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THE n-TH OPERATOR VALUED DIVERGENCES A" (4|B)

T
HiroaKI TonyaMA() | E1zaBuro KAMEI®®) AND MASAYUKI WATANABE(®)

ABSTRACT. Let A and B be strictly positive linear operators on a Hilbert space H.
As a generalization of the relative operator entropy S(A|B) = Az (log A_%BA_%)A%

L lia
and the Tsallis relative operator entropy T (A|B) = A2 (A72BA72)" =1 A%, we have

introduced the n-th relative operator entropy S (A|B) and thgg n-th Tsallis relative
operator entropy g (A|B) for n € N and x € R. In this paper, we define the n-th gen-
eralized Petz-Bregman divergence 99[5”](A\B) =T} (A|B) — S"(A|B) (z € R) corre-
sponding to the operator valued divergence Ay o(A|B) = T (A|B)—S(A|B) (a € [0,1])
which is a generalization of Petz-Bregman divergence Dri (A|B) = B — A — S(A|B).
Similatly, by using Z!"/(A|B), we introduce the n-th operator valued divergences
AV (AIB), AP (AIB) and AJ'(A|B) corresponding to Aso(A[B) = Sa(A|B) —
T+(A|B), As,o(A|B) = —T1—o(B|A)—Sa(A|B) and Ay o (A|B) = S1(A|B)+T1—-o(B|A),
respectively, and show their properties and relations among them.

1 Introduction. A bounded linear operator T on a Hilbert space H is positive (denoted
by T > 0) if (T¢,€) > 0 for all £ € H, and T is said to be strictly positive (denoted by
T > 0) if T is invertible and positive. Throughout this paper, A and B denote strictly
positive operators.
Based on the concept of the a-divergence introduced by Amari [1], Fujii [2] defined the
operator valued a-divergence:
_AV,.B-At,B

DOt(A|B) = Oé(]. — Oé) (Oé € (0’ 1))?

where A V, B = (1 — a)A+ aB is the weighted arithmetic operator mean and A £, B =
(e}
Az A’%BA’%) Az is the weighted geometric operator mean [18]. We use the represen-

tation A f, B instead of A f, B below if a € R ([17]).
Aside from this, Petz [19] introduced the Bregman divergence for an operator valued
smooth function ¢ : C — B(H) as

where C' is a convex set in a Banach space. As an analogy of this kind of divergence, we
had given an operator valued divergence

d
(1) =9(0) = ¥(t) | =B-A-5(4|B)
t=0
for ¢(t) = A by B. We call it the Petz-Bregman divergence and denote it by
Drx(A[B) = B— A— S(A|B),
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where
S(A|B) = A} (1og A*%BA*%> A3

is the relative operator entropy introduced by Fujii and Kamei [3, 9, 11]. Fujii, et. al. [5, 6]
showed that the operator valued a-divergence coincides with the Petz-Bregman divergence
at the end points for interval (0,1). That is,

Dy(A|B) = lim Do (A|B) = B— A— S(A|B) = Drk(A|B).
a—

In addition, since D;(A|B) = liIln 0DO[(A|B) = Dpk(BJA) holds, D,(A|B) combines
a—1—

Dpi(A|B) with Dpg(B|A). This is a symmetric property for D, (A|B) in the sense of [4].
In [10], we had given the following relations among relative operator entropies:

(1) S(AIB) < Tu(AB) < Su(A|B) < ~Ty_o(B|A) < S1(A[B) for a € (0,1),

where S,(A|B) = A2 (A*%BA*%)I (log A*%BA*%) Az (z € R) is the generalized rel-

Aty B—A
ative operator entropy defined by Furuta [8] and T, (A|B) = Al B4

(o € (0,1]) is
the Tsallis relative operator entropy defined by Yanagi, Kuriyama and Furuichi [20]. The
Tsallis relative operator entropy T,.(A|B) can be defined for all z € R and the inequalities
(1) hold also at & = 0 and 1.

In [12], we obtained the following representations of the operator valued a-divergence

and the Petz-Bregman divergence:

Da(A|B) = _Tl—a(B|A) - Ta(A|B) (Oé S (07 1))a
Dik(A|B) = ~T1(B|A) — Ty(A|B) = T1(A|B) — S(A|B).

Since these are differences between the terms in (1), we also regarded other differences as
operator divergences [14]: For a € (0, 1),

Al,oc(A|B) = Toz(A|B) - S(A|B)v AZ,a(A|B) = Soz(A|B) - Ta(A‘B)a
A?),a(A'B) = _Tlfa<B|A) - Sa(A|B)’ A4,(:¢(A|B) = SI(A|B) + Tlfoc(B|A>

and so on.

Since the relative operator entropy S(A|B) is given as the derivative of the path A t; B
at t = 0, Fujii et. al. [7] gave the viewpoint that S(A|B) is the velocity on the path A t; B
at t = 0. Similarly, we regarded S, (A|B) as the velocity on A f; B at t = « and based on
this viewpoint, we tried to introduce a notion of the acceleration on the path Al Batt =«
which was given as the second derivative of the path at ¢ = o in [15]. As an extension of
such perspective, we regarded the Tsallis relative operator entropy Ty (A|B) as the average
rate of change of the path A f; B over the interval [0, z] and S(A|B) = ili% T.(A|B) as the

rate of change of the path at ¢ = 0 in [16].

The n-th Tsallis relative operator entropy Tin] (A|B) is constructed inductively as fol-
lows:

TI"(A|B) = T, (A|B)
and for n > 2,

71" Y(A|B) - SI"1(A|B)

TI"(A|B) =
X

(z € R\{0}),
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where SI"l(A|B) is defined by
n 1 1 1o\ 1 1 _ n
st(4|B) = — b (logA iBA ) A% = S A(A7'S(A|B))

and we call it the n-th relative operator entropy. Since 75" (A|B) is represented specifically
as

n—1
T (A|B) = <A fe B— A=Y atsH A|B)> (z € R\{0}),
k=1
the corresponding functions to e (A|B) and SI"(A|B) are

n—1
1 - P 1 n
— <)\ 7171621 7 (log ) > and  —(log )" (A>0),
n—1 k 1
respectively. Since hm L ()\I kz:l i (log \) ) = m(log A)", we obtain $hg}) TI"(A|B) =

SM(A|B) for all n € N. Therefore, we defined TO["] (A|B) by
7" (A|B) = 5!"(A|B).

For n > 2, the n-th Tsallis relative operator entropy TJL”] (A|B) is regarded as the average
rate of change of Tt (A|B) over the interval [0, z].
In addition, we defined S["] (A|B) by

1 a

["](A|B) B

At B|  =(Aty B)ATIS(AIB) (y € R)
z=y

and call it the n-th generalized relative operator entropy. We remark that S([)n] (A|B) coin-
cides with S (A|B) and (A 4, B)A~'Sy" (A|B) = SI"l (A|B) holds for «, y € R.

In [16], we defined the n-th Petz-Bregman divergence DE}?}{ (A|B) and the n-th operator
valued divergence 2" (A|B) by

n

DY (AIB) = T{"N(AIB) - S"(A|B) = B~ A=Y s (A|B),
k=1

1 n
ZNA|B) = TIY(A|B) — SM(A|B) = — (A fa B—A=) aFst (AB)> (o € [0,1]),
o
k=1
and showed their properties. We remark @1[1](A|B) = DE]K(A|B) = Drk(A|B) and
7% (A|B) = A1 4(A|B). So we think 7% (A|B) is a generalization of the Petz-Bregman
divergence. In addition, it is natural that 7% (A|B) is regarded as the n-the operator val-

ued divergence corresponding to Ay o(A|B). In this paper, we propose the definitions of the
n-th operator valued divergences corresponding to Ag o(A|B), Az «(A|B) and Ay (A|B)

and to show properties of them. For this purpose, we need to extend 2" (A|B) (a € (0,1))
to 2" (A|B) (z € R). We call 2}")(A|B) the n-th generalized Petz-Bregman divergence
and show some properties of it 1n section 2. In section 3, we define the n-th operator
valued divergences A[n] ~(A|B), A (A|B) and A[n ~(A|B) with € R which correspond to
A o(A|B), Asg a(A|B) and Ay a(A|B) by using the n-th generalized Petz-Bregman diver-

gence 7% (A|B) and show some properties for them.
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2 The n-th Generalized Petz-Bregman Divergence. Our idea of defining the n-th
operator valued divergences corresponding to Ag (A|B), As o(A|B) and Ay ,(A|B) is to
use 28" (A|B) defined in [16]. In order to achieve such purpose, we need to broaden the
range of a for 7% (A|B) from [0,1] to R. For strictly positive operators A and B, n € N
and = € R, we define 2" (A|B) as follows:

Z"M(A|B) = TI"(A|B) — 5"(A|B).

We call it the n-th generalized Petz-Bregman divergence.
By Proposition 4.5 in [16], the following proposition holds for the n-th generalized Petz-
Bregman divergence.

Proposition 2.1. Let n be a fived natural number and z be a fized real number in R\{0}.
Then the following holds for any strictly positive operators A and B:

PM(A|B) = O if and only if A= B.
Remark 1. Since .@1[”] (A|B) = D%((/HB),
DE?}((A|B) =0 ifand onlyif A=DB

holds for any fixed natural number n.

The following are fundamental properties for 7% (A|B).

Theorem 2.2. Let A and B be strictly positive operators and x € R. Then the following
hold for n € N:

(a) 2"(A|B) = 0.
(b) If x > 0 then

>0, ifnisoddorA<B,
7!"(A|B)
<O, ifniseven and A> B.
(¢) If x <0 then
<O, ifnisoddor A<B,
7I"(A|B)
>0, ifn iseven and A> B.

Proof. Since it is obvious that .@([)"] (A|B) = O holds, we suppose € R\{0}. Let A >

1 n
0. Since 2/"(4|B) = e (A b, B—A— Zka[k] (A|B)>, the corresponding function
k=1
(N, ) for 74 (A|B) is given as follows:

[n] 1 x = ¥ k
) = — (A —1—25(109) :

k=1
On the other hand, A* can be represented by using some 6 € (0,1) as

.Z‘k n+1

—(log \)* + RS

T _
AP =1+ A

)\9;8 (10g )\)n+1 ]

Pl
-
i
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x

Hence, by using this 8, we get

T

)\GI 1 A n+1'
o ogd)

M) =

Let z > 0. Then f™(\ z) > 0if n is odd or A > 1, and f[™(X\ z) < 0 if n is even and
0 < A < 1. Therefore, (b) holds. Let 2 < 0. We obtain (c) since f"(\,z) < 0 if n is odd
or A>1, andf["]()\,:r)201fnisevenand0</\§1‘ O

In [16], we have obtained the following properties for the n-th relative operator entropies.

Lemma 2.3. (Theorem 2.4 and Theorem 3.4 in [16]) Let A and B be strictly positive
operators, v, s € R and x € R\{0}. Then

(a) TV (A, BlA 5, B) = (s —7)"(A 5, B)ATIM | (A]B),
(b) SY(A by BlA g B) = (s —r)"(A 1, B)AT'S["L | (AIB) = (s —n)"S[}L ) .. (A|B)

hold for all n € N. In particular, S (A 4, B|A t, B) = (s —r)"(A 4, B)A~1SI"(A|B).

By using Lemma 2.3, the n-th generalized Petz-Bregman divergence has also similar
properties.

Proposition 2.4. (cf. Theorem 4.8 in [16]) Let A and B be strictly positive operators and
r,s, x € R. Then

2"(At, BlAb, B)=(s—r)"(A 4, B)A" 9™

f (s—ryz(AlB)
holds for n € N.

Corollary 2.5. Let A and B be strictly positive operators and v, x, y € R. Then the
following holds for n € N:

(a) 28(A b, B|A) = (—r)"(A 4, B)A~'2"] (A|B),
(b) 24" (B|A) = (~1)"BA—' 2"(A|B),
(c) (Ak, BYA" 2 (A|B) = (~1)™(B 11—, A)B~'2"\(B|A).
Since A §, B = B 1, A holds for y € R, we obtain (c) by (b) in Corollary 2.5.
Remark 2. By putting z = 1 in (a) in Lemma 2.3, we have
Dl (A, BlAt, B) = (s — )" (A 4, B)AT'T (4] B).

The following relation between 74 (A|B) and DE?}((A|B) holds, which is an extension
of Corollary 4.9 in [16].

Proposition 2.6. Let A and B be strictly positive operators and x € R\{0}. Then the
following holds for all n € N:

1
2I"(A|B) = — DI} (A|A b, B).

n
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3 The n-th Operator Valued Divergences corresponding to A; ,(A|B). The n-
th generalized Petz-Bregman divergence 74 (A|B) defined in section 2 coincides with
Ay o(A|B) when n = 1, 0 < ¢ < 1 and ¢ = a. So it is natural to regard @g[cn](A|B)
as the n-the operator valued divergence corresponding to Ay (A|B) and we can write it as

AQ"L(A\B) In this section, we define the n-th operator valued divergences corresponding

to Ag o (A|B), Az o(A|B) and Ay o(A|B) by using [l (A|B) and show some properties of
them.

Forr,s €R, (Af, B)JA"'(Ats B) = Afi,1s B holds (cf. [13]). Then the Tsallis relative
operator entropy T, (A|B) can be rewritten as

T.(A|B) =

W:(A ha: B)A

_1A h—a: B-A
= (Al B)ATIT_,(A[B) (x € R\{0}).

In addition, since S,(A|B) = (A f, B)A 1S(A|B) holds for z € R, we can rewrite
A o (A|B) as follows:

AoalAIB) = Sa(A[B) ~ Tu(A[B) = —(A ta B)A™ (T_a(AB) - S(A[B))
= —(At, B)A' 2" (AIB) (a € (0,1)).

Similarly, As o (A|B) and Ay q(A|B) can be rewritten as follows (a € (0,1)):
Aza(AlB) = ~Ti—a(B|A) = So(A|B) = (A e B)A™ (Ti-a(A|B) - S(A|B))
= (Ao B)A™' 21, (AB),

A4a(AlB) = Si(A|B) + Ti-a(B]A) = —(Af B)A™ (Ta-1(A|B) — S(A|B))
= —(Ag B)A*2Y (AB).

Based on such representations, we define the n-th operator valued divergences corresponding
to Az o(A|B), As o (A|B) and Ay (A|B).

Definition 1. Let A and B be strictly positive operators, n € N and x € R. We define the
n-th operator valued divergence A[;i (A|B), A[;L(/HB) and AZLL(A|B) as follows:

A (AIB) = (A, B)AT 9" (AIB),  All(AB) = (A4, B)AT 2" (A|B),
A" aBy=—(A 1 B)A 9™ (A|B).

We remark that A[QTTJC(A|B), Agnl(A|B) and AKL}C(A|B) are defined for all z € R as
A[lni (A|B) = 7% (A|B) was. They are also written as follows by (c¢) in Corollary 2.5.

Proposition 3.1. Let A and B be strictly positive operators, n € N and x € R. Then the
followings hold:

(2) Al aB) = (-1)"(B 5 A)B~ 12" (B|A),
(b) AYL(AIB) = (~1)"N(B 11—, A)B~ 2" (B|A),

(c) ALL(AIB) = (~1)™(B 11—, B2 (B|A),
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@) allAB) = (~1)" (B 1 A)B 12" (B|A).

Properties shown in Theorem 3.2 and Theorem 3.3 are fundamental where the n-th
operator valued divergences have in common.

Theorem 3.2. Let A and B be strictly positive operators, n € N and x € R. Then the
followings hold fori=1, 2:

(a) AI(A]B) = 0.

(b) If 2 # 0 then
AE”Q(A|B) =0 ifand only if A= B.

(c) If x > 0 then
n] >0, ifnisoddor A<B,
A;.(AlB) L
<O, ifn iseven and A > B.
(d) If £ <0 then
n] <O, ifnisoddorA<B,

>0, ifniseven and A> B.
Proof. By Proposition 2.1 and Theorem 2.2, A"} (A|B) satisfies (a), (b), (c) and (b).

Let A > 0. As with the proof of Theorem 2.2, the corresponding function fz[n]()\, x) for
A[an]c (A|B) is represented by using 62 € (0,1) as follows:

T

(1—02)z n+1
1) A (log \)™ ™.

) =
We obtain (a) since f2[”]()\, 0) = 0 holds. Let = # 0. Then we have (b) since fz[n]()\,x) =0
if and only if A = 1 holds. Assume that > 0. Since fz[n]()\,x) > 0 holds if n is odd or

A>1,and fi["]()\,x) < 0 holds if n is even and 0 < A < 1. Hence, we have (c). We can get
(d) in the same way as (c). O

Theorem 3.3. Let A and B be strictly positive operators, n € N and x € R. Then the
followings hold for i =3, 4:

(a) A"(4]B) = 0.

(b) If x # 1 then
A" ABY=0 if and only if A=B.

;T

(c) Ifx <1 then
(] >0, ifnisodd or A< B,
A; . (AlB)
’ <O, ifn iseven and A > B.

(d) Ifz > 1 then

IN

, ifnis odd or A< B,

0]
O, ifn is even and A > B.

v

Al'l(AB) {
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Proof. The corresponding functions fI"(\,z) and fI"(\, z) for Agni(A|B) and A[SJE(A|B)
are represented by using 6, 05 € (0, 1) as follows, respectively (A > 0):

1—=x

(n+1)!

n 1_'T 4T —04 n
A z) = mxg F(1=04) (Jog A)" 1.

fén]()\’x) — /\(1—03)."5—&-93 (log )\)n+17

We obtain the assertions in the same way as Theorem 3.2. O

Corollary 3.4. (Proposition 2.1 and Proposition 4.2 in [16]) Let A and B be strictly positive
operators and n € N. Then the following holds:

(a) DI (AB)=0 < A=B,

>0, ifnisodd or A<B,

b) D (A|1B) =0
(b) Dy (AlB) {§O7 if n is even and A > B.

By Proposition 2.4, A[IHL(A . Bl|Ats B) = (s—7)"(At, B)A’lg[n]

(s—r)z
n € Nand r, s, x € R. We can also obtain similar results for remaining.

(A|B) holds for

Theorem 3.5. Let A and B be strictly positive operators, n € N and r, s, x € R. Then
the followings hold:

(a) ALL(A By BJA 52 B) = —(5 = 1)"(A §(1—yrsas BYAT D) (A|B),
(b) AFL(A By BIA by B) = (s — 1)™(A b(1—ayrias BYAT' 2L 1, (AIB),
() APL(A 4, BlA b, B) = ~(s —r)"(A 1. B)AT 9l (AB).

Proof. Yorr, s, x € R, (Al B) i, (Als B) = A §1—z)r4as B holds (cf. (1) in Lemma 2.2
in [13]). By using Proposition 2.4, these are shown as follows:
(a)  ASL(Ab BlA L B)

= (At B) 1 (A5 B)(A 4, B)™'(s = )" (A 4, B)AT Y|

—(s—r)z (A‘B)
= —(s = 1)"(A t01—a)ras BYAT D" (AIB).

(b)  Ayl(Ay, BlA L, B)
= (A4 B) i (At B))(A by B) (s —r)"(A 4 BYAT' 2 |\, (AIB)

= (5= 1) (A §—a)rpas BIAT DD (AB).

() AfM(A% BlAg, B)
= (At B)(At, By (s —r)"(Ab, BYAT G0 (AlB)

=—(s—m)"(A 5 B)AT' " | . (AlB). O
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In the following sense, A o(A|B) and Ay o(A|B) are symmetric as well as Ag o(A|B)
and As o (A|B) are:

Al,lfoz(B'A) = Tlfoc(B‘A) - S(B‘A) = Tlfa(BlA) + 51 (AlB) = A4,0¢(A|B)a
A2’1,Q<B|A) = Slfa(BlA) - Tlfoz(B|A> = _Tlfa(BlA) - Sa<A|B) = A3,0¢(A|B)'

These properties are some kind of duality. By Proposition 3.1, similar properties hold
between A[fi,(A|B) and AZLL(A|B) and between Ag’i(/ﬂB) and Ag’i(/ﬂB).

Theorem 3.6. Let A and B be strictly positive operators, n € N and x € R. Then the
followings hold:

(a) Al _,(Bl4) = (1) All(AlB),
(b) A, (BlA) = (~1)+1All (A]B).

In [14], we have shown the following relations between A, ,,(A|B) and the Petz-Bregman
divergence:

1 1
Ava(A|B) = ~Drr(AlA ta B), A2a(AlB) = —Drk (4 1o BlA),
1 1

By Proposition 2.6, the corresponding relation between the n-th operator valued divergence
A[lni (A|B) and the n-th Petz-Bregman divergence holds:

n 1 n
AVL(AIB) = - Dii(A|A . B).
We show the corresponding relations between remaining AE"A(A\B) (2 <4 < 4) and the

n-th Petz-Bregman divergence. The next theorem comes from Corollary 2.5, Proposition
2.6 and Theorem 3.6.

Theorem 3.7. Let A and B be strictly positive operators, n € N and x € R. Then the
followings hold:

(a) ASL(AIB) = (~1)"™' T Dif(A b BJA),

1

WDEL%(A 1. B|B),

(c) Al (AB) = (—1)"+t

(b) AL (A|B) =

DY (B|A b, B).

(L —a)"
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