THE *n*-TH OPERATOR VALUED DIVERGENCES $\Delta_{i,x}^{[n]}(A|B)$

HIROAKI TOHYAMA⁽¹⁾, EIZABURO KAMEI⁽²⁾ AND MASAYUKI WATANABE⁽³⁾

ABSTRACT. Let A and B be strictly positive linear operators on a Hilbert space \mathcal{H} . As a generalization of the relative operator entropy $S(A|B) \equiv A^{\frac{1}{2}} (\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^{\frac{1}{2}}$ and the Tsallis relative operator entropy $T_x(A|B) \equiv A^{\frac{1}{2}} \frac{(A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^x - I}{x} A^{\frac{1}{2}}$, we have introduced the *n*-th relative operator entropy $S^{[n]}(A|B)$ and the *n*-th Tsallis relative operator entropy $T_x^{[n]}(A|B)$ for $n \in \mathbb{N}$ and $x \in \mathbb{R}$. In this paper, we define the *n*-th generalized Petz-Bregman divergence $\mathscr{D}_x^{[n]}(A|B) \equiv T_x^{[n]}(A|B) - S^{[n]}(A|B)$ ($x \in R$) corresponding to the operator valued divergence $\Delta_{1,\alpha}(A|B) \equiv T_\alpha(A|B) - S(A|B)$ ($\alpha \in [0,1]$) which is a generalization of Petz-Bregman divergence $D_{FK}(A|B) \equiv B - A - S(A|B)$. Similatly, by using $\mathscr{D}_x^{[n]}(A|B)$, we introduce the *n*-th operator valued divergences $\Delta_{2,x}^{[n]}(A|B)$, $\Delta_{3,x}^{[n]}(A|B)$ and $\Delta_{4,x}^{[n]}(A|B)$ corresponding to $\Delta_{2,\alpha}(A|B) \equiv S_\alpha(A|B) - T_\alpha(A|B), \Delta_{3,\alpha}(A|B) \equiv -T_{1-\alpha}(B|A) - S_\alpha(A|B)$ and $\Delta_{4,\alpha}(A|B) \equiv S_1(A|B) + T_{1-\alpha}(B|A)$, respectively, and show their properties and relations among them.

1 Introduction. A bounded linear operator T on a Hilbert space \mathcal{H} is positive (denoted by $T \geq 0$) if $(T\xi,\xi) \geq 0$ for all $\xi \in \mathcal{H}$, and T is said to be strictly positive (denoted by T > 0) if T is invertible and positive. Throughout this paper, A and B denote strictly positive operators.

Based on the concept of the α -divergence introduced by Amari [1], Fujii [2] defined the operator valued α -divergence:

$$D_{\alpha}(A|B) \equiv \frac{A \nabla_{\alpha} B - A \sharp_{\alpha} B}{\alpha(1-\alpha)} \quad (\alpha \in (0,1)),$$

where $A \nabla_{\alpha} B \equiv (1 - \alpha)A + \alpha B$ is the weighted arithmetic operator mean and $A \sharp_{\alpha} B \equiv A^{\frac{1}{2}} \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^{\alpha} A^{\frac{1}{2}}$ is the weighted geometric operator mean [18]. We use the representation $A \natural_{\alpha} B$ instead of $A \sharp_{\alpha} B$ below if $\alpha \in \mathbb{R}$ ([17]).

Aside from this, Petz [19] introduced the Bregman divergence for an operator valued smooth function $\psi: C \to B(\mathcal{H})$ as

$$\psi(x) - \psi(y) - \lim_{t \to +0} \frac{\psi(y + t(x - y)) - \psi(y)}{t}$$

where C is a convex set in a Banach space. As an analogy of this kind of divergence, we had given an operator valued divergence

$$\psi(1) - \psi(0) - \frac{d}{dt} \psi(t) \Big|_{t=0} = B - A - S(A|B)$$

for $\psi(t) \equiv A \natural_t B$. We call it the Petz-Bregman divergence and denote it by

$$D_{FK}(A|B) = B - A - S(A|B),$$

²⁰¹⁰ Mathematics Subject Classification. 47A63, 47A64 and 94A17.

Key words and phrases. operator valued divergence, operator valued α -divergence, Petz-Bregman divergence, the *n*-th operator valued divergence, the *n*-th relative operator entropy.

where

$$S(A|B) \equiv A^{\frac{1}{2}} \left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right) A^{\frac{1}{2}}$$

is the relative operator entropy introduced by Fujii and Kamei [3, 9, 11]. Fujii, et. al. [5, 6] showed that the operator valued α -divergence coincides with the Petz-Bregman divergence at the end points for interval (0, 1). That is,

$$D_0(A|B) \equiv \lim_{\alpha \to +0} D_\alpha(A|B) = B - A - S(A|B) = D_{FK}(A|B).$$

In addition, since $D_1(A|B) \equiv \lim_{\alpha \to 1-0} D_\alpha(A|B) = D_{FK}(B|A)$ holds, $D_\alpha(A|B)$ combines $D_{FK}(A|B)$ with $D_{FK}(B|A)$. This is a symmetric property for $D_\alpha(A|B)$ in the sense of [4].

In [10], we had given the following relations among relative operator entropies:

(1)
$$S(A|B) \le T_{\alpha}(A|B) \le S_{\alpha}(A|B) \le -T_{1-\alpha}(B|A) \le S_1(A|B) \text{ for } \alpha \in (0,1),$$

where $S_x(A|B) \equiv A^{\frac{1}{2}} \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right)^x \left(\log A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right) A^{\frac{1}{2}}$ $(x \in \mathbb{R})$ is the generalized relative operator entropy defined by Furuta [8] and $T_\alpha(A|B) \equiv \frac{A \sharp_\alpha B - A}{\alpha}$ $(\alpha \in (0,1])$ is the Tsallis relative operator entropy defined by Yanagi, Kuriyama and Furuichi [20]. The Tsallis relative operator entropy $T_x(A|B)$ can be defined for all $x \in \mathbb{R}$ and the inequalities (1) hold also at $\alpha = 0$ and 1.

In [12], we obtained the following representations of the operator valued α -divergence and the Petz-Bregman divergence:

$$D_{\alpha}(A|B) = -T_{1-\alpha}(B|A) - T_{\alpha}(A|B) \quad (\alpha \in (0,1)),$$

$$D_{FK}(A|B) = -T_1(B|A) - T_0(A|B) = T_1(A|B) - S(A|B).$$

Since these are differences between the terms in (1), we also regarded other differences as operator divergences [14]: For $\alpha \in (0, 1)$,

$$\begin{split} \Delta_{1,\alpha}(A|B) &\equiv T_{\alpha}(A|B) - S(A|B), \\ \Delta_{3,\alpha}(A|B) &\equiv -T_{1-\alpha}(B|A) - S_{\alpha}(A|B), \\ \end{split}$$

and so on.

Since the relative operator entropy S(A|B) is given as the derivative of the path $A
arrow B_t B$ at t = 0, Fujii et. al. [7] gave the viewpoint that S(A|B) is the velocity on the path $A
arrow B_t B$ at t = 0. Similarly, we regarded $S_{\alpha}(A|B)$ as the velocity on $A
arrow B_t B$ at $t = \alpha$ and based on this viewpoint, we tried to introduce a notion of the acceleration on the path $A
arrow B_t B$ at $t = \alpha$ which was given as the second derivative of the path at $t = \alpha$ in [15]. As an extension of such perspective, we regarded the Tsallis relative operator entropy $T_x(A|B)$ as the average rate of change of the path $A
arrow B_t B$ over the interval [0, x] and $S(A|B) = \lim_{x \to 0} T_x(A|B)$ as the rate of change of the path at t = 0 in [16].

The *n*-th Tsallis relative operator entropy $T_x^{[n]}(A|B)$ is constructed inductively as follows:

$$T_x^{[1]}(A|B) \equiv T_x(A|B)$$

and for $n \geq 2$,

$$T_x^{[n]}(A|B) \equiv \frac{T_x^{[n-1]}(A|B) - S^{[n-1]}(A|B)}{x} \quad (x \in \mathbb{R} \setminus \{0\}),$$

where $S^{[n]}(A|B)$ is defined by

$$S^{[n]}(A|B) \equiv \frac{1}{n!} A^{\frac{1}{2}} \left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^n A^{\frac{1}{2}} = \frac{1}{n!} A (A^{-1} S(A|B))^n$$

and we call it the *n*-th relative operator entropy. Since $T_x^{[n]}(A|B)$ is represented specifically as

$$T_x^{[n]}(A|B) = \frac{1}{x^n} \left(A \natural_x B - A - \sum_{k=1}^{n-1} x^k S^{[k]}(A|B) \right) \quad (x \in \mathbb{R} \setminus \{0\}),$$

the corresponding functions to $T_x^{[n]}(A|B)$ and $S^{[n]}(A|B)$ are

$$\frac{1}{x^n} \left(\lambda^x - 1 - \sum_{k=1}^{n-1} \frac{x^k}{k!} (\log \lambda)^k \right) \quad \text{and} \quad \frac{1}{n!} (\log \lambda)^n \quad (\lambda > 0),$$

respectively. Since $\lim_{x \to 0} \frac{1}{x^n} \left(\lambda^x - 1 - \sum_{k=1}^{n-1} \frac{x^k}{k!} (\log \lambda)^k \right) = \frac{1}{n!} (\log \lambda)^n$, we obtain $\lim_{x \to 0} T_x^{[n]}(A|B) = S^{[n]}(A|B)$ for all $n \in \mathbb{N}$. Therefore, we defined $T_0^{[n]}(A|B)$ by

$$T_0^{[n]}(A|B) \equiv S^{[n]}(A|B).$$

For $n \geq 2$, the *n*-th Tsallis relative operator entropy $T_x^{[n]}(A|B)$ is regarded as the average rate of change of $T_x^{[n-1]}(A|B)$ over the interval [0, x].

In addition, we defined $S_y^{[n]}(A|B)$ by

$$S_{y}^{[n]}(A|B) \equiv \frac{1}{n!} \frac{d^{n}}{dx^{n}} A \natural_{x} B \bigg|_{x=y} = (A \sharp_{y} B) A^{-1} S^{[n]}(A|B) \quad (y \in \mathbb{R})$$

and call it the *n*-th generalized relative operator entropy. We remark that $S_0^{[n]}(A|B)$ coincides with $S^{[n]}(A|B)$ and $(A \not\models_x B)A^{-1}S_y^{[n]}(A|B) = S_{x+y}^{[n]}(A|B)$ holds for $x, y \in \mathbb{R}$.

In [16], we defined the *n*-th Petz-Bregman divergence $D_{FK}^{[n]}(A|B)$ and the *n*-th operator valued divergence $\mathscr{D}_{\alpha}^{[n]}(A|B)$ by

$$D_{FK}^{[n]}(A|B) \equiv T_1^{[n]}(A|B) - S^{[n]}(A|B) = B - A - \sum_{k=1}^n S^{[k]}(A|B),$$

$$\mathscr{D}_{\alpha}^{[n]}(A|B) \equiv T_{\alpha}^{[n]}(A|B) - S^{[n]}(A|B) = \frac{1}{\alpha^n} \left(A \natural_{\alpha} B - A - \sum_{k=1}^n \alpha^k S^{[k]}(A|B) \right) \quad (\alpha \in [0,1]),$$

and showed their properties. We remark $\mathscr{D}_{1}^{[1]}(A|B) = D_{FK}^{[1]}(A|B) = D_{FK}(A|B)$ and $\mathscr{D}_{\alpha}^{[1]}(A|B) = \Delta_{1,\alpha}(A|B)$. So we think $\mathscr{D}_{\alpha}^{[n]}(A|B)$ is a generalization of the Petz-Bregman divergence. In addition, it is natural that $\mathscr{D}_{\alpha}^{[n]}(A|B)$ is regarded as the *n*-the operator valued divergence corresponding to $\Delta_{1,\alpha}(A|B)$. In this paper, we propose the definitions of the *n*-th operator valued divergences corresponding to $\Delta_{2,\alpha}(A|B)$, $\Delta_{3,\alpha}(A|B)$ and $\Delta_{4,\alpha}(A|B)$ and to show properties of them. For this purpose, we need to extend $\mathscr{D}_{\alpha}^{[n]}(A|B)$ ($\alpha \in (0,1)$) to $\mathscr{D}_{x}^{[n]}(A|B)$ ($x \in \mathbb{R}$). We call $\mathscr{D}_{x}^{[n]}(A|B)$ the *n*-th generalized Petz-Bregman divergence and show some properties of it in section 2. In section 3, we define the *n*-th operator valued divergences $\Delta_{2,x}^{[n]}(A|B)$ and $\Delta_{4,x}(A|B)$ and

2 The *n*-th Generalized Petz-Bregman Divergence. Our idea of defining the *n*-th operator valued divergences corresponding to $\Delta_{2,\alpha}(A|B)$, $\Delta_{3,\alpha}(A|B)$ and $\Delta_{4,\alpha}(A|B)$ is to use $\mathscr{D}_{\alpha}^{[n]}(A|B)$ defined in [16]. In order to achieve such purpose, we need to broaden the range of α for $\mathscr{D}_{\alpha}^{[n]}(A|B)$ from [0,1] to \mathbb{R} . For strictly positive operators A and B, $n \in \mathbb{N}$ and $x \in \mathbb{R}$, we define $\mathscr{D}_{\alpha}^{[n]}(A|B)$ as follows:

$$\mathscr{D}_{r}^{[n]}(A|B) \equiv T_{r}^{[n]}(A|B) - S^{[n]}(A|B).$$

We call it the *n*-th generalized Petz-Bregman divergence.

By Proposition 4.5 in [16], the following proposition holds for the *n*-th generalized Petz-Bregman divergence.

Proposition 2.1. Let n be a fixed natural number and x be a fixed real number in $\mathbb{R}\setminus\{0\}$. Then the following holds for any strictly positive operators A and B:

$$\mathscr{D}_{r}^{[n]}(A|B) = O$$
 if and only if $A = B$

Remark 1. Since $\mathscr{D}_1^{[n]}(A|B) = D_{FK}^{[n]}(A|B),$

$$D_{FK}^{[n]}(A|B) = O$$
 if and only if $A = B$

holds for any fixed natural number n.

The following are fundamental properties for $\mathscr{D}_x^{[n]}(A|B)$.

Theorem 2.2. Let A and B be strictly positive operators and $x \in \mathbb{R}$. Then the following hold for $n \in \mathbb{N}$:

(a) $\mathscr{D}_0^{[n]}(A|B) = O.$

(b) If x > 0 then

$$\mathscr{D}_{x}^{[n]}(A|B) \begin{cases} \geq O, & \text{if } n \text{ is odd } or \ A \leq B, \\ \leq O, & \text{if } n \text{ is even and } A \geq B \end{cases}$$

(c) If x < 0 then

$$\mathscr{D}_x^{[n]}(A|B) \left\{ \begin{array}{l} \leq O, & \text{if } n \text{ is odd or } A \leq B, \\ \geq O, & \text{if } n \text{ is even and } A \geq B. \end{array} \right.$$

Proof. Since it is obvious that $\mathscr{D}_0^{[n]}(A|B) = O$ holds, we suppose $x \in \mathbb{R} \setminus \{0\}$. Let $\lambda > 0$. Since $\mathscr{D}_x^{[n]}(A|B) = \frac{1}{x^n} \left(A \natural_x B - A - \sum_{k=1}^n x^k S^{[k]}(A|B) \right)$, the corresponding function $f^{[n]}(\lambda, x)$ for $\mathscr{D}_x^{[n]}(A|B)$ is given as follows:

$$f^{[n]}(\lambda, x) = \frac{1}{x^n} \left(\lambda^x - 1 - \sum_{k=1}^n \frac{x^k}{k!} \left(\log \lambda \right)^k \right).$$

On the other hand, λ^x can be represented by using some $\theta \in (0, 1)$ as

$$\lambda^{x} = 1 + \sum_{k=1}^{n} \frac{x^{k}}{k!} (\log \lambda)^{k} + \frac{x^{n+1}}{(n+1)!} \lambda^{\theta x} (\log \lambda)^{n+1}.$$

Hence, by using this θ , we get

$$f^{[n]}(\lambda, x) = \frac{x}{(n+1)!} \lambda^{\theta x} (\log \lambda)^{n+1}.$$

Let x > 0. Then $f^{[n]}(\lambda, x) \ge 0$ if n is odd or $\lambda \ge 1$, and $f^{[n]}(\lambda, x) \le 0$ if n is even and $0 < \lambda \le 1$. Therefore, (b) holds. Let x < 0. We obtain (c) since $f^{[n]}(\lambda, x) \le 0$ if n is odd or $\lambda \ge 1$, and $f^{[n]}(\lambda, x) \ge 0$ if n is even and $0 < \lambda \le 1$.

In [16], we have obtained the following properties for the *n*-th relative operator entropies.

Lemma 2.3. (Theorem 2.4 and Theorem 3.4 in [16]) Let A and B be strictly positive operators, $r, s \in \mathbb{R}$ and $x \in \mathbb{R} \setminus \{0\}$. Then

(a)
$$T_x^{[n]}(A \natural_r B | A \natural_s B) = (s - r)^n (A \natural_r B) A^{-1} T_{(s-r)x}^{[n]}(A | B),$$

(b) $S_x^{[n]}(A \natural_r B | A \natural_s B) = (s-r)^n (A \natural_r B) A^{-1} S_{(s-r)x}^{[n]}(A | B) = (s-r)^n S_{(1-x)r+xs}^{[n]}(A | B)$

hold for all $n \in \mathbb{N}$. In particular, $S^{[n]}(A \natural_r B | A \natural_s B) = (s - r)^n (A \natural_r B) A^{-1} S^{[n]}(A | B)$.

By using Lemma 2.3, the n-th generalized Petz-Bregman divergence has also similar properties.

Proposition 2.4. (cf. Theorem 4.8 in [16]) Let A and B be strictly positive operators and $r, s, x \in \mathbb{R}$. Then

$$\mathscr{D}_x^{[n]}(A \natural_r B | A \natural_s B) = (s-r)^n (A \natural_r B) A^{-1} \mathscr{D}_{(s-r)x}^{[n]}(A | B)$$

holds for $n \in \mathbb{N}$.

Corollary 2.5. Let A and B be strictly positive operators and $r, x, y \in \mathbb{R}$. Then the following holds for $n \in \mathbb{N}$:

(a) $\mathscr{D}_x^{[n]}(A \natural_r B|A) = (-r)^n (A \natural_r B) A^{-1} \mathscr{D}_{-rx}^{[n]}(A|B),$

(b)
$$\mathscr{D}_x^{[n]}(B|A) = (-1)^n B A^{-1} \mathscr{D}_{-x}^{[n]}(A|B),$$

(c)
$$(A \natural_y B)A^{-1}\mathscr{D}_x^{[n]}(A|B) = (-1)^n (B \natural_{1-y} A)B^{-1}\mathscr{D}_{-x}^{[n]}(B|A).$$

Since $A \not\models_y B = B \not\models_{1-y} A$ holds for $y \in \mathbb{R}$, we obtain (c) by (b) in Corollary 2.5. Remark 2. By putting x = 1 in (a) in Lemma 2.3, we have

$$D_{FK}^{[n]}(A \natural_r B | A \natural_s B) = (s-r)^{n+1}(A \natural_r B)A^{-1}T_{s-r}^{[n+1]}(A | B).$$

The following relation between $\mathscr{D}_x^{[n]}(A|B)$ and $D_{FK}^{[n]}(A|B)$ holds, which is an extension of Corollary 4.9 in [16].

Proposition 2.6. Let A and B be strictly positive operators and $x \in \mathbb{R} \setminus \{0\}$. Then the following holds for all $n \in \mathbb{N}$:

$$\mathscr{D}_x^{[n]}(A|B) = \frac{1}{x^n} D_{FK}^{[n]}(A|A \natural_x B).$$

3 The *n*-th Operator Valued Divergences corresponding to $\Delta_{i,\alpha}(A|B)$. The *n*th generalized Petz-Bregman divergence $\mathscr{D}_x^{[n]}(A|B)$ defined in section 2 coincides with $\Delta_{1,\alpha}(A|B)$ when n = 1, 0 < x < 1 and $x = \alpha$. So it is natural to regard $\mathscr{D}_x^{[n]}(A|B)$ as the *n*-the operator valued divergence corresponding to $\Delta_{1,\alpha}(A|B)$ and we can write it as $\Delta_{1,x}^{[n]}(A|B)$. In this section, we define the *n*-th operator valued divergences corresponding to $\Delta_{2,\alpha}(A|B), \Delta_{3,\alpha}(A|B)$ and $\Delta_{4,\alpha}(A|B)$ by using $\mathscr{D}_x^{[n]}(A|B)$ and show some properties of them.

For $r, s \in \mathbb{R}$, $(A \natural_r B)A^{-1}(A \natural_s B) = A \natural_{r+s} B$ holds (cf. [13]). Then the Tsallis relative operator entropy $T_x(A|B)$ can be rewritten as

$$T_x(A|B) = \frac{A \natural_x B - A}{x} = (A \natural_x B)A^{-1}\frac{A \natural_{-x} B - A}{-x}$$
$$= (A \natural_x B)A^{-1}T_{-x}(A|B) \quad (x \in \mathbb{R} \setminus \{0\}).$$

In addition, since $S_x(A|B) = (A \natural_x B)A^{-1}S(A|B)$ holds for $x \in \mathbb{R}$, we can rewrite $\Delta_{2,\alpha}(A|B)$ as follows:

$$\begin{aligned} \Delta_{2,\alpha}(A|B) &= S_{\alpha}(A|B) - T_{\alpha}(A|B) = -(A \natural_{\alpha} B)A^{-1}(T_{-\alpha}(A|B) - S(A|B)) \\ &= -(A \natural_{\alpha} B)A^{-1}\mathscr{D}_{-\alpha}^{[1]}(A|B) \ (\alpha \in (0,1)). \end{aligned}$$

Similarly, $\Delta_{3,\alpha}(A|B)$ and $\Delta_{4,\alpha}(A|B)$ can be rewritten as follows ($\alpha \in (0,1)$):

$$\begin{split} \Delta_{3,\alpha}(A|B) &= -T_{1-\alpha}(B|A) - S_{\alpha}(A|B) = (A \natural_{\alpha} B)A^{-1}(T_{1-\alpha}(A|B) - S(A|B)) \\ &= (A \natural_{\alpha} B)A^{-1}\mathscr{D}_{1-\alpha}^{[1]}(A|B), \\ \Delta_{4,\alpha}(A|B) &= S_{1}(A|B) + T_{1-\alpha}(B|A) = -(A \natural_{1} B)A^{-1}(T_{\alpha-1}(A|B) - S(A|B)) \\ &= -(A \natural_{1} B)A^{-1}\mathscr{D}_{\alpha-1}^{[1]}(A|B). \end{split}$$

Based on such representations, we define the *n*-th operator valued divergences corresponding to $\Delta_{2,\alpha}(A|B)$, $\Delta_{3,\alpha}(A|B)$ and $\Delta_{4,\alpha}(A|B)$.

Definition 1. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$. We define the *n*-th operator valued divergence $\Delta_{2,x}^{[n]}(A|B)$, $\Delta_{3,x}^{[n]}(A|B)$ and $\Delta_{4,x}^{[n]}(A|B)$ as follows:

$$\Delta_{2,x}^{[n]}(A|B) \equiv -(A \natural_x B) A^{-1} \mathscr{D}_{-x}^{[n]}(A|B), \qquad \Delta_{3,x}^{[n]}(A|B) \equiv (A \natural_x B) A^{-1} \mathscr{D}_{1-x}^{[n]}(A|B),$$

$$\Delta_{4,x}^{[n]}(A|B) \equiv -(A \natural_1 B) A^{-1} \mathscr{D}_{x-1}^{[n]}(A|B).$$

We remark that $\Delta_{2,x}^{[n]}(A|B)$, $\Delta_{3,x}^{[n]}(A|B)$ and $\Delta_{4,x}^{[n]}(A|B)$ are defined for all $x \in \mathbb{R}$ as $\Delta_{1,x}^{[n]}(A|B) = \mathscr{D}_x^{[n]}(A|B)$ was. They are also written as follows by (c) in Corollary 2.5.

Proposition 3.1. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then the followings hold:

(a) $\Delta_{1,x}^{[n]}(A|B) = (-1)^n (B \natural_1 A) B^{-1} \mathscr{D}_{-x}^{[n]}(B|A),$

(b)
$$\Delta_{2,x}^{[n]}(A|B) = (-1)^{n+1}(B \natural_{1-x} A)B^{-1}\mathscr{D}_x^{[n]}(B|A),$$

(c)
$$\Delta_{3,x}^{[n]}(A|B) = (-1)^n (B \natural_{1-x} A) B^{-1} \mathscr{D}_{x-1}^{[n]}(B|A),$$

(d) $\Delta_{4,x}^{[n]}(A|B) = (-1)^{n+1}(B \natural_0 A)B^{-1}\mathscr{D}_{1-x}^{[n]}(B|A).$

Properties shown in Theorem 3.2 and Theorem 3.3 are fundamental where the n-th operator valued divergences have in common.

Theorem 3.2. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then the followings hold for i = 1, 2:

- (a) $\Delta_{i,0}^{[n]}(A|B) = O.$
- (b) If $x \neq 0$ then

$$\Delta_{i,x}^{[n]}(A|B) = O$$
 if and only if $A = B$

(c) If x > 0 then

$$\Delta_{i,x}^{[n]}(A|B) \begin{cases} \geq O, & \text{if } n \text{ is odd or } A \leq B, \\ \leq O, & \text{if } n \text{ is even and } A \geq B. \end{cases}$$

(d) If x < 0 then

$$\Delta_{i,x}^{[n]}(A|B) \begin{cases} \leq O, & \text{if } n \text{ is odd or } A \leq B, \\ \geq O, & \text{if } n \text{ is even and } A \geq B. \end{cases}$$

Proof. By Proposition 2.1 and Theorem 2.2, $\Delta_{1,x}^{[n]}(A|B)$ satisfies (a), (b), (c) and (b).

Let $\lambda > 0$. As with the proof of Theorem 2.2, the corresponding function $f_2^{[n]}(\lambda, x)$ for $\Delta_{2,x}^{[n]}(A|B)$ is represented by using $\theta_2 \in (0,1)$ as follows:

$$f_2^{[n]}(\lambda, x) = \frac{x}{(n+1)!} \lambda^{(1-\theta_2)x} (\log \lambda)^{n+1}.$$

We obtain (a) since $f_2^{[n]}(\lambda, 0) = 0$ holds. Let $x \neq 0$. Then we have (b) since $f_2^{[n]}(\lambda, x) = 0$ if and only if $\lambda = 1$ holds. Assume that x > 0. Since $f_2^{[n]}(\lambda, x) \ge 0$ holds if n is odd or $\lambda \ge 1$, and $f_i^{[n]}(\lambda, x) \le 0$ holds if n is even and $0 < \lambda \le 1$. Hence, we have (c). We can get (d) in the same way as (c).

Theorem 3.3. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then the followings hold for i = 3, 4:

- (a) $\Delta_{i,1}^{[n]}(A|B) = O.$
- (b) If $x \neq 1$ then

$$\Delta_{i,r}^{[n]}(A|B) = O$$
 if and only if $A = B$

(c) If x < 1 then

$$\Delta_{i,x}^{[n]}(A|B) \begin{cases} \geq O, & \text{if } n \text{ is odd or } A \leq B, \\ \leq O, & \text{if } n \text{ is even and } A \geq B. \end{cases}$$

(d) If x > 1 then

$$\Delta_{i,x}^{[n]}(A|B) \begin{cases} \leq O, & \text{if } n \text{ is odd } or \ A \leq B, \\ \geq O, & \text{if } n \text{ is even and } A \geq B \end{cases}$$

Proof. The corresponding functions $f_3^{[n]}(\lambda, x)$ and $f_4^{[n]}(\lambda, x)$ for $\Delta_{3,x}^{[n]}(A|B)$ and $\Delta_{4,x}^{[n]}(A|B)$ are represented by using $\theta_2, \theta_3 \in (0, 1)$ as follows, respectively $(\lambda > 0)$:

$$f_3^{[n]}(\lambda, x) = \frac{1-x}{(n+1)!} \lambda^{(1-\theta_3)x+\theta_3} (\log \lambda)^{n+1},$$

$$f_4^{[n]}(\lambda, x) = \frac{1-x}{(n+1)!} \lambda^{\theta_4 x + (1-\theta_4)} (\log \lambda)^{n+1}.$$

We obtain the assertions in the same way as Theorem 3.2.

Corollary 3.4. (Proposition 2.1 and Proposition 4.2 in [16]) Let A and B be strictly positive operators and $n \in \mathbb{N}$. Then the following holds:

 $({\rm a}) \ D^{[n]}_{FK}(A|B) = O \ \iff \ A = B,$

(b)
$$D_{FK}^{[n]}(A|B) = O \begin{cases} \geq O, & \text{if } n \text{ is odd or } A \leq B, \\ \leq O, & \text{if } n \text{ is even and } A \geq B. \end{cases}$$

By Proposition 2.4, $\Delta_{1,x}^{[n]}(A \natural_r B | A \natural_s B) = (s-r)^n (A \natural_r B) A^{-1} \mathscr{D}_{(s-r)x}^{[n]}(A | B)$ holds for $n \in \mathbb{N}$ and $r, s, x \in \mathbb{R}$. We can also obtain similar results for remaining.

Theorem 3.5. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $r, s, x \in \mathbb{R}$. Then the followings hold:

(a) $\Delta_{2,x}^{[n]}(A \natural_r B | A \natural_s B) = -(s-r)^n (A \natural_{(1-x)r+xs} B) A^{-1} \mathscr{D}_{-(s-r)x}^{[n]}(A | B),$

(b)
$$\Delta_{3,x}^{[n]}(A \natural_r B | A \natural_s B) = (s-r)^n (A \natural_{(1-x)r+xs} B) A^{-1} \mathscr{D}_{(s-r)(1-x)}^{[n]}(A | B),$$

(c)
$$\Delta_{4,x}^{[n]}(A \natural_r B | A \natural_s B) = -(s-r)^n (A \natural_s B) A^{-1} \mathscr{D}_{(s-r)(x-1)}^{[n]}(A | B).$$

Proof. For $r, s, x \in \mathbb{R}$, $(A \natural_r B) \natural_x (A \natural_s B) = A \natural_{(1-x)r+xs} B$ holds (cf. (1) in Lemma 2.2 in [13]). By using Proposition 2.4, these are shown as follows:

(a)
$$\Delta_{2,x}^{[n]}(A \natural_r B | A \natural_s B)$$

= $-((A \natural_r B) \natural_x (A \natural_s B))(A \natural_r B)^{-1}(s-r)^n (A \natural_r B) A^{-1} \mathscr{D}_{-(s-r)x}^{[n]}(A | B)$
= $-(s-r)^n (A \natural_{(1-x)r+xs} B) A^{-1} \mathscr{D}_{-(s-r)x}^{[n]}(A | B).$

(b)
$$\Delta_{3,x}^{[n]}(A \natural_r B | A \natural_s B)$$

= $((A \natural_r B) \natural_x (A \natural_s B))(A \natural_r B)^{-1}(s-r)^n (A \natural_r B) A^{-1} \mathscr{D}_{(s-r)(1-x)}^{[n]}(A | B)$
= $(s-r)^n (A \natural_{(1-x)r+xs} B) A^{-1} \mathscr{D}_{(s-r)(1-x)}^{[n]}(A | B).$

(c)
$$\Delta_{4,x}^{[n]}(A \natural_r B | A \natural_s B)$$

= $-(A \natural_s B)(A \natural_r B)^{-1}(s-r)^n (A \natural_r B) A^{-1} \mathscr{D}_{(s-r)(x-1)}^{[n]}(A | B)$
= $-(s-r)^n (A \natural_s B) A^{-1} \mathscr{D}_{(s-r)(x-1)}^{[n]}(A | B).$

8

In the following sense, $\Delta_{1,\alpha}(A|B)$ and $\Delta_{4,\alpha}(A|B)$ are symmetric as well as $\Delta_{2,\alpha}(A|B)$ and $\Delta_{3,\alpha}(A|B)$ are:

$$\Delta_{1,1-\alpha}(B|A) = T_{1-\alpha}(B|A) - S(B|A) = T_{1-\alpha}(B|A) + S_1(A|B) = \Delta_{4,\alpha}(A|B),$$

$$\Delta_{2,1-\alpha}(B|A) = S_{1-\alpha}(B|A) - T_{1-\alpha}(B|A) = -T_{1-\alpha}(B|A) - S_{\alpha}(A|B) = \Delta_{3,\alpha}(A|B).$$

These properties are some kind of duality. By Proposition 3.1, similar properties hold between $\Delta_{1,x}^{[n]}(A|B)$ and $\Delta_{4,x}^{[n]}(A|B)$ and between $\Delta_{2,x}^{[n]}(A|B)$ and $\Delta_{3,x}^{[n]}(A|B)$.

Theorem 3.6. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then the followings hold:

(a)
$$\Delta_{1,1-x}^{[n]}(B|A) = (-1)^{n+1} \Delta_{4,x}^{[n]}(A|B),$$

(b) $\Delta_{2,1-x}^{[n]}(B|A) = (-1)^{n+1} \Delta_{3,x}^{[n]}(A|B).$

In [14], we have shown the following relations between $\Delta_{i,\alpha}(A|B)$ and the Petz-Bregman divergence:

$$\Delta_{1,\alpha}(A|B) = \frac{1}{\alpha} D_{FK}(A|A \natural_{\alpha} B), \qquad \Delta_{2,\alpha}(A|B) \equiv \frac{1}{\alpha} D_{FK}(A \natural_{\alpha} B|A),$$
$$\Delta_{3,\alpha}(A|B) \equiv \frac{1}{1-\alpha} D_{FK}(A \natural_{\alpha} B|B), \qquad \Delta_{4,\alpha}(A|B) \equiv \frac{1}{1-\alpha} D_{FK}(B|A \natural_{\alpha} B).$$

By Proposition 2.6, the corresponding relation between the *n*-th operator valued divergence $\Delta_{1,x}^{[n]}(A|B)$ and the *n*-th Petz-Bregman divergence holds:

$$\Delta_{1,x}^{[n]}(A|B) = \frac{1}{x^n} D_{FK}^{[n]}(A|A \natural_x B).$$

We show the corresponding relations between remaining $\Delta_{i,x}^{[n]}(A|B)$ $(2 \leq i \leq 4)$ and the *n*-th Petz-Bregman divergence. The next theorem comes from Corollary 2.5, Proposition 2.6 and Theorem 3.6.

Theorem 3.7. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then the followings hold:

(a)
$$\Delta_{2,x}^{[n]}(A|B) = (-1)^{n+1} \frac{1}{x^n} D_{FK}^{[n]}(A \natural_x B|A),$$

(b)
$$\Delta_{3,x}^{[n]}(A|B) = \frac{1}{(1-x)^n} D_{FK}^{[n]}(A \natural_x B|B),$$

(c)
$$\Delta_{4,x}^{[n]}(A|B) = (-1)^{n+1} \frac{1}{(1-x)^n} D_{FK}^{[n]}(B|A \natural_x B).$$

References

- S. Amari, Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 28(1985).
- [2] J. I. Fujii, On the relative operator entropy (in Japanese), RIMS Kokyuroku, 903, 49–56 (1995)
- [3] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Jpn., 34, 341–348 (1989)

- [4] J. I. Fujii and E. Kamei, Path of Bregman-Petz operator divergence, Sci. Math. Jpn., 70, 329–333 (2009). https://doi.org/10.32219/isms.70.3_329
- J. I. Fujii, J. Mićić, J. Pečarić and Y. Seo, Comparison of operator mean geodesics, J. Math. Inequal., 2, 287–298 (2008). https://doi.org/10.7153/jmi-02-26
- J. I. Fujii, Interpolationality for symmetric operator means, Sci. Math. Jpn., 75, 267–274 (2012). https://doi.org/10.32219/isms.75.3_267
- [7] M. Fujii, J. Mićić, J. Pečarić and Y. Seo, Recent Developments of Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 4, Element, Zagreb (2012)
- T. Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra Appl., 381, 219–235 (2004). https://doi.org/10.1016/j.laa.2003.11.017
- [9] T. Furuta, J. M. Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb (2005)
- [10] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Relative Operator Entropy, Operator Divergence and Shannon Inequality, Sci. Math. Jpn., 75, 289–298 (2012). https://doi.org/10.32219/isms.75.3_289
- [11] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Extensions of Tsallis Relative Operator Entropy and Operator Valued Distance, Sci. Math. Jpn., 76, 427–435 (2013). https://doi.org/10.32219/isms.76.3_427
- [12] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, On relations between operator valued α-divergence and relative operator entropies, Sci. Math. Jpn., 78, 215–228 (2015). https://doi.org/10.32219/isms.78.2_215
- [13] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Expanded relative operator entropies and operator valued α-divergence, J. Math. Syst. Sci., 5, 215–224 (2015). https://doi.org/10.17265/2159-5291/2015.06.001
- [14] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Some operator divergences based on Petz-Bregman divergence, Sci. Math. Jpn., 80, 161–170 (2017). https://doi.org/10.32219/isms.80.2_161
- [15] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Velocity and acceleration on the paths A \u03c4_t B and A \u03c4_{t,r} B, Sci. Math. Jpn., 82, 7–17 (2019). https://doi.org/10.32219/isms.82.1_7
- [16] H. Isa, E. Kamei, H. Tohyama and M. Watanabe, The n-th relative operator entropies and operator divergences, Ann. Funct. Anal. (2020). https://doi.org/10.1007/s43034-019-00004-5
- [17] E. Kamei, Paths of operators parametrized by operator means, Math. Jpn., 39, 395–400 (1994)
- [18] F. Kubo and T. Ando, Means of positive linear operators, Math Ann., 246, 205–224 (1980). https://doi.org/10.1007/BF01371042
- [19] D. Petz, Bregman divergence as relative operator entropy, Acta Math. Hungar., 116, 127–131 (2007). https://doi.org/10.1007/s10474-007-6014-9
- [20] K. Yanagi, K. Kuriyama, S. Furuichi, Generalized Shannon inequalities based on Tsallis relative operator entropy, Linear Algebra Appl., 394, 109–118 (2005). https://doi.org/10.1016/j.laa.2004.06.025
 - ⁽¹⁾ Maebashi Institute of Technology, 460-1, Kamisadori-Machi, Maebashi, Gunma,

 $JAPAN,\ 371\text{-}0816. \ \texttt{tohyama@maebashi-it.ac.jp}$

⁽²⁾ 1-1-3, Sakuragaoka, Kanmakicho, Kitakaturagi-gun, Nara, Japan, 639-0202.

ekamei1947@yahoo.co.jp

⁽³⁾ Maebashi Institute of Technology, 460-1, Kamisadori-Machi, Maebashi, Gunma,

JAPAN, 371-0816. masayukiwatanabe@maebashi-it.ac.jp