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THE n-TH OPERATOR VALUED DIVERGENCES ∆
[n]
i,x(A|B)

Hiroaki Tohyama(1), Eizaburo Kamei(2) and Masayuki Watanabe(3)

Abstract. Let A and B be strictly positive linear operators on a Hilbert space H.

As a generalization of the relative operator entropy S(A|B) ≡ A
1
2 (logA− 1

2BA− 1
2 )A

1
2

and the Tsallis relative operator entropy Tx(A|B) ≡ A
1
2
(A− 1

2BA− 1
2 )x − I

x
A

1
2 , we have

introduced the n-th relative operator entropy S[n](A|B) and the n-th Tsallis relative

operator entropy T
[n]
x (A|B) for n ∈ N and x ∈ R. In this paper, we define the n-th gen-

eralized Petz-Bregman divergence D [n]
x (A|B) ≡ T

[n]
x (A|B)− S[n](A|B) (x ∈ R) corre-

sponding to the operator valued divergence ∆1,α(A|B) ≡ Tα(A|B)−S(A|B) (α ∈ [0, 1])
which is a generalization of Petz-Bregman divergence DFK(A|B) ≡ B − A− S(A|B).

Similatly, by using D [n]
x (A|B), we introduce the n-th operator valued divergences

∆
[n]
2,x(A|B), ∆

[n]
3,x(A|B) and ∆

[n]
4,x(A|B) corresponding to ∆2,α(A|B) ≡ Sα(A|B) −

Tα(A|B), ∆3,α(A|B) ≡ −T1−α(B|A)−Sα(A|B) and ∆4,α(A|B) ≡ S1(A|B)+T1−α(B|A),
respectively, and show their properties and relations among them.

1 Introduction. A bounded linear operator T on a Hilbert space H is positive (denoted
by T ≥ 0) if (Tξ, ξ) ≥ 0 for all ξ ∈ H, and T is said to be strictly positive (denoted by
T > 0) if T is invertible and positive. Throughout this paper, A and B denote strictly
positive operators.

Based on the concept of the α-divergence introduced by Amari [1], Fujii [2] defined the
operator valued α-divergence:

Dα(A|B) ≡ A ∇α B −A ♯α B

α(1− α)
(α ∈ (0, 1)),

where A ∇α B ≡ (1− α)A+ αB is the weighted arithmetic operator mean and A ♯α B ≡
A

1
2

(
A− 1

2BA− 1
2

)α
A

1
2 is the weighted geometric operator mean [18]. We use the represen-

tation A ♮α B instead of A ♯α B below if α ∈ R ([17]).
Aside from this, Petz [19] introduced the Bregman divergence for an operator valued

smooth function ψ : C → B(H) as

ψ(x)− ψ(y)− lim
t→+0

ψ(y + t(x− y))− ψ(y)

t
,

where C is a convex set in a Banach space. As an analogy of this kind of divergence, we
had given an operator valued divergence

ψ(1)− ψ(0)− d

dt
ψ(t)

∣∣∣∣
t=0

= B −A− S(A|B)

for ψ(t) ≡ A ♮t B. We call it the Petz-Bregman divergence and denote it by

DFK(A|B) = B −A− S(A|B),
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where
S(A|B) ≡ A

1
2

(
logA− 1

2BA− 1
2

)
A

1
2

is the relative operator entropy introduced by Fujii and Kamei [3, 9, 11]. Fujii, et. al. [5, 6]
showed that the operator valued α-divergence coincides with the Petz-Bregman divergence
at the end points for interval (0, 1). That is,

D0(A|B) ≡ lim
α→+0

Dα(A|B) = B −A− S(A|B) = DFK(A|B).

In addition, since D1(A|B) ≡ lim
α→1−0

Dα(A|B) = DFK(B|A) holds, Dα(A|B) combines

DFK(A|B) with DFK(B|A). This is a symmetric property for Dα(A|B) in the sense of [4].
In [10], we had given the following relations among relative operator entropies:

(1) S(A|B) ≤ Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A) ≤ S1(A|B) for α ∈ (0, 1),

where Sx(A|B) ≡ A
1
2

(
A− 1

2BA− 1
2

)x (
logA− 1

2BA− 1
2

)
A

1
2 (x ∈ R) is the generalized rel-

ative operator entropy defined by Furuta [8] and Tα(A|B) ≡ A ♯α B −A

α
(α ∈ (0, 1]) is

the Tsallis relative operator entropy defined by Yanagi, Kuriyama and Furuichi [20]. The
Tsallis relative operator entropy Tx(A|B) can be defined for all x ∈ R and the inequalities
(1) hold also at α = 0 and 1.

In [12], we obtained the following representations of the operator valued α-divergence
and the Petz-Bregman divergence:

Dα(A|B) = −T1−α(B|A)− Tα(A|B) (α ∈ (0, 1)),

DFK(A|B) = −T1(B|A)− T0(A|B) = T1(A|B)− S(A|B).

Since these are differences between the terms in (1), we also regarded other differences as
operator divergences [14]: For α ∈ (0, 1),

∆1,α(A|B) ≡ Tα(A|B)− S(A|B), ∆2,α(A|B) ≡ Sα(A|B)− Tα(A|B),

∆3,α(A|B) ≡ −T1−α(B|A)− Sα(A|B), ∆4,α(A|B) ≡ S1(A|B) + T1−α(B|A)

and so on.
Since the relative operator entropy S(A|B) is given as the derivative of the path A ♮t B

at t = 0, Fujii et. al. [7] gave the viewpoint that S(A|B) is the velocity on the path A ♮t B
at t = 0. Similarly, we regarded Sα(A|B) as the velocity on A ♮t B at t = α and based on
this viewpoint, we tried to introduce a notion of the acceleration on the path A ♮t B at t = α
which was given as the second derivative of the path at t = α in [15]. As an extension of
such perspective, we regarded the Tsallis relative operator entropy Tx(A|B) as the average
rate of change of the path A ♮t B over the interval [0, x] and S(A|B) = lim

x→0
Tx(A|B) as the

rate of change of the path at t = 0 in [16].

The n-th Tsallis relative operator entropy T
[n]
x (A|B) is constructed inductively as fol-

lows:
T [1]
x (A|B) ≡ Tx(A|B)

and for n ≥ 2,

T [n]
x (A|B) ≡ T

[n−1]
x (A|B)− S[n−1](A|B)

x
(x ∈ R\{0}),
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where S[n](A|B) is defined by

S[n](A|B) ≡ 1

n!
A

1
2

(
logA− 1

2BA− 1
2

)n
A

1
2 =

1

n!
A(A−1S(A|B))n

and we call it the n-th relative operator entropy. Since T
[n]
x (A|B) is represented specifically

as

T [n]
x (A|B) =

1

xn

(
A ♮x B −A−

n−1∑
k=1

xkS[k](A|B)

)
(x ∈ R\{0}),

the corresponding functions to T
[n]
x (A|B) and S[n](A|B) are

1

xn

(
λx − 1−

n−1∑
k=1

xk

k!
(log λ)k

)
and

1

n!
(log λ)n (λ > 0),

respectively. Since lim
x→0

1

xn

(
λx − 1−

n−1∑
k=1

xk

k!
(log λ)k

)
=

1

n!
(log λ)n, we obtain lim

x→0
T [n]
x (A|B) =

S[n](A|B) for all n ∈ N. Therefore, we defined T
[n]
0 (A|B) by

T
[n]
0 (A|B) ≡ S[n](A|B).

For n ≥ 2, the n-th Tsallis relative operator entropy T
[n]
x (A|B) is regarded as the average

rate of change of T
[n−1]
x (A|B) over the interval [0, x].

In addition, we defined S
[n]
y (A|B) by

S[n]
y (A|B) ≡ 1

n!

dn

dxn
A ♮x B

∣∣∣∣
x=y

= (A ♯y B)A−1S[n](A|B) (y ∈ R)

and call it the n-th generalized relative operator entropy. We remark that S
[n]
0 (A|B) coin-

cides with S[n](A|B) and (A ♮x B)A−1S
[n]
y (A|B) = S

[n]
x+y(A|B) holds for x, y ∈ R.

In [16], we defined the n-th Petz-Bregman divergence D
[n]
FK(A|B) and the n-th operator

valued divergence D
[n]
α (A|B) by

D
[n]
FK(A|B) ≡ T

[n]
1 (A|B)− S[n](A|B) = B −A−

n∑
k=1

S[k](A|B),

D [n]
α (A|B) ≡ T [n]

α (A|B)− S[n](A|B) =
1

αn

(
A ♮α B −A−

n∑
k=1

αkS[k](A|B)

)
(α ∈ [0, 1]),

and showed their properties. We remark D
[1]
1 (A|B) = D

[1]
FK(A|B) = DFK(A|B) and

D
[1]
α (A|B) = ∆1,α(A|B). So we think D

[n]
α (A|B) is a generalization of the Petz-Bregman

divergence. In addition, it is natural that D
[n]
α (A|B) is regarded as the n-the operator val-

ued divergence corresponding to ∆1,α(A|B). In this paper, we propose the definitions of the
n-th operator valued divergences corresponding to ∆2,α(A|B), ∆3,α(A|B) and ∆4,α(A|B)

and to show properties of them. For this purpose, we need to extend D
[n]
α (A|B) (α ∈ (0, 1))

to D
[n]
x (A|B) (x ∈ R). We call D

[n]
x (A|B) the n-th generalized Petz-Bregman divergence

and show some properties of it in section 2. In section 3, we define the n-th operator

valued divergences ∆
[n]
2,x(A|B), ∆

[n]
3,x(A|B) and ∆

[n]
4,x(A|B) with x ∈ R which correspond to

∆2,α(A|B), ∆3,α(A|B) and ∆4,α(A|B) by using the n-th generalized Petz-Bregman diver-

gence D
[n]
x (A|B) and show some properties for them.
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2 The n-th Generalized Petz-Bregman Divergence. Our idea of defining the n-th
operator valued divergences corresponding to ∆2,α(A|B), ∆3,α(A|B) and ∆4,α(A|B) is to

use D
[n]
α (A|B) defined in [16]. In order to achieve such purpose, we need to broaden the

range of α for D
[n]
α (A|B) from [0, 1] to R. For strictly positive operators A and B, n ∈ N

and x ∈ R, we define D
[n]
x (A|B) as follows:

D [n]
x (A|B) ≡ T [n]

x (A|B)− S[n](A|B).

We call it the n-th generalized Petz-Bregman divergence.
By Proposition 4.5 in [16], the following proposition holds for the n-th generalized Petz-

Bregman divergence.

Proposition 2.1. Let n be a fixed natural number and x be a fixed real number in R\{0}.
Then the following holds for any strictly positive operators A and B:

D [n]
x (A|B) = O if and only if A = B.

Remark 1. Since D
[n]
1 (A|B) = D

[n]
FK(A|B),

D
[n]
FK(A|B) = O if and only if A = B

holds for any fixed natural number n.

The following are fundamental properties for D
[n]
x (A|B).

Theorem 2.2. Let A and B be strictly positive operators and x ∈ R. Then the following
hold for n ∈ N:

(a) D
[n]
0 (A|B) = O.

(b) If x > 0 then

D [n]
x (A|B)

{
≥ O, if n is odd or A ≤ B,

≤ O, if n is even and A ≥ B.

(c) If x < 0 then

D [n]
x (A|B)

{
≤ O, if n is odd or A ≤ B,

≥ O, if n is even and A ≥ B.

Proof. Since it is obvious that D
[n]
0 (A|B) = O holds, we suppose x ∈ R\{0}. Let λ >

0. Since D [n]
x (A|B) =

1

xn

(
A ♮x B −A−

n∑
k=1

xkS[k](A|B)

)
, the corresponding function

f [n](λ, x) for D
[n]
x (A|B) is given as follows:

f [n](λ, x) =
1

xn

(
λx − 1−

n∑
k=1

xk

k!
(log λ)

k

)
.

On the other hand, λx can be represented by using some θ ∈ (0, 1) as

λx = 1 +

n∑
k=1

xk

k!
(log λ)k +

xn+1

(n+ 1)!
λθx(log λ)n+1.
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Hence, by using this θ, we get

f [n](λ, x) =
x

(n+ 1)!
λθx(log λ)n+1.

Let x > 0. Then f [n](λ, x) ≥ 0 if n is odd or λ ≥ 1, and f [n](λ, x) ≤ 0 if n is even and
0 < λ ≤ 1. Therefore, (b) holds. Let x < 0. We obtain (c) since f [n](λ, x) ≤ 0 if n is odd
or λ ≥ 1, and f [n](λ, x) ≥ 0 if n is even and 0 < λ ≤ 1.

In [16], we have obtained the following properties for the n-th relative operator entropies.

Lemma 2.3. (Theorem 2.4 and Theorem 3.4 in [16]) Let A and B be strictly positive
operators, r, s ∈ R and x ∈ R\{0}. Then

(a) T
[n]
x (A ♮r B|A ♮s B) = (s− r)n(A ♮r B)A−1T

[n]
(s−r)x(A|B),

(b) S
[n]
x (A ♮r B|A ♮s B) = (s− r)n(A ♮r B)A−1S

[n]
(s−r)x(A|B) = (s− r)nS

[n]
(1−x)r+xs(A|B)

hold for all n ∈ N. In particular, S[n](A ♮r B|A ♮s B) = (s− r)n(A ♮r B)A−1S[n](A|B).

By using Lemma 2.3, the n-th generalized Petz-Bregman divergence has also similar
properties.

Proposition 2.4. (cf. Theorem 4.8 in [16]) Let A and B be strictly positive operators and
r, s, x ∈ R. Then

D [n]
x (A ♮r B|A ♮s B) = (s− r)n(A ♮r B)A−1D

[n]
(s−r)x(A|B)

holds for n ∈ N.

Corollary 2.5. Let A and B be strictly positive operators and r, x, y ∈ R. Then the
following holds for n ∈ N:

(a) D
[n]
x (A ♮r B|A) = (−r)n(A ♮r B)A−1D

[n]
−rx(A|B),

(b) D
[n]
x (B|A) = (−1)nBA−1D

[n]
−x(A|B),

(c) (A ♮y B)A−1D
[n]
x (A|B) = (−1)n(B ♮1−y A)B

−1D
[n]
−x(B|A).

Since A ♮y B = B ♮1−y A holds for y ∈ R, we obtain (c) by (b) in Corollary 2.5.

Remark 2. By putting x = 1 in (a) in Lemma 2.3, we have

D
[n]
FK(A ♮r B|A ♮s B) = (s− r)n+1(A ♮r B)A−1T

[n+1]
s−r (A|B).

The following relation between D
[n]
x (A|B) and D

[n]
FK(A|B) holds, which is an extension

of Corollary 4.9 in [16].

Proposition 2.6. Let A and B be strictly positive operators and x ∈ R\{0}. Then the
following holds for all n ∈ N:

D [n]
x (A|B) =

1

xn
D

[n]
FK(A|A ♮x B).
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3 The n-th Operator Valued Divergences corresponding to ∆i,α(A|B). The n-

th generalized Petz-Bregman divergence D
[n]
x (A|B) defined in section 2 coincides with

∆1,α(A|B) when n = 1, 0 < x < 1 and x = α. So it is natural to regard D
[n]
x (A|B)

as the n-the operator valued divergence corresponding to ∆1,α(A|B) and we can write it as

∆
[n]
1,x(A|B). In this section, we define the n-th operator valued divergences corresponding

to ∆2,α(A|B), ∆3,α(A|B) and ∆4,α(A|B) by using D
[n]
x (A|B) and show some properties of

them.
For r, s ∈ R, (A ♮r B)A−1(A ♮s B) = A ♮r+s B holds (cf. [13]). Then the Tsallis relative

operator entropy Tx(A|B) can be rewritten as

Tx(A|B) =
A ♮x B −A

x
= (A ♮x B)A−1A ♮−x B −A

−x
= (A ♮x B)A−1T−x(A|B) (x ∈ R\{0}).

In addition, since Sx(A|B) = (A ♮x B)A−1S(A|B) holds for x ∈ R, we can rewrite
∆2,α(A|B) as follows:

∆2,α(A|B) = Sα(A|B)− Tα(A|B) = −(A ♮α B)A−1(T−α(A|B)− S(A|B))

= −(A ♮α B)A−1D
[1]
−α(A|B) (α ∈ (0, 1)).

Similarly, ∆3,α(A|B) and ∆4,α(A|B) can be rewritten as follows (α ∈ (0, 1)):

∆3,α(A|B) = −T1−α(B|A)− Sα(A|B) = (A ♮α B)A−1(T1−α(A|B)− S(A|B))

= (A ♮α B)A−1D
[1]
1−α(A|B),

∆4,α(A|B) = S1(A|B) + T1−α(B|A) = −(A ♮1 B)A−1(Tα−1(A|B)− S(A|B))

= −(A ♮1 B)A−1D
[1]
α−1(A|B).

Based on such representations, we define the n-th operator valued divergences corresponding
to ∆2,α(A|B), ∆3,α(A|B) and ∆4,α(A|B).

Definition 1. Let A and B be strictly positive operators, n ∈ N and x ∈ R. We define the

n-th operator valued divergence ∆
[n]
2,x(A|B), ∆

[n]
3,x(A|B) and ∆

[n]
4,x(A|B) as follows:

∆
[n]
2,x(A|B) ≡ −(A ♮x B)A−1D

[n]
−x(A|B), ∆

[n]
3,x(A|B) ≡ (A ♮x B)A−1D

[n]
1−x(A|B),

∆
[n]
4,x(A|B) ≡ −(A ♮1 B)A−1D

[n]
x−1(A|B).

We remark that ∆
[n]
2,x(A|B), ∆

[n]
3,x(A|B) and ∆

[n]
4,x(A|B) are defined for all x ∈ R as

∆
[n]
1,x(A|B) = D

[n]
x (A|B) was. They are also written as follows by (c) in Corollary 2.5.

Proposition 3.1. Let A and B be strictly positive operators, n ∈ N and x ∈ R. Then the
followings hold:

(a) ∆
[n]
1,x(A|B) = (−1)n(B ♮1 A)B

−1D
[n]
−x(B|A),

(b) ∆
[n]
2,x(A|B) = (−1)n+1(B ♮1−x A)B

−1D
[n]
x (B|A),

(c) ∆
[n]
3,x(A|B) = (−1)n(B ♮1−x A)B

−1D
[n]
x−1(B|A),
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(d) ∆
[n]
4,x(A|B) = (−1)n+1(B ♮0 A)B

−1D
[n]
1−x(B|A).

Properties shown in Theorem 3.2 and Theorem 3.3 are fundamental where the n-th
operator valued divergences have in common.

Theorem 3.2. Let A and B be strictly positive operators, n ∈ N and x ∈ R. Then the
followings hold for i = 1, 2:

(a) ∆
[n]
i,0(A|B) = O.

(b) If x ̸= 0 then

∆
[n]
i,x(A|B) = O if and only if A = B.

(c) If x > 0 then

∆
[n]
i,x(A|B)

{
≥ O, if n is odd or A ≤ B,

≤ O, if n is even and A ≥ B.

(d) If x < 0 then

∆
[n]
i,x(A|B)

{
≤ O, if n is odd or A ≤ B,

≥ O, if n is even and A ≥ B.

Proof. By Proposition 2.1 and Theorem 2.2, ∆
[n]
1,x(A|B) satisfies (a), (b), (c) and (b).

Let λ > 0. As with the proof of Theorem 2.2, the corresponding function f
[n]
2 (λ, x) for

∆
[n]
2,x(A|B) is represented by using θ2 ∈ (0, 1) as follows:

f
[n]
2 (λ, x) =

x

(n+ 1)!
λ(1−θ2)x(log λ)n+1.

We obtain (a) since f
[n]
2 (λ, 0) = 0 holds. Let x ̸= 0. Then we have (b) since f

[n]
2 (λ, x) = 0

if and only if λ = 1 holds. Assume that x > 0. Since f
[n]
2 (λ, x) ≥ 0 holds if n is odd or

λ ≥ 1, and f
[n]
i (λ, x) ≤ 0 holds if n is even and 0 < λ ≤ 1. Hence, we have (c). We can get

(d) in the same way as (c).

Theorem 3.3. Let A and B be strictly positive operators, n ∈ N and x ∈ R. Then the
followings hold for i = 3, 4:

(a) ∆
[n]
i,1(A|B) = O.

(b) If x ̸= 1 then

∆
[n]
i,x(A|B) = O if and only if A = B.

(c) If x < 1 then

∆
[n]
i,x(A|B)

{
≥ O, if n is odd or A ≤ B,

≤ O, if n is even and A ≥ B.

(d) If x > 1 then

∆
[n]
i,x(A|B)

{
≤ O, if n is odd or A ≤ B,

≥ O, if n is even and A ≥ B.
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Proof. The corresponding functions f
[n]
3 (λ, x) and f

[n]
4 (λ, x) for ∆

[n]
3,x(A|B) and ∆

[n]
4,x(A|B)

are represented by using θ2, θ3 ∈ (0, 1) as follows, respectively (λ > 0):

f
[n]
3 (λ, x) =

1− x

(n+ 1)!
λ(1−θ3)x+θ3(log λ)n+1,

f
[n]
4 (λ, x) =

1− x

(n+ 1)!
λθ4x+(1−θ4)(log λ)n+1.

We obtain the assertions in the same way as Theorem 3.2.

Corollary 3.4. (Proposition 2.1 and Proposition 4.2 in [16]) Let A and B be strictly positive
operators and n ∈ N. Then the following holds:

(a) D
[n]
FK(A|B) = O ⇐⇒ A = B,

(b) D
[n]
FK(A|B) = O

{
≥ O, if n is odd or A ≤ B,

≤ O, if n is even and A ≥ B.

By Proposition 2.4, ∆
[n]
1,x(A ♮r B|A ♮s B) = (s− r)n(A ♮r B)A−1D

[n]
(s−r)x(A|B) holds for

n ∈ N and r, s, x ∈ R. We can also obtain similar results for remaining.

Theorem 3.5. Let A and B be strictly positive operators, n ∈ N and r, s, x ∈ R. Then
the followings hold:

(a) ∆
[n]
2,x(A ♮r B|A ♮s B) = −(s− r)n(A ♮(1−x)r+xs B)A−1D

[n]
−(s−r)x(A|B),

(b) ∆
[n]
3,x(A ♮r B|A ♮s B) = (s− r)n(A ♮(1−x)r+xs B)A−1D

[n]
(s−r)(1−x)(A|B),

(c) ∆
[n]
4,x(A ♮r B|A ♮s B) = −(s− r)n(A ♮s B)A−1D

[n]
(s−r)(x−1)(A|B).

Proof. For r, s, x ∈ R, (A ♮r B) ♮x (A ♮s B) = A ♮(1−x)r+xs B holds (cf. (1) in Lemma 2.2
in [13]). By using Proposition 2.4, these are shown as follows:

∆
[n]
2,x(A ♮r B|A ♮s B)(a)

= −((A ♮r B) ♮x (A ♮s B))(A ♮r B)−1(s− r)n(A ♮r B)A−1D
[n]
−(s−r)x(A|B)

= −(s− r)n(A ♮(1−x)r+xs B)A−1D
[n]
−(s−r)x(A|B).

∆
[n]
3,x(A ♮r B|A ♮s B)(b)

= ((A ♮r B) ♮x (A ♮s B))(A ♮r B)−1(s− r)n(A ♮r B)A−1D
[n]
(s−r)(1−x)(A|B)

= (s− r)n(A ♮(1−x)r+xs B)A−1D
[n]
(s−r)(1−x)(A|B).

∆
[n]
4,x(A ♮r B|A ♮s B)(c)

= −(A ♮s B)(A ♮r B)−1(s− r)n(A ♮r B)A−1D
[n]
(s−r)(x−1)(A|B)

= −(s− r)n(A ♮s B)A−1D
[n]
(s−r)(x−1)(A|B).
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In the following sense, ∆1,α(A|B) and ∆4,α(A|B) are symmetric as well as ∆2,α(A|B)
and ∆3,α(A|B) are:

∆1,1−α(B|A) = T1−α(B|A)− S(B|A) = T1−α(B|A) + S1(A|B) = ∆4,α(A|B),

∆2,1−α(B|A) = S1−α(B|A)− T1−α(B|A) = −T1−α(B|A)− Sα(A|B) = ∆3,α(A|B).

These properties are some kind of duality. By Proposition 3.1, similar properties hold

between ∆
[n]
1,x(A|B) and ∆

[n]
4,x(A|B) and between ∆

[n]
2,x(A|B) and ∆

[n]
3,x(A|B).

Theorem 3.6. Let A and B be strictly positive operators, n ∈ N and x ∈ R. Then the
followings hold:

(a) ∆
[n]
1,1−x(B|A) = (−1)n+1∆

[n]
4,x(A|B),

(b) ∆
[n]
2,1−x(B|A) = (−1)n+1∆

[n]
3,x(A|B).

In [14], we have shown the following relations between ∆i,α(A|B) and the Petz-Bregman
divergence:

∆1,α(A|B) =
1

α
DFK(A|A ♮α B), ∆2,α(A|B) ≡ 1

α
DFK(A ♮α B|A),

∆3,α(A|B) ≡ 1

1− α
DFK(A ♮α B|B), ∆4,α(A|B) ≡ 1

1− α
DFK(B|A ♮α B).

By Proposition 2.6, the corresponding relation between the n-th operator valued divergence

∆
[n]
1,x(A|B) and the n-th Petz-Bregman divergence holds:

∆
[n]
1,x(A|B) =

1

xn
D

[n]
FK(A|A ♮x B).

We show the corresponding relations between remaining ∆
[n]
i,x(A|B) (2 ≤ i ≤ 4) and the

n-th Petz-Bregman divergence. The next theorem comes from Corollary 2.5, Proposition
2.6 and Theorem 3.6.

Theorem 3.7. Let A and B be strictly positive operators, n ∈ N and x ∈ R. Then the
followings hold:

(a) ∆
[n]
2,x(A|B) = (−1)n+1 1

xn
D

[n]
FK(A ♮x B|A),

(b) ∆
[n]
3,x(A|B) =

1

(1− x)n
D

[n]
FK(A ♮x B|B),

(c) ∆
[n]
4,x(A|B) = (−1)n+1 1

(1− x)n
D

[n]
FK(B|A ♮x B).
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