
Scientiae Mathematicae Japonicae 1

Estimation of Trigonometric Moments for Circular Distribution of MA(p)
Type by Using Binary Series

Yuichi Goto

Abstract. Directional statistics have received a great deal of interest in recent years,
and a variety of distributions on the circle have been proposed. In this paper, we
propose circular distributions of a moving average model of order p type which includes
the cardioid distribution, and discuss estimation of trigonometric moments based on
binary series. We give an explicit form of the root n consistent estimator based on
clipped series, which enables us to construct an efficient estimator by the Newton–
Raphson iterative method. We also show a robustness of the proposed estimator when
the probability density function is contaminated with a noise term.

1 Introduction Directional statistics is an important field which deals with directional
data. The history of directional statistics dates back to 1950s. Fisher (1953) had large
influence and appealed the necessity of directional statistics. After that, many authors
tackled the problem (see Mardia (1975); Watson (1983); Fisher et al. (1993)). In recent
years, directional statistics has attracted attention because of Mardia and Jupp (2000).

Many distributions on the circle have been developed (e.g. uniform, cardioid, wrapped
Cauchy, von Mises distribution). These distributions are closely related to the spectral
density functions in time series with complex valued coefficients. For example, the spectral
density of the autoregressive model of order 1, that of the moving average model of order 1,
and that of the autoregressive model of order 2 correspond to wrapped Cauchy distribution,
cardioid distribution, and the more flexible distribution proposed by Kato and Jones (2013),
respectively.

Binary series are processes that each of realizations takes value 0 or 1. The execution
time of methods based on clipped processes are significantly short, and estimation accu-
racy of methods based on 0-1 valued processes are high when the original processes are
contaminated with outliers (see Bagnall and Janacek (2005), Kedem (1994, p.172), Goto
and Taniguchi (2019), Goto and Taniguchi). Methods based on binary series have been
applied to various fields including biology and linguistics. For example, analysis of vocal
sounds of humpback whales of Kedem and Li (1989); speech discrimination of Panagio-
takis and Tziritas (2005)); and emotion recognition using brain signals of Petrantonakis
and Hadjileontiadis (2010).

Binary series have been studied by many researchers (see Rice (1944), Lomnicki and
Zaremba (1955), McNeil (1967), Kedem (1980), Kedem (1994)). Rice (1944) gave a pioneer
study in this field, and showed a relationship between correlations of Gaussian processes and
correlations of a binary series generated by the Gaussian processes. Kedem (1980) showed
the asymptotic normality of the estimator of autocorrelation based on clipped processes. In
recent years, related to binary data, the categorical time series (see Fokianos and Kedem
(2003)) and the quantile based spectra (e.g. Li (2014) and Dette et al. (2015)) have been
developed. However, binary series in directional statistics have not yet been investigated.
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In this paper, we propose a family of circular distributions of a moving average model of
order p type, and discuss estimation of trigonometric moments based on binary series. We
derive an explicit form of the root n consistent estimator. Although the estimator based on
clipped series does not attain Cramér–Rao lower bound, it enables us to construct efficient
estimator by the Newton–Raphson iterative method. We also show a robustness of the
estimator when the true probability density function is contaminated with noise. The finite
sample performance of proposed estimator is also investigated.

The paper is organized as follows: In Section 2, we introduce circular distributions
of the moving average model of order p type and the estimator of trigonometric moments
based on binary series for the proposed distribution. We show the asymptotic normality and
compare the asymptotic variance with Cramér–Rao lower bound. In Section 3, we elucidate
a robustness of the estimator when the probability density function is contaminated with
noise. The finite sample performance of proposed estimator is investigated, and asymptotic
normality of the proposed estimator is illustrated by computer simulation in Section 4.
Finally, we conclude this paper with proofs of the theorems and the proposition in Sections
2 and 3.

2 Settings and Main Result In this section, we define a family of circular distributions
of MA(p) type and propose a root n consistent estimator based on binary series. After that,
we show the asymptotic normality and compare the asymptotic variance of the proposed
estimator with Cramér–Rao lower bound.

Throughout this paper, we consider a family of circular distributions of MA(p) type
whose probability density function is defined by

p(θ) =
1

2π(1 + ϕ21 + · · ·+ ϕ2p)
|ϕ(eiθ)|2(1)

where ϕ(z) = 1 + ϕ1z + ϕ2z
2 + · · ·+ ϕpz

p and ϕj ∈ R for any j.
Let {Θk : k ∈ N} be independent random variables with a common circular distribution

defined by (1). From the residue theorem and symmetry of (1), the j-th sine and cosine
moments can be obtained as

E{sin(jΘk)} = 0 for j ∈ Z,

E{cos(jΘk)} =

{
ϕj+ϕj+1ϕ1+···+ϕpϕp−j

1+ϕ2
1+···+ϕ2

p
for |j| ≤ p,

0 for |j| ≥ p+ 1,

respectively. Then, the mean resultant length and the mean direction of {Θk : k ∈ N} can
be obtained as

|E{eiΘk}| =
∣∣∣ϕ1+ϕ2ϕ1+···+ϕpϕp−1

1+ϕ2
1+···+ϕ2

p

∣∣∣ ,
arg E{eiΘk} =


0 ϕ1 + ϕ2ϕ1 + · · ·+ ϕpϕp−1 > 0,

π ϕ1 + ϕ2ϕ1 + · · ·+ ϕpϕp−1 < 0,

undefined ϕ1 + ϕ2ϕ1 + · · ·+ ϕpϕp−1 = 0,

respectively. From Mardia and Jupp (2000, p.31), (1) can be written as

p(θ) =
1

2π

1 +

p∑
j=1

ρj cos(jθ)

 ,(2)
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where ρj = 2(ϕj + ϕj+1ϕ1 + · · · + ϕpϕp−j)/(1 + ϕ21 + · · · + ϕ2p). If we take p = 1, (2) is
the well-known cardioid distribution (see Mardia and Jupp (2000, p.45)). Clearly, if ϕj = 0
for any j ∈ {1, . . . , p}, (2) is a uniform distribution. The proposed model (1) is generally

non-identifiable. Actually, for p = 2 and (ϕ1, ϕ2, ψ1, ψ2) := (0,− 1
2 ,±

√
1
2 ,−1), we have

p(θ;ϕ1, ϕ2) = p(θ;ψ1, ψ2).

In this paper, we discuss the estimation problem of ρ1, . . ., ρp of the proposed probability
density function by using clipped series. Hereafter, we confine ourselves to the case that
(ϕ1, . . . , ϕp) satisfies ϕ1 + ϕ2ϕ1 + · · ·+ ϕpϕp−1 ≥ 0. Define (α1, α2, . . ., αp) ∈ Rp such that

0 < α1 < α2 < · · · < αp < π. For each αj , j = 1, . . ., p, binary series {Xj
k} are defined, for

any j = 1, . . ., p,

Xk
j =

{
1 −αj ≤ Θk ≤ αj ,

0 otherwise.
(3)

Applying the technique for the derivation of an orthant probability for normal distribution
(see Kedem (1994, p.48)), we have the following equation

P (−α1 ≤ Θ1 ≤ α1)
P (−α2 ≤ Θ1 ≤ α2)

...
P (−αp ≤ Θ1 ≤ αp)

 =


α1

π
α2

π
...
αp

π

+
1

2π


b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bp1 bp2 · · · bpp



ρ1
ρ2
...
ρp

 ,

where
b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bp1 bp2 · · · bpp

 =


∫ α1

−α1
cos θdθ

∫ α1

−α1
cos 2θdθ · · ·

∫ α1

−α1
cos pθdθ∫ α2

−α2
cos θdθ

∫ α2

−α2
cos 2θdθ · · ·

∫ α2

−α2
cos pθdθ

...
...

. . .
...∫ αp

−αp
cos θdθ

∫ αp

−αp
cos 2θdθ · · ·

∫ αp

−αp
cos pθdθ

 .

Here, we suppose the observed stretch {Θ1, . . .,Θn} is available. We choose (α1, α2, . . ., αp) ∈
Rp adequately so that (bij)

p
i,j=1 is a nonsingular matrix, and substitute(

1/n
∑n

k=1Xk
1, . . ., 1/n

∑n
k=1Xk

p
)T

for (P (−α1 ≤ Θ1 ≤ α1), . . ., P (−αp ≤ Θ1 ≤ αp))
T
. Then,

the binary estimator (ρ̂1, . . ., ρ̂p)
T
can be defined as

ρ̂1
ρ̂2
...
ρ̂p

 = 2π


b11 b12 · · · b1p

b21 b22 · · · b2p

...
...

. . .
...

bp1 bp2 · · · bpp




1
n

∑n
k=1Xk

1 − α1

π
1
n

∑n
k=1Xk

2 − α2

π
...

1
n

∑n
k=1Xk

p − αp

π

 ,

where (bij)pi,j=1 is the inverse matrix of (bij)
p
i,j=1.

Before we derive the asymptotic distribution of the proposed estimator, we give some
examples that (bij)

p
i,j=1 is a nonsingular matrix for specific models.

Example 2.1. MA(2) case: if we take α1 = π
4 and α2 = π

2 , then

(bij)
2
i,j=1 =

(√
2 1
2 0

)
, (bij)2i,j=1 =

(
0 1

2
1 − 1√

2

)
.
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Example 2.2. MA(3) case: if we take α1 = π
4 , α2 = π

2 , and α3 = 3π
4 , then

(bij)
3
i,j=1 =


√
2 1

√
2
3

2 0 − 2
3√

2 −1
√
2
3

 , (bij)3i,j=1 =

 1
4
√
2

1
4

1
4
√
2

1
2 0 − 1

2
3

4
√
2

− 3
4

1
4
√
2

 .

The following theorem shows that the asymptotic normality of the proposed estimator.

Theorem 2.1. It holds that

√
n


ρ̂1 − ρ1
ρ̂2 − ρ2

...
ρ̂p − ρp

 ⇒ N(0,V ),

where V = (vij)
p
i,j=1 and

vij = 4π2
∑p

s,k=1 b
isbjk{P (−αs ≤ Θ1 ≤ αs,−αk ≤ Θ1 ≤ αk)

−P (−αs ≤ Θ1 ≤ αs)P (−αk ≤ Θ1 ≤ αk)}.

Next, we investigate whether our proposed method attains the Cramér–Rao lower bound
or not. For simplicity, we confine ourselves to the case of circular distributions of MA(1)
type.

Proposition 2.1. The Cramér–Rao lower bound is given by

I−1(ρ1) = 1− ρ21 +
√

1− ρ21.

Proposition 2.1 enables us to compare the asymptotic variance of the proposed estimator
with the Cramér–Rao lower bound. Thus, we have the following statement.

Remark 2.1. The Binary estimator is not efficient.

Actually, If we consider the case ρ1 = 1, then it is easy to see that

(Covariance of ρ̂1)− I−1(ρ1) > 0.

Remark 2.1 is not a preferable property of the estimator. However, from Hosoya and
Taniguchi (1982, Theorem 5.1), we can construct an efficient estimator from ρ̂1, . . ., ρ̂p by
the Newton–Raphson iterative method. In the next section, we show a robust property of
the estimator when the true probability density function is contaminated.

3 Robustness of proposed estimator against contamination In the previous sec-
tion, we showed that proposed estimator is root n consistent, and it enable us to construct
the efficient estimator by the Newton–Raphson iterative method. In this section, we show
our estimator is robust when the true probability density function is contaminated with
noise. Let q(·) be a contaminated probability density function defined, for θ ∈ [−π, π] and
some β ∈ (0, π/2), as

q(θ) =

{
p(θ) if − π + β ≤ θ ≤ π − β,

cg(θ) otherwise,
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where p(θ) is defined by (1), g(θ) is a non-negative function with
∫ π+β

π−β
g(θ)dθ > 0, c is

some constant such that q(θ) is probability density function. In the above setting, cg(θ)
corresponds to a noise. Assume that the process {Θk : k ∈ N} is misspecified, that is, the
true model of {Θk : k ∈ N} comes from q(θ), but we fit the process to p(θ).

Theorem 3.1. If αp and β satisfy αp < π−β, then the our estimator does not be influenced
by the contamination.

Thus, the proposed method is robust against the contamination of probability density.

4 Simulation Study In this section, we study finite sample performance of the proposed
method, and confirm the asymptotic normality of the proposed estimator based on binary
process. In this simulation, the circular distributions of MA(1) and MA(2) types are dis-
cussed. First, we illustrate finite sample performance. The procedure is the following; first,
we generate random variables {Ui : i = 1, . . . , n} (n = 100, 300, 500, 1000), which follows
i.i.d. standard uniform distribution. Next, we compute {Θi = 1 . . . , n} := {F−1(Ui) : i =
1, . . . , n}, where F−1 is the generalized inverse of a distribution function of (1), which fol-
lows the circular distribution of MA(p) type for p = 1, 2. Then, we calculate the proposed
estimators of ρ1 and ρ2 for the each set of parameters ϕ1 = 0.4, 0.7,−0.5 and angulars α1 =
π/4, π/2, 3π/4 for MA(1) type distribution, and (ϕ1, ϕ2) = (0.7, 0.4), (1.0, 0.7), (0.9,−0.3)
and (α1, α2) = (π/4, π/2), (π/2, 3π/4) for MA(2) type distribution. We iterate 1000 times

and calculate mean absolute error, defined as MAEj :=
∑1000

k=1 |ρ̂(k)j − ρj |/n for j = 1, 2,

where ρ̂
(k)
j is the estimator of ρj of k-th iteration. Next, we calculate, for n = 1000,

{
√
n(ρ̂

(k)
1 − ρ1); k = 1, . . . , 10000} and {

√
n(ρ̂

(k)
1 − ρ1),

√
n(ρ̂

(k)
2 − ρ2); k = 1, . . . , 10000}

for circular distributions of MA(1) type with ϕ1 = 0.7 and MA(2) type with (ϕ1, ϕ2) =
(0.7, 0.4), respectively to confirm the asymptotic normality of the proposed estimator.
Then, we give the Q-Q plots in Figures 1, 2, and 3. We also provide the Kolmogorov–
Smirnov test of normality to check the asymptotic normality of the proposed estimator.
The null hypothesis is that {

√
n(ρ̂1 − ρ1)} follows the normal distribution for large n. For

n = 100, 1000, 10000, {
√
n(ρ̂

(k)
1 −ρ1); k = 1, . . . , 100} and {

√
n(ρ̂

(k)
1 −ρ1),

√
n(ρ̂

(k)
2 −ρ2); k =

1, . . . , 100} are calculated for circular distributions of MA(1) type with ϕ1 = 0.7 and MA(2)
type with (ϕ1, ϕ2) = (0.7, 0.4). Then, we compute p-value by using R-function ks.test()

when {
√
n(ρ̂

(k)
1 − ρ1); k = 1, . . . , 100} regarded as a set of i.i.d. observations with respect

to k. Note that, from the definition of binary estimator, we possibly have the exact same

value ρ̂
(k)
j = ρ̂

(k′)
j for some k and k′(̸= k). Therefore, we added a small perturbation to

{
√
n(ρ̂

(k)
1 − ρ1); k = 1, . . . , 100} by R function jitter() in order to compute p-value (see

Robert et al. (2010, p.17-18)).
The results are shown in Tables 1 and 2 and Figures 1, 2, and 3. Tables 1 and 2 show

the proposed estimator works well, and the mean absolute errors get smaller as the sample
size increases. In Table 1, for ϕ1 = 0.4 and 0.7 in MA(1) type model, MAE1 is smallest
when α1 = 3π/4 among α1 = π/4, π/2, 3π/4. On the other hand, for ϕ1 = −0.5 in MA(1)
type model, MAE1 is smallest when α1 = π/4 among three angulars. It is because MA(1)
model with ϕ1 = −0.5 has a mean direction π. The mean directions of the proposed model
are 0 in the other cases. In Table 2, MAE1 are smaller than MAE2. For better estimation of
ϕ2, the set of angulars (π/2, 3π/4) is better than (π/4, π/2). Regarding to estimation of ϕ1,
both sets of angulars (π/2, 3π/4) and (π/4, π/2) provide almost the same MAE1. Figures
1 2, and 3 show that almost of all points are on the reference line, that is, we could confirm
that our estimator has asymptotic normality. Moreover, for MA(1) model, the p-values of
the KS test are obtained as 0.582, 0.987, 0.981 for n = 100, 1000 10000, respectively. For
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MA(2) model, the p-values of the KS test for {
√
n(ρ̂

(k)
1 − ρ1); k = 1, . . . , 100} are obtained

as 0.528, 0.507, 0.718 and that for {
√
n(ρ̂

(k)
2 − ρ2); k = 1, . . . , 100} are obtained as 0.990,

0.799, 0.989 for n = 100, 1000 10000, respectively. As a result, it shows that we cannot
reject the null hypothesis in all cases we investigated.

Table 1: MAE for circular distributions of MA(1) type
ϕ1 α1 n MAE1 ϕ1 α1 n MAE1

0.4 π/4 100 0.175 0.7 π/4 100 0.171
300 0.103 300 0.108
500 0.076 500 0.077
1000 0.054 1000 0.055

π/2 100 0.115 π/2 100 0.098
300 0.648 300 0.060
500 0.050 500 0.044
1000 0.036 1000 0.032

3π/4 100 0.106 3π/4 100 0.071
300 0.059 300 0.038
500 0.046 500 0.030
1000 0.034 1000 0.022

-0.5 π/4 100 0.087
300 0.052
500 0.041
1000 0.029

π/2 100 0.113
300 0.065
500 0.049
1000 0.034

3π/4 100 0.180
300 0.103
500 0.077
1000 0.055
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Table 2: MAE for circular distributions of MA(2) type
(ϕ1, ϕ2) (α1, α2) n MAE1 MAE2

(0.7,0.4) (π/4, π/2) 100 0.081 0.215
300 0.045 0.121
500 0.036 0.099
1000 0.026 0.069

(π/2, 3π/4) 100 0.083 0.094
300 0.046 0.055
500 0.037 0.041
1000 0.026 0.029

(1.0,0.7) (π/4, π/2) 100 0.060 0.222
300 0.035 0.129
500 0.028 0.096
1000 0.020 0.070

(π/2, 3π/4) 100 0.064 0.070
300 0.036 0.039
500 0.027 0.032
1000 0.019 0.021

(0.9,-0.3) (π/4, π/2) 100 0.115 0.210
300 0.066 0.125
500 0.051 0.095
1000 0.035 0.069

(π/2, 3π/4) 100 0.111 0.155
300 0.067 0.094
500 0.052 0.075
1000 0.036 0.052
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Figure 1: Q-Qplots of {
√
n(ρ̂

(k)
1 −ρ1); k = 1, . . . , 10000} for a circular distribution of MA(1)

type with ϕ1 = 0.7 for n = 1000.

Figure 2: Q-Qplots of {
√
n(ρ̂

(k)
1 −ρ1); k = 1, . . . , 10000} for a circular distribution of MA(2)

type (ϕ1, ϕ2) = (0.7, 0.4) for n = 1000.
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Figure 3: Q-Qplots of {
√
n(ρ̂

(k)
2 −ρ2); k = 1, . . . , 10000} for a circular distribution of MA(2)

type (ϕ1, ϕ2) = (0.7, 0.4) for n = 1000.

5 Proof In this section, we provide the proofs of Theorems 2.1 and 3.1 and Proposition
2.1.

Proof of Theorem 2.1. First, we show the binary estimator is centered. For each j ∈
{1, . . ., p},

E{
√
n(ρ̂j − ρj)} =

√
n2π(bj1, . . ., bjp)


1
n

∑n
k=1 EXk

1 − P (−α1 ≤ Θ1 ≤ α1)
...

1
n

∑n
k=1 EXk

p − P (−αp ≤ Θ1 ≤ αp)

 = 0.

Next, we evaluate the variance of estimator. For i, j ∈ {1, . . ., p},

cum{
√
n(ρ̂i − ρi),

√
n(ρ̂j − ρj)}

=
4π2

n

p∑
s,k=1

bisbjk
n∑

v=1

cum{Xv
s, Xv

k}

=4π2

p∑
s,k=1

bisbjkcum{Xs
1 , X

k
1 }.

Finally, we elucidate the L-th order cumulant (L ≥ 3) of the binary estimator is of order
O(n−L/2+1). For i1, . . ., iL ∈ {1, . . ., p},

cum{
√
n(ρ̂i1 − ρi1), . . .,

√
n(ρ̂iL − ρiL)}

=nL/2(2π)L
p∑

s1,...,sL=1

bi1s1 · · · biLslcum{ 1
n

n∑
k=1

Xk
s1 , . . .,

1

n

n∑
k=1

Xk
sL}

=n−L/2+1(2π)L
p∑

s1,...,sL=1

bi1s1 · · · biLslcum{Xs1
1 , . . ., X

sL
1 }

=O(n−L/2+1),



10

thus, we have the desired result.

Proof of Proposition 2.1. It is sufficient to show the Fisher information I, defined by

I(ρ1) =
∫ π

−π

(
∂

∂ρ1
log p(θ)

)2

p(θ)dθ,

becomes the following

I(ρ1) =


1
2 (ρ1 = 0),

1
ρ2
1

(
1√
1−ρ2

1

− 1

)
(0 < |ρ1| < 1),

∞ (ρ1 = ±1).

First, for ρ1 = 0, by a straightforward calculation. Second, the residue theorem yields the
assertion when ρ1 satisfies 0 < |ρ1| < 1. Third, for ρ1 = ±1, it is easy to see the integral
diverges.

Proof of Theorem 3.1. For any aj(< π − β), j = 1, . . ., p, we have∫ aj

−aj

q(θ)dθ =

∫ aj

−aj

p(θ)dθ,

from which the statement follows.
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