [31], includ-
ing the variety DStHC generated by the dually Stone Heyting chains
(i.e., the expansion of the Gödel variety by the dual Stone operation),
the variety DMB of De Morgan Boolean semi-Heyting algebras and
the variety DMBH generated by the 4-element De Morgan Boolean
Heyting algebra. These investigations led us naturally to the prob-
lem of equational axiomatization for the join of the variety DStHC
and the variety DMBH. Our investigations into this problem led us
to the results of the present paper that include a solution to the just
mentioned problem.

In this paper we define and investigate a new subvariety of DQD,
called “JI-distributive, dually quasi-De Morgan semi-Heyting algebras
(JID, for short)”, defined by the identity: x′ ∨ (y → z) ≈ (x′ ∨ y) →
(x′∨z), as well as the (closely related) varietyDSt of dually Stone semi-
Heyting algebras. We first prove that DSt and JID are discriminator
varieties of level 1 and level 2 respectively (see Section 2 for defini-
tions). Secondly, we prove that the lattice of subvarieties of DStHC is
an ω + 1-chain. Thirdly, we give a characterization of subdirectly irre-
ducible algebras of the subvariety JID1 of level 1. As a first application
of it, we derive that the variety JID1 is the join of the variety DSt and
the variety DMB. As a second application, we give a concrete descrip-
tion of the subdirectly irreducible algebras in the subvariety JIDL1 of
JID1 defined by the linear identity: (x → y) ∨ (y → x) ≈ 1, and
deduce that the variety JIDL1 is the join of the variety DStHC gen-
erated by the dually Stone Heyting chains and the variety DMBH.
Other applications include a description of the lattice of subvarieties
of JIDL1, equational bases of all subvarieties of JIDL1, and the fact
that the amalgamation property holds in all subvarieties of DStHC.
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More explicitly, the paper is organized as follows: In Section 2 we
recall definitions, notations and results from [26], [27] and [28] and also
prove some new results needed in the rest of the paper. In Section 3,
we define the variety JID of JI-distributive, dually quasi-De Morgan
semi-Heyting algebras and give some arithmetical properties of JID.
In particular, we show that JID satisfies the ∨-De Morgan law and the
level 2 identity: (x∧x′∗)′∗ ≈ (x∧x′∗)′∗′∗. These two propertes allow us
to apply [26, Corollary 8.2(a)] to deduce that JID is a discriminator
variety. These properties also play a crucial role in the rest of the pa-
per. Section 4 will prove that the variety DSt is a discriminator variety
of level 1. It will also present some properties of DSt, which, besides
being of interest in their own right, will also be useful in the later sec-
tions. It is also proved that the lattice of subvarieties of DStHC is
an ω + 1-chain. In Section 5, we give a characterization of subdirectly
irreducible (= simple) algebras in the variety JID1 of level 1 and de-
duce that JID1 is the join of DSt and the variety DMB of De Morgan
Boolean semi-Heyting algebras. Several applications of this character-
ization are given in Section 6 and Section 7. We investigate, in Section
6, the variety JIDL1 of JI-distributive, dually quasi-De Morgan, linear
semi-Heyting algebras of level 1. An explicit description of subdirectly
irreducible algebras in JIDL1 is given, and from this description it is
deduced that JIDL1 = DStHC ∨ DMBH, which solves the afore-
mentioned problem of axiomatizing the join of DStHC and DMBH.
In Section 7, some applications of the just-mentioned result are given.
It is shown that the lattice of subvarieties of JIDL1 is isomorphic to
1⊕ [(ω + 1)× 2], where 1 and 2 are the 1-element and the 2-element
lattices, respectively. Also, (small) equational bases for all subvarieties
of JIDL1 are given. Finally, it is shown that all subvarieties ofDStHC
have the amalgamation property.

2. Preliminaries

In this section we recall some notions and known results needed
to make this paper as self-contained as possible. However, for other
information used but not mentioned here, we refer the reader to [5], [7]
and [20].
An algebra L = 〈L,∨,∧,→, 0, 1〉 is a semi-Heyting algebra ([25]) if

〈L,∨,∧, 0, 1〉 is a bounded lattice and L satisfies:

(SH1) x ∧ (x → y) ≈ x ∧ y,
(SH2) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)],
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(SH3) x → x ≈ 1.

Semi-Heyting algebras are distributive and pseudocomplemented, with
a∗ := a → 0 as the pseudocomplement of an element a.
Let L be a semi-Heyting algebra. L is a Heyting algebra if L satisfies:

(H) (x ∧ y) → y ≈ 1.

L is a Boolean semi-Heyting algebra if L satisfies:

(Bo) x ∨ x∗ ≈ 1.

L is a Boolean Heyting algebra if L is a Heyting algebra and satisfies
(Bo).

The following definition, taken from [26], is central to this paper.

DEFINITION 2.1. An algebra L = 〈L,∨,∧,→,′ , 0, 1〉 is a semi-
Heyting algebra with a dual quasi-De Morgan operation or dually quasi-
De Morgan semi-Heyting algebra (DQD-algebra, for short) if
〈L,∨,∧,→, 0, 1〉 is a semi-Heyting algebra, and L satisfies:

(a) 0′ ≈ 1 and 1′ ≈ 0,
(b) (x ∧ y)′ ≈ x′ ∨ y′,
(c) (x ∨ y)′′ ≈ x′′ ∨ y′′,
(d) x′′ ≤ x.

Let L be a DQD-algebra. L is a dually pseudocomplemented semi-
Heyting algebra (DPC-algebra) (see [24]) if L satisfies:

(e) x ∨ x′ ≈ 1.

L is a dually Stone semi-Heyting algebra (DSt-algebra) if L satisfies
the dual Stone identity:

(DSt) x′ ∧ x′′ ≈ 0.

It should be noted that if (DSt) holds in a DQD-algebra L, then (e)
holds in L as well, and hence ′ is indeed the dual pseudocomplement
satisfying the dual Stone identity, and so L has, indeed, a dual Stone
algebra as a reduct. L is a De Morgan semi-Heyting algebra (DM-
algebra) if L satisfies:

(DM) x′′ ≈ x.

The varieties of DQD-algebras, DPC-algebras, DSt-algebras, DM-
algebras are denoted, respectively, by DQD, DPC, DSt, and DM. If
the underlying semi-Heyting algebra of a DQD-algebra is a Heyting
algebra, then we add “H” at the end of the names of the varieties that
will be considered in the sequel. Thus, for example, DStH denotes the
variety of dually Stone Heyting algebras.
The following lemmas are basic to this paper. The proof of the first

lemma is straightforward and is left to the reader.



DUALLY QUASI-DE MORGAN SEMI-HEYTING ALGEBRAS 5

LEMMA 2.2. Let L ∈ DQD and let x, y, z ∈ L. Then

(i) 1′∗ = 1, and 1 → x = x,
(ii) x ≤ y implies x′ ≥ y′,
(iii) (x ∧ y)′∗ = x′∗ ∧ y′∗,
(iv) x′′′ = x′,
(v) (x ∨ y)′ = (x′′ ∨ y)′,
(vi) x ∧ [y ∨ (x → z)] = x ∧ (y ∨ z),
(vii) x ∧ (x → y)′′ ≤ y.

LEMMA 2.3. Let L ∈ DQD and x, y ∈ L. Then

(1) (x ∨ y)′ ≤ x′ → (x ∨ y)′,
(2) [x ∨ (y ∨ z)′]′ = (x ∨ y′)′ ∨ (x ∨ z′)′,
(3) x ∧ [(x → y) ∨ z] = x ∧ (y ∨ z),
(4) y ∧ [x → (y ∧ z)] = y ∧ (x → z),
(5) x → (y ∧ z) ≥ y ∧ (x → z),
(6) x ≤ y → (x ∧ y),
(7) (x ∨ y)′ = x′ ∧ [(x ∨ y)′ ∨ {x′ → (x ∨ y)′}′′],
(8) x ≤ (x → y) → y.

Proof.
(1) is straightforward to verify since (x ∨ y)′ ≤ x′.

(2): [(x ∨ (y ∨ z)′]′ = [x′′ ∨ (y ∨ z)′]′ by Lemma 2.2 (v)

= [x′ ∧ (y ∨ z)]′′

= [(x′ ∧ y) ∨ (x′ ∧ z)]′′

= (x′ ∧ y)′′ ∨ (x′ ∧ z)′′

= (x′′ ∨ y′)′ ∨ (x′′ ∨ z′)′

= (x ∨ y′)′ ∨ (x ∨ z′)′ by Lemma 2.2 (v)
(3) and (4) are easy to verify.

(5): [x → (y ∧ z)] ∧ y ∧ (x → z) = y ∧ [x → (y ∧ z)] ∧ (x → z)

= y ∧ (x → z) by (4).

(6): x = x ∧ (y → y) ≤ y → (x ∧ y) by (5).
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(7): (x ∨ y)′ = x′ ∧ (x ∨ y)′

= x′ ∧ [x′ → (x ∨ y)′]

= x′ ∧ [{x′ → (x ∨ y)′} ∨ {x′ → (x ∨ y)′}′′]
= [x′ ∧ (x ∨ y)′] ∨ [x′ ∧ {x′ → (x ∨ y)′}′′]
= x′ ∧ [(x ∨ y)′ ∨ {x′ → (x ∨ y)′}′′],

.

(8): x∧ [(x → y) → y] = x∧ [{x∧ (x → y)} → (x∧y)] = x∧ [(x∧y) →
(x ∧ y)] = x ∧ 1 = x, completing the proof. �
The following three 4-element algebras, called D1, D2, and D3 (fol-

lowing the notation of [26]), in DQD, play an important role in the
sequel. All three of them have the Boolean lattice reduct with the
universe {0, a, b, 1}, where b is the Boolean complement of a, and the
operation ′ is defined as follows: a′ = a, b′ = b, 0′ = 1, 1′ = 0, while
the operation → is defined in Figure 1.

D1 : D2 :

→ 0 1 a b
0 1 0 b a
1 0 1 a b
a b a 1 0
b a b 0 1

→ 0 1 a b
0 1 1 1 1
1 0 1 a b
a b 1 1 b
b a 1 a 1

D3 :

→ 0 1 a b
0 1 a 1 a
1 0 1 a b
a b a 1 0
b a 1 a 1

Figure 1

Let DQB and DMB denote respectively the subvarieties of DQD
and DM defined by (Bo). Also, by an earlier convention, DQBH
and DMBH denote, respectively, the subvarieties of DQB and DMB
defined by (H). V(K) denotes the variety generated by the class K of
algebras in DQD. The following proposition is proved in ([26]) and is
needed later in this paper.

PROPOSITION 2.4.

(a) DQB = DMB = V({D1,D2,D3}),
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(b) DQBH = DMBH = V(D2).

The following definition is from [26].

DEFINITION 2.5. Let L ∈ DQD and x ∈ L. For n ∈ ω, we define
tn(x) recursively as follows:

x0(′∗) := x;
x(n+1)(′∗) := (xn(′∗))′∗, for n ≥ 0;

t0(x) := x,
tn+1(x) := tn(x) ∧ x(n+1)(′∗), for n ≥ 0.

Let n ∈ ω. The subvariety DQDn of level n of DQD is defined by
the identity:

(lev n) tn(x) ≈ t(n+1)(x);

For a subvariety V of DQD, we let Vn := V ∩DQDn.

Recall from [26] (or [27]) thatBDQDSH is the subvariety ofDQD (=
DQDSH) defined by the identity:

(BL) (x ∨ y∗)′ ≈ x′ ∧ y∗′.

We will abbreviate BDQDSH by BDQD.
The following “simplicity condition”, (SC), is crucial in the rest of

the paper.

(SC) For every x ∈ L, if x 
= 1, then x ∧ x′∗ = 0.

The following theorem, which was proved in [27, Corollary 4.1] (which
is, in turn, a consequence of Corollaries 7.6 and 7.7 of [26]), will play a
fundamental role in this paper.

THEOREM 2.6. [27, Corollary 4.1] Let L ∈ BDQD1 with |L| ≥ 2.
Then the following are equivalent:

(1) L is simple,
(2) L is subdirectly irreducible,
(3) L satisfies (SC).

3. JI-distributive, dually quasi-De Morgan semi-Heyting

algebras

The identity, x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z), was shown in
[28, Corollary 3.55] to be an equational base for the variety gener-
ated by D2, relative to DQD. Let us refer to this identity as “strong
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JI-distributive identity”. We now introduce a slightly weaker iden-
tity, called “JI-distributive identity” (by restricting the first variable
to “primed” elements). The subvariety JID of DQD defined by this
identity and some of its subvarieties are the subject of our investigation
in the rest of this paper.

DEFINITION 3.1. The subvariety JID of DQD is defined by:

(JID) x′ ∨ (y → z) ≈ (x′ ∨ y) → (x′ ∨ z) (restricted Distribution of
Join over Implication).

Members of the variety JID are called “JI-distributive, dually quasi-
De Morgan semi-Heyting algebras” and will be referred to as JID-
algebras. Examples of JID-algebras come from a surprising source to
which we shall now turn. But, first we need some notation.

A DQD-algebra is a DQD-chain if its lattice reduct is a chain. Let
DQDC [DPCC] denote the variety generated by the DQD-chains
[DPC-chains]. The following lemma provides an important class of
examples of JID, which is partly the motivation for our interest in
JID.

LEMMA 3.2. DPCC ⊆ JID.

Proof. It suffice to show that DPCC |= (JID). Let A be a DPC-chain
and let a ∈ A \ {1}. Since A is a chain, we have a′ ≤ a or a ≤ a′ ,
from which we get that a ∨ a′ ≤ a or a ∨ a′ ≤ a′. Since A is dually
pseudocomplemented, we have a ∨ a′ = 1, implying a′ = 1, as a 
= 1.
Now, it is routine to verify (JID) holds in A. �

For L a DPC-chain, it was observed in the proof of the preceding
lemma that the dual pseudocomplement ′ satisfies: a′ = 1, if a 
= 1,
and hence L |= (DSt). Thus, we have the following corollary, where
DStC denotes the variety generated by the dually Stone semi-Heyting
chains.

COROLLARY 3.3. DPCC = DStC.

From now on, we use DPCC and DStC interchangeably. We note
that D1, D2, and D3 are also examples of JID-algebras.

In the rest of this section we present several useful arithmetical prop-
erties of JID. Following our convention made earlier, JIDH denotes
the subvariety of JID defined by the identity (H).

Throughout this section, we assume that L ∈ JID.

LEMMA 3.4. Let x, y, z ∈ L. Then

(1) x′ → (x′ ∨ y) = x′ ∨ (x′ → y),
(2) x′ → (x′ ∨ y) = x′ ∨ (0 → y),
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(3) x′ ∨ (x′ → y) = x′ ∨ (0 → y); in particular, x′ ∨ x′∗ = 1,
(4) (x′ ∨ y) → x′ = x′ ∨ y∗,
(5) (x′ ∨ y) → x′ = x′ ∨ (y → x′),
(6) x′ ∨ (y → x′) = x′ ∨ y∗,
(7) x′ → (x ∨ y)′ = x′∗ ∨ (x ∨ y)′.

Proof. Observe that x′ → (x′∨y) = (x′∨x′) → (x′∨y) = x′∨ (x′ → y)
by (JID), which proves (1). To prove (2), again using (JID), we get
x′∨(0 → y) = (x′∨0) → (x′∨y) = x′ → (x′∨y). (3) is immediate from
(1) and (2). For (4), (x′∨y) → x′ = (x′∨y) → (x′∨0) = x′∨(y → 0) =
x′ ∨ y∗, in view of (JID). Next, (x′ ∨ y) → x′ = (x′ ∨ y) → (x′ ∨ x′) =
x′ ∨ (y → x′), proving (5), and (6) is immediate from (4) and (5). For
(7), we have

x′ → (x ∨ y)′ = (x ∨ y)′ ∨ [x′ → (x ∨ y)′] by Lemma 2.3 (1)

= (x ∨ y)′ ∨ x′∗ by (6).

�
We now prove an important property of the variety JID, namely the

∨-De Morgan law. We denote by Dms the subvariety of DQD (called
“dually ms semi-Heyting algebras”) defined by

(x ∨ y)′ ≈ x′ ∧ y′ (∨-De Morgan Law).

THEOREM 3.5. JID ⊆ Dms.

Proof. Let x, y ∈ L. As x′ ∧ x′∗′′ ≤ x′ ∧ x′∗ = 0, we get x′ ∧ y′ =
(x′ ∧ x′∗′′) ∨ (x′ ∧ y′). Hence,

x′ ∧ y′ = x′ ∧ (x′∗′′ ∨ y′)
= x′ ∧ [(x ∨ y)′ ∨ x′∗′′ ∨ y′] since (x ∨ y)′ ≤ y′

= x′ ∧ [(x ∨ y)′ ∨ x′∗′′ ∨ y′′′]
= x′ ∧ [(x ∨ y)′ ∨ (x′∗ ∨ y′)′′]
= x′ ∧ [(x ∨ y)′ ∨ {(x′∗ ∨ x′)′ ∨ (x′∗ ∨ y′)′}′] by Lemma 3.4 (3.4)
= x′ ∧ [(x ∨ y)′ ∨ {x′∗ ∨ (x ∨ y)′}′′] by Lemma 2.3 (2)
= x′ ∧ [(x ∨ y)′ ∨ {x′ → (x ∨ y)′}′′] by Lemma 3.4 (7)
= (x ∨ y)′ by Lemma 2.3 (7).

Hence, JID ⊆ Dms. �
The following lemma is useful in this and later sections.

LEMMA 3.6. Let x, y, z ∈ L. Then

(1) x′∗′′ = x′∗,
(2) x′′∗ = x′∗′,
(3) x → (x ∧ y′) = x∗ ∨ y′,
(4) (x ∧ y′∗)∗ = y′ ∨ x∗,
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(5) (x′ ∨ y′′∗)∗′ = (x′′ ∧ y′∗)∗.

Proof. (1): From Lemma 3.4 (3) we have x′ ∨ x′∗ = 1, which yields
x′′′ ∨ x′∗′′ = 1, implying x′ ∨ x′∗′′ = 1, leading to x′∗ ≤ x′∗′′; thus,
x′∗ = x′∗′′.

(2): From x′ ∨ x′∗ = 1 and Theorem 3.5 we get x′′ ∧ x′∗′ = 0, implying
x′∗′ ≤ x′′∗. To prove the reverse inequality, from x′ ∧ x′∗ = 0, we get
x′′ ∨ x′∗′ = 1, from which it follows that x′′∗ ≤ x′∗′.

(3): x∗ ∨ y′ = (y′ ∨ x) → y′ by (JID)

= (y′ ∨ x) → [y′ ∨ (x ∧ y′)]

= y′ ∨ [x → (x ∧ y′)] by (JID)

= x → (x ∧ y′) by Lemma 2.3 (6).

(4): (x ∧ y′∗)∗ = (x ∧ y′′′∗)∗ by Lemma 2.2 (v)

= (x ∧ y′∗′′)∗ by (2) (twice)

= (x ∧ y′∗′′) → (y′ ∧ x ∧ y′∗′′) as y′ ∧ y′∗′′ = 0

= y′ ∨ (x ∧ y′∗′′)∗ by (3)

= y′ ∨ (x ∧ y′′′∗)∗ by (2) (twice)

= y′ ∨ (x ∧ y′∗)∗

= y′ ∨ [(x ∧ y′∗) → 0]

= [y′ ∨ (x ∧ y′∗)] → y′ by (JID)

= [(y′ ∨ x) ∧ (y′ ∨ y′∗)] → y′

= [(y′ ∨ x) ∧ 1] → y′ by Lemma 3.4 (3)

= (y′ ∨ x) → y′

= y′ ∨ (x → 0) by (JID)

= y′ ∨ x∗.
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(5): (x′ ∨ y′′∗)∗′ = (x′ ∨ y′∗′)∗′ by (2)

= (x ∧ y′∗)′∗′

= (x ∧ y′∗)′′∗ by (2)

= (x′ ∨ y′∗′)′∗

= (x′′ ∧ y′∗′′)∗ by Theorem 3.5

= (x′′ ∧ y′′′∗)∗ by (2) (twice)

= (x′′ ∧ y′∗)∗.
This completes the proof. �

3.1. An Alternate Definition of “level n”, for n ≥ 1.

The following lemmas enable us to give an alternate definition of “Level
n”, for n ≥ 1.

LEMMA 3.7. Let x ∈ L. Then x′∗∗ = x′.

Proof. Since x′ ∨ x′∗ = 1 by Lemma 3.4, and x′ ∧ x′∗ = 0, we get
x′∗∗ = x′. �

LEMMA 3.8. Let x ∈ L. Then x ∧ x′∗ ∧ x′∗′∗ = (x ∧ x′∗)′∗.

Proof. x ∧ x′∗ ∧ x′∗′∗ = x ∧ x′∗ ∧ x′′∗∗ by Lemma 3.6 (2)

= x ∧ x′∗ ∧ x′′ by Lemma 3.7

= x′∗ ∧ x′′

= x′∗ ∧ x′′∗∗ by Lemma 3.7

= x′∗ ∧ x′∗′∗ by Lemma 3.6 (2)

= (x ∧ x′∗)′∗.
�

Since JIDn = JID ∩ DQDn, the above lemma allows us to make
the following alternate (but equivalent) definition for JIDn, for n ∈ ω
such that n ≥ 1.

DEFINITION 3.9. Let n be an integer ≥ 1. The variety JIDn is the
subvariety of JID defined by

(Lev n) (x ∧ x′∗)(n−1)(′∗) ≈ (x ∧ x′∗)n(′∗).

Thus, in particular, JID1 and JID2 are, respectively, defined, rela-
tive to JID, by

(Lev 1) x ∧ x′∗ ≈ (x ∧ x′∗)′∗,
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(Lev 2) (x ∧ x′∗)′∗ ≈ (x ∧ x′∗)′∗′∗.

In the rest of the paper we will use these definitions for the levels of
JID1 and JID2.

3.2. The Level of JID.

Next, we wish to prove that JID is at Level 2.

THEOREM 3.10. We have

(1) JID1 ⊂ JID,
(2) JID = JID2.

Proof. First, we prove (2). That is, we need to prove that the “level 2”
identity holds in JID. Let x ∈ L.

(x ∧ x′∗)′∗′∗ = (x′ ∨ x′∗′)∗′∗

= (x′ ∨ x′′∗)∗′∗ by Lemma 3.6 (2)

= (x′′ ∧ x′∗)∗∗ by Lemma 3.6 (5)

= (x′ ∨ x′′∗)∗ by Lemma 3.6 (4)

= (x′ ∨ x′∗′)∗ by Lemma 3.6 (2)

= (x ∧ x′∗)′∗.

Hence (2) is proved. For (1), we consider the following algebra SIX
with its lattice reduct, → and ′ as given in Figure 2. We note that
SIX ∈ JID; but it is not of level 1 (at a). �

�1

a�c �

�d �b

�0

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 2

→: 0 1 a b c d
0 1 1 1 1 1 1
1 0 1 a b c d
a 0 1 1 b c c
b c 1 1 1 c c
c b 1 a b 1 a
d b 1 1 b 1 1

′: 0 1 a b c d
1 0 b b c 1
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The following corollary is immediate from the above theorem and [26,
Corollary 8.2(a)].

COROLLARY 3.11. JID is a discriminator variety of level 2.

4. Dually Stone Semi-Heyting algebras

The study of dually Stone Heyting algebras goes back to [22], while
the investigations into the variety DSt of dually Stone semi-Heyting
algebras were initiated in [26]. In this section we will prove that the
variety DSt is a discriminator variety of level 1 and also present some
of its properties that, besides being of interest in their own right, will
be needed in the later sections. We will also consider the subvariety
DStHC of DStH generated by dually Stone Heyting chains and prove
that the lattice of subvarieties of DStHC is an ω + 1-chain–a result
which was implicit in [26, Section 13].

It is well-known that the identity (x ∧ y)∗ ≈ x∗ ∨ y∗ holds in Stone
algebras. The following lemma is just its dual.

LEMMA 4.1. Let L ∈ DSt. Then L satisfies: (x ∨ y)′ ≈ x′ ∧ y′.

See Section 2 for the definition of the condition (SC). The following
theorem will be useful in the sequel.

THEOREM 4.2. Let L ∈ DSt. Then

(a) L |= x′′ ≈ x′∗;
(b) L |= (Lev 1);
(c) If L |= (SC), then L ∈ JID1.

Proof. We note that (a) is the dual of a well known property of Stone
algebras. From (a) we have (x ∧ x′∗)′∗ = (x ∧ x′′)′∗ = x′′′∗ = x′∗ =
x′′ = x ∧ x′∗, implying that (b) holds. Finally, let L ∈ DSt and
satisfy (SC), and let a ∈ L \ {1}. Then, by (SC) and (a), we have
a′′ = a ∧ a′′ = a ∧ a′∗ = 0, implying a′ = 1. Then it is straightforward
to verify that L |= (JID). Hence, (c) holds, in view of (b). �
REMARK 4.3. In contrast to DSt, DPC is not, however, at level
1. For example, the algebra EIGHT with its lattice reduct, → and
′ as given below, is, in fact, in the subvariety of DPC, defined by:
(x∨ y)′ ∧ (x′ ∨ y)′ ∧ (x∨ y′)′ = 0; but it fails to satisfy (Lev 1) identity.
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′: 0 1 e c a b f d
1 0 c e 1 1 e 1

→: 0 1 e c a b f d
0 1 0 0 b b c 0 0
1 0 1 e c a b f d
e 0 1 1 c c b f f
c b c a 1 e 0 c a
a b c c 1 1 0 c c
b c b b 0 0 1 b b
f 0 1 e c a b 1 e
d 0 1 1 c c b 1 1

The following corollary is immediate from Lemma 4.1, Theorem 4.2
and [26, Corollary 8.2(a)].

COROLLARY 4.4. DSt is a discriminator variety of level 1.

Observe that Lemma 4.1 impies that DSt satisfies (BL). The follow-
ing corollary is, therefore, immediate from Theorem 4.2(b) and Theo-
rem 2.6.

COROLLARY 4.5. Let L ∈ DSt with |L| ≥ 2. Then the following
are equivalent:

(1) L is simple,
(2) L is subdirectly irreducible,
(3) L satisfies (SC).

4.1. The variety DStHC.

Recall that DStHC is the variety generated by dually Stone Heyt-
ing chains. We now give an application of Corollary 4.5.

DEFINITION 4.6. For n ∈ N, let Cdp
n denote the n-element DStH-

chain such that
Cdp

n = {0, a1, a2, . . . , an−2, 1}, where 0 < a1 < a2 < · · · < an−2 < 1.

We denote by V(Cdp
n ) the variety generated by Cdp

n . (Note that Cdp
3

is the same as Ldp
1 given in [26].)

It follows from Corollary 3.3 that DPCHC = DStHC. The follow-
ing theorem was implicit in [26, Section 13].
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THEOREM 4.7. The lattice of subvarieties of DStHC is the follow-
ing ω + 1-chain:

V(Cdp
1 ) < V(Cdp

2 ) < · · · < V(Cdp
n ) < · · · < DStHC.

Proof. We claim that subdirectly irreducible algebras in DStHC are
precisely the DStH-chains. For, let Cdp be a DStHC-chain and let
x ∈ Cdp. Since x ≤ x′ or x′ ≤ x, it follows that x = 1 or x′ = 1, for
every x ∈ Cdp, which implies that Cdp satisfies (SC). On the other
hand, let A ∈ DStHC satisfy (SC). Let a ∈ A \ {1}. By Theorem
4.2 (a) we have a′∗ ≤ a; hence by (SC), we get a′∗ = 0, implying
a′ = 1, again by Theorem 4.2 (a). Since each DStHC-chain satisfies
the identity: (L) (x → y) ∨ (y → x) ≈ 1, it follows that DStHC
satisfies it too, implying that A |= (L). Hence, any two elements of
A are comparable in A, so A is a DStH-chain. Thus, A ∈ DStHC
is subdirectly irreducible iff A is a DStH-chain. Now it is not hard
to observe that if an identity fails in an infinite DStHC-chain, then
it fails in a finite DStHC-chain. Thus DStHC is generated by finite
DStH-chains. Hence, the conclusion of the theorem follows. �

Note, however, that if we consider DStC-chains with semi-Heyting
reducts that are not Heyting algebras, the situation gets more com-
plicated, since the structure of the lattice of subvarieties of DStC is
quite complex, as shown by the following class of examples: Let A be a
semi-Heyting algebra. Let Ae be the expansion of A by adding a unary
operation ′ as follows:

x′ = 0, if x = 1, and x′ = 1, otherwise.

Then it is clear that Ae is a DSt-algebra and is simple. In particular,
if A is a semi-Heyting-chain, then Ae ∈ DStC and is simple. Further-
more, the number of semi-Heyting chains even for a small size is large;
for example, there are 160 semi-Heyting chains of size 4 and, there-
fore, there are 160 DStC-chains of size 4. If we denote the 2-element,
non-Boolean, dually Stone semi-Heyting algebra by 2̄e, then it is in-
teresting to observe that 2̄e ∈ DStC \DStHC, and DStHC is only
a ”small” subvariety of DStC. These observations naturally suggest
that the following open problem is of interest:

Problem: Investigate the structure of the lattice of subva-
rieties of DStC.
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5. Subdirectly Irreducible Algebras in JID1

Recall that the variety JID1 is the subvriety of JID defined by

(Lev 1) x ∧ x′∗ ≈ (x ∧ x′∗)
′∗
.

In this section we give a somewhat concrete characterization of sub-
directly irreducible (=simple) algebras in the variety JID1.

The following theorem follows immediately from Theorem 3.10 and
Theorem 2.6.

THEOREM 5.1. Let L ∈ JID1 with |L| ≥ 2. Then the following are
equivalent:

(1) L is simple,
(2) L is subdirectly irreducible,
(3) L satisfies (SC).

We now wish to refine further the above characterization of the sub-
directly irreducible algebras in JID1. In view of the above theorem,
it suffices to characterize the algebras in JID1 satisfying the condition
(SC).
Unless otherwise stated, in the rest of this section we as-

sume that L ∈ JID1 with |L| ≥ 2 and satisfies the simplicity
condition (SC).

LEMMA 5.2. Let a, b ∈ L such that a′ = a. Then

a ∨ b ∨ b∗ = 1.

Proof. From Lemma 3.4 (4) and a′ = a, we have

(1) (a ∨ b) → a = a ∨ b∗.

Now,

a ∨ (a ∨ b)′∗ = a′ ∨ [(a ∨ b)′ → 0]

= [a′ ∨ (a ∨ b)′] → (a′ ∨ 0), by (JID)

= a′ → a′ as a′ ≥ (a ∨ b)′

= 1.

Thus, we have

(2) a ∨ (a ∨ b)′∗ = 1.
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If a∨b = 1, then clearly the lemma is true. So, we assume that a∨b 
= 1.
Then (a ∨ b) ∧ (a ∨ b)′∗ = 0 by (SC), and hence, we have

a = a ∨ (b ∧ b∗)

= (a ∨ b) ∧ (a ∨ b∗)

= [(a ∨ b) ∧ (a ∨ b)′∗] ∨ [(a ∨ b) ∧ (a ∨ b∗)] by (SC)

= (a ∨ b) ∧ [(a ∨ b)′∗ ∨ (a ∨ b∗)]

= (a ∨ b) ∧ [(a ∨ b)′∗ ∨ {(a ∨ b) → a}] by (1)

= (a ∨ b) ∧ [{(a ∨ b) → a} ∨ (a ∨ b)′∗]

= (a ∨ b) ∧ [a ∨ (a ∨ b)′∗] by Lemma 2.3(3)

= a ∨ b by (2).

Hence, a∨b = a, which implies, by (1), that a∨b∗ = 1. The conclusion
of the lemma is now immediate. �
LEMMA 5.3. Let x ∈ L \ {1}. Then x ≤ x′.

Proof. Since x 
= 1, we have x ∧ x′∗ = 0 by (SC), from which we get
(x′ ∨ x)∧ (x′ ∨ x′∗) = x′, whence x′ ∨ x = x′, as x′ ∨ x′∗ = 1 by Lemma
3.4 (3), proving the lemma. �
LEMMA 5.4. Let |L| > 2 and let a ∈ L such that a′ = a. Then the
height of L is at most 2.

Proof. Suppose there are b, c ∈ L such that 0 < b < c < 1. We wish to
arrive at a contradiction.
From Lemma 5.3 we have c ≤ c′, from which it follows that

(3) b ≤ c′.

Claim 1: b′ = 1.
Suppose b′ 
= 1. Then, by Lemma 5.3, we get b′ ≤ b′′ ≤ b ≤ c; thus

b′ ≤ c. Next, b ≤ c implies c′ ≤ b′; and also c ≤ c′ from Lemma 5.3,
whence c ≤ b′. Thus we conclude that b′ = c, whence c′ = b′′ ≤ b,
implying c′ = b, by (3). Then, in view of Lemma 5.3. we have c ≤ c′ =
b; thus c ≤ b, which is a contradiction, proving the claim.
From Lemma 5.2 we have a ∨ b ∨ b∗ = 1. Hence, a′ ∧ b′ ∧ b∗′ = 0

by Theorem 3.5, implying a ∧ b∗′ = 0 by Claim 1 and the hypothesis.
Thus

(4) a ∧ b∗′ = 0.

Therefore, a ∨ b∗ ≥ a ∨ b∗′′ = 1 as a′ = a, yielding b ≤ a. Hence, again
from (4), we obtain

(5) b ∧ b∗′ = 0.
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Claim 2: b ∨ b∗ = 1.
Suppose the claim is false. Then b ≤ b∨ b∗ ≤ (b∨ b∗)′ by Lemma 5.3,

whence b ≤ b′ ∧ b∗′, which implies b = b ∧ b′ ∧ b∗′ = 0 by the equation
(5), contrary to b > 0, proving the claim.
From Claim 2 and Theorem 3.5 we have b′∧ b∗′ = 0, Since b′ = 1 by

Claim 1, it follows that b∗′ = 0, whence b∗ ≥ b∗′′ = 1; so b ≤ b∗∗ = 0,
contradicting b > 0, proving the lemma. �
LEMMA 5.5. For every x ∈ L, x = 1 or x′ = 1 or x = x′.

Proof. Suppose x ∈ L such that x 
= 1 and x′ 
= 1. Then by Lemma
5.3, we have x ≤ x′. Also, since x′ 
= 1, we have x′ ≤ x′′ ≤ x, again by
Lemma 5.3. So, x = x′, proving the lemma. �
LEMMA 5.6. Let a ∈ L such that a′ = a. Then a∗′ = a∗.

Proof. First, observe that a 
= 0 and a 
= 1, since a = a′. Suppose
a∗′ 
= a∗. The following claims will lead to a contradiction.

Claim 1: a∗ = a∗′′.
a ∨ a∗′′ = a′′ ∨ a∗′′ = (a ∨ a∗)′′ = [a′ ∨ (a′ → 0)]′′ = 1 by Lemma

3.4(3). Hence, a∨a∗′′ = 1, implying a∗ ≤ a∗′′, and so a∗ = a∗′′, proving
the claim.

Claim 2: a∗ = 0.
We have, by Lemma 5.5, that a∗′ = 1 or a∗′′ = 1 or a∗′ = a∗′′. So, by

Claim 1, we get a∗ = a∗′′ = 0 or a∗ = 1 (as a∗ ≥ a∗′′) or a∗′ = a∗.
But, we know, by our assumption, that a∗ 
= a∗′. Hence, a∗ = 0 or
a∗ = 1, which clearly implies a∗ = 0 or a = 0. Since we know that
a 
= 0, the claim is proved.
Now, in view of (JID) and Claim 2, we have a = a ∨ 0 = a ∨ a∗ =

a′ ∨ (a → 0) = (a′ ∨ a) → (a′ ∨ 0) = a → a = 1, implying a = 1, which
is a contradiction, proving the lemma. �
PROPOSITION 5.7. Let |L| > 2. Suppose there is an a ∈ L such
that a′ = a. Then L ∈ {D1,D2,D3}, up to isomorphism.

Proof. In view of Lemma 5.4 and |L| > 2, the height of L is exactly 2.
Since the lattice reduct of L is distributive, L is either a 3-element chain
or a 4-element Boolean lattice. We know from Lemma 5.6 that a∗′ = a∗.
Thus a and a∗ are complementary, implying that the lattice reduct of
L is a 4-element Boolean lattice; so L |= (Bo), and hence L ∈ DQB.
Then, from Proposition 2.4 (a) it follows that L ∈ {D1,D2,D3}, up
to isomorphism. �
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PROPOSITION 5.8. Suppose x′ 
= x, for every x ∈ L. Then L ∈
DSt.

Proof. Let x ∈ L. Without loss of generalty, we can assume that
x 
= 1. Then we claim that x′ = 1. For, assume that x′ 
= 1. Then,
by Lemma 5.3 we get x ≤ x′ and x′ ≤ x′′, which implies x = x′,
as x′′ ≤ x, contradicting the hypothesis. So, we have x′ = 1, which
implies x′ ∧ x′′ = 0, Hence L is a dually Stone semi-Heyting algebra,
completing the proof. �
We are now ready to prove our main theorem of this section.

THEOREM 5.9. Let L ∈ DQD with |L| ≥ 2. Then the following
are equivalent:

(a) L is a subdirectly irreducible algebra in JID1,
(b) L is a simple algebra in JID1,
(c) L ∈ JID1 such that (SC) holds in L,
(d) L ∈ {D1,D2,D3}, up to isomorphism, or L ∈ DSt such that

L satisfies (SC).

Proof. In view of Theorem 5.1, we only need to prove (c) ⇔ (d). Now,
suppose (d) holds. First, let us suppose L ∈ {D1,D2,D3}, up to
isomorphism. Then it is routine to verify that {D1,D2,D3} ⊆ JID1

and {D1,D2,D3} satisfies (SC), implying (c). Next, suppose L ∈ DSt
such that L satisfies (SC). Then L ∈ JID1, in view of Theorem 4.2(c),
implying that (c) holds. Thus (d) ⇒ (c). To prove the converse,
suppose (c) holds. We consider two cases. First, suppose there is an
a ∈ L such that a′ = a. Then, by Proposition 5.7, L ∈ {D1,D2,D3},
up to isomorphism, implying (d).
Next, suppose there is no element a ∈ L such that a′ = a. Hence, L

satisfies:

(6) For every x ∈ L, x′ 
= x.

Then, using Proposition 5.8, we obtain that L is dually Stone, which,
together with the hypothesis, leads us to conclude (c) ⇒ (d). �
We have the following important consequence of Theorem 5.9.

COROLLARY 5.10. JID1 = DSt ∨ V(D1,D2,D3).

Recall that JIDH is the subvariety of JID defined by the identity:
(x ∧ y) → x ≈ 1, and DStH is the variety of dually Stone Heyting
algebras. Now, we focus on the subvariety JIDH1 of JIDH. Note
that the variety of Boolean algebras is the only atom in the lattice of
subvarieties of JIDH1. For V a subvariety of JIDH1, let L(V) and
L+(V) denote, respectively, the lattice of subvarieties of V and the
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lattice of nontrivial subvarieties of V. Let 1 ⊕ L denote the ordinal
sum of the trivial lattice 1 and a lattice L.

Restricting the semi-Heyting reduct in the above corollary to Heyting
algebras, we obtain the following interesting corollary, where 2 denotes
a 2-element lattice.

COROLLARY 5.11. We have

(1) JIDH1 = DStH ∨V(D2),
(2) L(JIDH1) ∼= 1⊕ (L+(DStH)× 2).

The preceding corollary leads to the following open problem.

PROBLEM: Investigate the structure of L+(DStH).

6. JI-distributive, dually quasi-De Morgan, linear

Semi-Heyting Algebras

In this section we focus on the linear identity:

(L) (x → y) ∨ (y → x) ≈ 1.

Let DQDL [JIDL] denote the subvariety of DQD [JID] defined
by (L), and let JIDLH denote the subvariety of JIDL consisting of
JI-distributive, dually quasi-De Morgan, linear Heyting algebras.
The following result is needed later in this section. Part (a) of it is

proved in [26, Lemma 12.1(f)], and (b) follows immediately from (a).

PROPOSITION 6.1. [26, Lemma 12.1(f)] Let L be a linear semi-
Heyting algebra (i.e., L |= (L)). Then

(a) L |= (H),
(b) JIDL = JIDLH.

LEMMA 6.2. Let L ∈ DQDL and let x, y ∈ L. Then

(a) (x → y) ∨ (y → x)′′ = 1,
(b) x ≤ y ∨ (y → x)′′.

Proof. (x → y) ∨ (y → x)′′ ≥ (x → y)′′ ∨ (y → x)′′ = [(x → y) ∨ (y →
x)]′′ = 1 by (L), proving (a). Using (a), we get x ∧ [y ∨ (y → x)′′] =
(x ∧ y) ∨ [x ∧ (y → x)′′] = [x ∧ (x → y) ∨ [x ∧ (y → x)′′] = x ∧ [(x →
y) ∨ (y → x)′′] = x ∧ 1 = x, implying (b). �
Note that the algebra SIX described earlier in Section 3 is actually

an algebra in JIDL. Hence JIDL does not satisfy (Lev 1); but JIDL
is at level 2, in view of Theorem 3.10.
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In this section, our goal is to present, as an application of Theorem
5.9, an explicit description of subdirectly irreducible (= simple) alge-
bras in the variety JIDL1 of JI-distributive, dually quasi-De Morgan,
linear semi-Heyting algebras of level 1.

Recall that DPCC = DStC and DPCHC = DStHC. So, we use
these names interchangeably.

LEMMA 6.3. DPCC |= (Lev1).

Proof. Let L be a DPC-chain and let x ∈ L. Since x, x′ are compara-
ble, we have x ∨ x′ = x or x ∨ x′ = x′, implying x = 1 or x′ = 1, as
x∨ x′ = 1. Then it is easy to see that (Lev 1) holds in L, and hence in
DPCC. �

PROPOSITION 6.4. DPCHC ∨ V(D2) ⊆ JIDL1.

Proof. It follows from Lemma 3.2, and Lemma 6.3 that DPCHC sat-
isfies (JID) and (Lev 1), and it is easy to see that DPCHC |= (L).
Also, it is routine to verify that (JID), (L) and (Lev 1) hold in D2. �

Our goal in this section is to prove that, in fact, the equality holds
in the statement of the above Proposition.

Unless otherwise stated, in the rest of this section we as-
sume that L ∈ JIDL1 with |L| > 2 and satisfies (SC).

LEMMA 6.5. Let x, y ∈ L such that x ∨ y 
= 1. Then, x ≤ y′.

Proof. Let x ∨ y 
= 1. Since y′ ∨ (x ∨ y)′∗ ≥ y′ ∨ y′∗ = 1 by Lemma
3.4 (3), we get, using (SC), that x = x ∧ (x ∨ y) ∧ [y′ ∨ (x ∨ y)′∗] =
x ∧ [{(x ∨ y) ∧ y′} ∨ {(x ∨ y) ∧ (x ∨ y)′∗}] = x ∧ (x ∨ y) ∧ y′ = x ∧ y′,
whence x ≤ y′. �

LEMMA 6.6. Let a, b ∈ L such that a′ 
= a, a 
= 1, and a 
≤ b. Then
(a → b)′′ = 0.

Proof. First, we claim that a 
≤ (a → b)′′. For, suppose a ≤ (a → b)′′;
then a = a ∧ (a → b)′′ ≤ b by Lemma 2.2 (vii), implying a ≤ b,
which is a contradiction to the hypothesis a 
≤ b. Hence a 
≤ (a → b)′′.
Then a ∨ (a → b)′ = 1 by (the contrapositive of) Lemma 6.5, whence
a′′∨ (a → b)′′′ = 1. Since a 
= 1 and a′ 
= a by hypothesis, we get a′ = 1
by Lemma 5.5, whence a′′ = 0. Then we conclude that (a → b)′′ = 0,
proving the lemma. �

We are now ready to give an explicit description of subdirectly irre-
ducible (=simple) algebras in JIDL1.
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THEOREM 6.7. Let L ∈ DQD1 with |L| > 2. Then the following
are equivalent:

(1) L is a subdirectly irreducible algebra in JIDL1,
(2) L is a simple algebra in JIDL1,
(3) L ∈ JIDL1 such that (SC) holds in L,
(4) L ∼= D2, or L is a DStH-chain.

Proof. (1) ⇔ (2) ⇔ (3) follow from Theorem 5.9. So we need to
prove (3) ⇒ (4) ⇒ (3). Suppose (3) holds. Then, by Theorem 5.9,
either L ∈ {D1,D2,D3}, or L ∈ DSt and satisfies (SC). In the former
case, since L |= (L), it follows from Proposition 6.1 that L |= (H).
Hence L ∼= D2. Next, we assume the latter case. So, L ∈ DSt and
satisfies (SC). Since L |= (L) by hypothesis, we get, by Proposition
6.1, that L ∈ DStH. So, we need only prove that L is a chain. Let
a, b ∈ L \ {1} such that a 
≤ b. Then, from Lemma 6.2(b), we have
that b ≤ a ∨ (a → b)′′. Also, since L |= (DSt), it is clear that a′ 
= a.
Hence, by Lemma 6.6, we get (a → b)′′ = 0, implying b ≤ a. Thus,
the lattice reduct of L is a chain, and so, (3) ⇒ (4). Finally, assume
(4) holds. First, if L ∼= D2, then it is routine to verify that (3) holds.
Next, suppose L is a DStH-chain and let x ∈ L. Then, x′ ≤ x′′ or
x′′ ≤ x′, implying x′ ∧ x′′ = x′ or x′ ∧ x′′ = x′′. Hence, by (DSt), we
get x′ = 0 or x′ = 1, from which it is easy to see that L satisfies (SC).
So, from Theorem 4.2 (c), we conclude that L ∈ JID1. Also, it is
well known that Heyting chains satisfy (L). Thus, L ∈ JIDL1 and L
satisfies (SC), implying (3). �
The following corollary is immediate from Theorem 6.7.

COROLLARY 6.8. JIDL1 = DStHC ∨ V(D2).

We would like to mention here that the attempt to solve the problem
of axiomatization of DStHC ∨ V(D2) led to the results of this paper,
with Corollary 6.8 yielding a solution to that problem.
We conclude this section with an axiomatization of DStHC.

THEOREM 6.9. DStHC = DStL.

Proof. We know from the proof of Theorem 4.7 that the subdirectly
irreducible algebras in DStHC are precisely the DStH-chains. So, to
complete the proof, it suffices to prove that the subdirectly irreducible
algebras in DStL are precisely the DStH-chains. For this, first note
that from Proposition 6.1 we have that a linear semi-Heyting algebra
satisfies (L) and hence DStL |= (H), implying DStL ⊆ DStH. Now,
let L be a subdirectly irreducible (= simple) algebra in DStL. We
wish to show that L is a Heyting chain. Let a, b ∈ L be arbitrary. By
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Corollary 4.5, L satisfies (SC); and L |= (H), as DStL |= (H). Hence,
by Lemma 6.2 (a), we have

(7) L |= (x → y) ∨ (y → x)′′ = 1.

Suppose that a 
= 1. Then from (SC) we have a ∧ a′∗ = 0, whence
a ∧ a′′ = 0 by Lemma 4.2 (a), implying a′ = 1. Thus we have proved

(8) For every x ∈ L, x = 1 or x′ = 1.

Hence, by (8), we get (a → b)′ = 1 or (a → b)′′ = 1, implying (a →
b)′′ = 0 or (a → b) = 1. So,, by (7), we have b → a = 1 or a → b = 1,
implying b ≤ a or a ≤ b, as L |= (H). Thus L is a DStH-chain,
completing the proof. �

7. More Consequences of Theorem 6.7

In this section we present some more consequences of Theorem 6.7.
As mentioned earlier, the axiomatizations of the variety DPCHC

(= DStHC) and all of its subvarieties were given in [26].
The following corollary is immediate from Corollary 6.8 and Theorem

4.7.

COROLLARY 7.1.

(1) L(JIDL1) ∼= 1⊕ [(ω + 1)× 2].
(2) JIDL1 and DStHC are the only two elements of infinite height

in the lattice L(JIDL1).
(3) V ∈ L+(JIDL1) is of finite height iff V is either V(D2), or

V(Cdp
n ) for some n ∈ N \ {1}, or V(Cdp

m ) ∨ V(D2) for some
m ∈ N \ {1}.

In Corollaries 7.2-7.5, we give equational bases to all subvarieties of
JIDL1.

COROLLARY 7.2. The variety DStHC is defined, modulo JIDL1,
by

x ∨ x′ ≈ 1.

Proof. Observe that DStHC |= x ∨ x′ ≈ 1, but V(D2) 
|= x ∨ x′ ≈ 1,
and then apply Theorem 6.7. �
The variety V(D2) was axiomatized in [26]. Here is a new one.

COROLLARY 7.3. The variety V(D2) is defined, modulo JIDL1,
by
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x′′ ≈ x.

Proof. Observe that DStHC 
|= x′′ ≈ x, but V(D2) |= x′′ ≈ x, and
then use Theorem 6.7. �
COROLLARY 7.4. Let n ≥ 2. The variety V(Cdp

n ) ∨ V(D2) is
defined, modulo JIDL1, by

(Cn) x1∨x2∨· · ·∨xn∨(x1 → x2)∨(x2 → x3)∨· · ·∨(xn−1 → xn) = 1.

Proof. We now prove that Cdp
n |= (Cn). Let 〈c1, c2, . . . , cn〉 ∈ Cdp

n be
an arbitrary assignment in Cdp

n for the variables xi such that ci is the
value of xi, for i = 1, · · · , n. If ci ≤ ci+1 for some i, then ci → ci+1 = 1,
as Cdp

n has a Heyting algebra reduct, and hence, the identity holds in
Cdp

n . So, we assume that ci > ci+1, for i = 1, 2, · · · , n. Then, c1 = 1
since |Cdp

n | = n, implying that (Cn) holds in Cdp
n . Also, it is routine to

check that that D2 |= (C2) and (Ci) implies (Ci+1), for i = 2, · · · , n−1.
So, D2 |= (Cn), implying that V(Cdp

n ) ∨ V(D2) |= (Cn).
Next, suppose that V is the subvariety of JIDL1 satisfying (Cn).

Then, by Corollary 3.11, V is a discriminator variety. Let L be a sim-
ple (= subdirectly irreducible) algebra in V. Then, it follows from
Corollary 6.8 (or Theorem 6.7) that L is a DStH-chain or L ∼= D2.
Suppose that L is a DStH-chain. Assume, if possible, |L| > n.
Then, there exist b1, b2 · · · , bn−1 ∈ L such that 0 < b1 < · · · , <
bn−1 < 1. Since L |= (Cn), we can assign 〈bn−1, bn−2, · · · , b1, 0〉 for
〈x1, x2, · · · , xn−1, xn〉. Then, bn−1∨(bn−1 → bn−2)∨· · · ,∨(b1 → 0) = 1,
yielding bn−1 ∨ bn−2 ∨ · · · ∨ b1 ∨ 0 = 1, implying that bn−1 = 1, which
is a contradiction. Thus we have |L| ≤ n, from which it follows that
V ⊆ V(Cdp

n ) ∨ V(D2), completing the proof. �
COROLLARY 7.5. The variety V(Cdp

n ) is defined, modulo JIDL1,
by

(1) x ∨ x′ ≈ 1,
(2) x1∨x2∨· · ·∨xn∨(x1 → x2)∨(x2 → x3)∨· · ·∨(xn−1 → xn) = 1.

For a different base for V(Cdp
n ), see [26]. Regularity was studied in

[26], [27], [28] and [29]. Here is another use of it.

COROLLARY 7.6. The variety V(Cdp
3 ) ∨V(D2) is defined, modulo

JIDL1, by

x ∧ x+ ≤ y ∨ y∗ (Regularity), where x+ := x′∗′.
It is also defined, modulo JIDL1, by

x ∧ x′ ≤ y ∨ y∗.

The variety V(Cdp
3 ) is axiomatized in [26]. Here is another axioma-

tization for it.
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COROLLARY 7.7. The variety V(Cdp
3 ) is defined, modulo JIDL1,

by

(1) x ∧ x+ ≤ y ∨ y∗ (Regularity),
(2) x′ = x+.

7.1. Amalgamation Property. We now examine the Amalgamation
Property for subvarieties of the variety DStHC. For this purpose, we
need the following lemma whose proof is straightforward.

We use “≤” to abbreviate “is a subalgebra of” in the next lemma.
Recall from Theorem 4.7 (see also [26]) that the proper, nontriv-

ial subvarieties of DStHC are precisely the subvarieties of the form
V(Cdp

n ), for n ∈ N.

LEMMA 7.8. Let m,n ∈ N. Then

Cdp
m ≤ Cdp

n , for m ≤ n.

COROLLARY 7.9. Every subvariety of DStHC has Amalgamation
Property.

Proof. It follows from Corollary 4.4 that DStHC is a discriminator
variety; and hence has CEP. Also, from Theorem 6.7 we obtain that
every subalgebra of each subdirectly irreducible (= simple) algebra in
DStHC is subdirectly irreducible. Let V be a subvariety of DStHC.
Then, using a result from [11] that we need only consider an amalgam
(A: B, C), where A, B, C are simple in V and A a subalgebra of B
and C. First, suppose V = V(Cdp

n ) for some n. Then B and C are
DStHC-chains. Then, in view of the preceding lemma, it is clear that
the amalgam (A: B, C) can be amalgamated in V. Next, suppose
V = DStHC, then it is clear that the amalgamation can be achieved
as in the previous case. �
We conclude this section with the following remark: Since every sub-

varietyV ofDStHC has Congruence Extension Property and Amalga-
mation Property, it follows from Banachewski [6] that all subvarieties of
DStHC have enough injectives (see [6] for the definition of this notion).
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