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ABSTRACT. In BCK-algebras, it is well known that a commutative BCK-
algebra is as a lower semilattice with respect to the operation ∧. In this paper,
we show that a new class in BCK-algebras which is a proper large class than
the class of the commutative BCK-algebras exists, and this class is as a lower
semilattice with respect to the new operation ×.

1 Introduction

A BCK-algebra is a generalization of the following two concepts. It is generalized
from, one hand the concept of the algebra of sets only with the set-difference (see
W. Sierpiński [5]), the other hand the concept of the propositional calculi which
contain the only implication functor among the logical functors (Meredith’s
System B-C-K, see A. N. Prior [4]).

BCK-algebras were introduced by K. Iséki in the article [2].
These algebras are partially ordered sets. Further, S. Tanaka showed that

the commutative BCK-algebras of a special class in BCK-algebras are lower
semilattices with respect to the operation ∧ in the article [6].

In this paper, we will define a new concept which is called the condition (I)x,y
for x, y in a BCK-algebra X. Using this concept, we shall clarify a difference
between the existence of a commutative element x∧ y = y∧x and the existence
of the greatest lower bound of x and y in a BCK-algebra X. And more, we
will define the BCK-algebras with Condition (I) X which is a special class
satisfying the single condition (I)x,y for any x, y in X. We shall show that the
BCK-algebras with Condition (I) is a proper large class than the class of the
commutative BCK-algebras, and this class is as a class of lower semilattices in
BCK-algebras with respect to the new operation ×.

2 Preliminaries and Problems

We will start out to recall the definition and some basic properties of BCK-
algebras.

Definition 2.1 An algebra X =< X; ∗, 0 > of type< 2, 0 > satisfying the
following five conditions is called a BCK-algebra :
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For any x, y, z in X,

(I) {(x ∗ y) ∗ (x ∗ z)} ∗ (z ∗ y) = 0,
(II) {x ∗ (x ∗ y)} ∗ y = 0,
(III) x ∗ x = 0,
(IV) 0 ∗ x = 0,
(V) x ∗ y = 0, y ∗ x = 0 imply x = y.

In this algebra, we denote x ≦ y when x ∗ y = 0.

We will state basic properties of BCK-algebras.

Proposition 2.2 For any x, y, z in a BCK-algebra X, we have the following
properties hold.

(1) X =< X;≦> is a partially ordered set with respect to ≦.
(2) x ≦ y implies x ∗ z ≦ y ∗ z, z ∗ y ≦ z ∗ x.
(3) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
(4) (x ∗ y) ∗ (z ∗ y) ≦ x ∗ z.
(5) x ∗ y ≦ z implies x ∗ z ≦ y.
(6) x ∗ y ≦ x.
(7) x ∗ 0 = x.

For details of the proofs, see K. Iséki, S. Tanaka [3].

We define the operation x ∧ y by y ∗ (y ∗ x). A BCK-algebra X is said to
be commutative when x ∧ y = y ∧ x holds for any x, y in X.

For a commutative BCK-algebra X, the following theorem holds.

Theorem 2.3(Tanaka’s Theorem)(S. Tanaka [6], K. Iséki, S. Tanaka [3])
Any commutative BCK-algebra X =< X; ∗, 0 > is a lower semilattice with
respect to the operation ∧ in X.

This theorem asserts that, if a BCK-algebra X is commutative, then the
greatest lower bound exists for x and y in X, and is identical to x ∧ y.

Inspired by this theorem, we consider the following problem.

Problem Under what condition on x and y in a non-commutative BCK-
algebra X, does there exist the greatest lower bound of x and y, and when is
obtained by x ∧ y ?

3 Basic properties of the Condition (I)x,y in a
BCK-algebra

We will give an additional condition in BCK-algebras.

For x, y in a BCK-algebra X, we put the condition (I)x,y in the following.

Condition (I)x,y For x, y in a BCK-algebra X, z exist in X, we say that z
satisfies the condition (I)x,y when z satisfies the following conditions (i)～(iii).

(i) z ≦ x, z ≦ y,
(ii) x ∗ z ≦ x ∗ y,
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(iii) y ∗ z ≦ y ∗ x.

Under the condition (I)x,y, the following basic properties hold for z in a
BCK-algebra X.

Proposition 3.1 If z is the greatest lower bound of x and y in X, then z
satisfies the condition (I)x,y.

Proof Suppose that z is the greatest lower bound of x and y in X. Clearly,
z satisfies the inequalities (i). We will show the inequality (ii).

Now, we will show that y ∧ x is a common lower bound of x and y. By (6)
in Proposition 2.2, (II) in Definition 2.1, we obtain

y ∧ x = x ∗ (x ∗ y) ≦ x, y ∧ x = x ∗ (x ∗ y) ≦ y (3.1)

Then, y ∧ x is a common lower bound of x and y.

Let 0 ̸= u ∈ X be a common lower bound of x and y. Here, we will show
that

y ∧ x ≦ u (3.2)

for any u in X.

First, if y ∧ x > u implies,

u ∗ (y ∧ x) = 0 (3.3)

On the other hand, by (2), (6) in Proposition 2.2,

u ∗ (y ∧ x) ≦ u ∗ (x ∗ x) = u ̸= 0 (3.4)

Hence, (3.3) contradicts (3.4).

Second, if y∧x ̸≧ u, y∧x ̸≦ u imply that y∧x and u are anti-chain. Then, two
maximal lower bound of x and y exist. However, z is the greatest lower bound
of x and y. This is contradiction. Hence, we obtain (3.2).

Here, z is the special element in the set of the common lower bounds of x and
y, by (3.2), we have

(x ∗ z) ∗ (x ∗ y) = (y ∧ x) ∗ z = 0. (3.5)

Therefore, we will prove the inequality (ii). By the same way, we have the
inequality (iii).

□

Proposition 3.2 If x ∧ y = y ∧ x, then x ∧ y satisfies the condition (I)x,y.

Proof Noting that x ∧ y is a common lower bound of x and y. This implies
the inequalities (i).

We will show the inequality (ii). Put

z = x ∧ y = y ∧ x.

By (3) in Proposition 2.2,
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(x ∗ z) ∗ (x ∗ y) = {x ∗ (y ∧ x)} ∗ (x ∗ y)
= {x ∗ (x ∗ y)} ∗ (y ∧ x)

= (y ∧ x) ∗ (y ∧ x)

= 0.

This implies the inequality (ii). By the same way, we have the inequality (iii).

□

We will give a necessary and sufficient condition on (ii) in the condition (I)x,y.

Proposition 3.3 Let z ≦ x, z ≦ y. Then the following the conditions (1)～
(3) are equivalent.

(1) x ∗ z ≦ x ∗ y,
(2) x ∗ z = x ∗ y,
(3) y ∧ x ≦ z.

Proof Clearly, the condition (2) implies (1). In a BCK-algebra, from (2) in
Proposition 2.2, z ≦ y implies x ∗ y ≦ x ∗ z. Hence x ∗ z = x ∗ y. Then the
conditions (1) and (2) are equivalent.

The inequality (1) means

(x ∗ z) ∗ (x ∗ y) = 0. (3.6)

On the other hand, by (3) in Proposition 2.2, the condition (3) implies

(y ∧ x) ∗ z = {x ∗ (x ∗ y)} ∗ z = (x ∗ z) ∗ (x ∗ y) = 0. (3.7)

The equalities (3.6), (3.7) imply that the condition (1) and the condition (3)
are equivalent.

□

It is more convenient to substitute the condition (3) for the condition (1).
This substitution is often used in the proofs.

Let I(x, y) denote the set of elements satisfying the condition (I)x,y.

Proposition 3.4 I(x, y) ̸= ϕ, then there exists the greatest lower bound of x
and y in I(x, y).

Proof Assume that z exists in I(x, y) ̸= ϕ.
For any u in X such that u ≦ x, u ≦ y , we will show u ≦ z.

By the assumption, z satisfies the condition (I)x,y. From Proposition 3.3,

y ∧ x ≦ z. (3.8)

Further, by (2) in Proposition 2.2 and (3.8),

u ∗ z ≦ u ∗ (y ∧ x). (3.9)
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On the other hand, y∧x is a common lower bound of x and y. By (3.9), replace
u with y ∧ x,

u ∗ z ≤ (y ∧ x) ∗ (y ∧ x) = 0.

Then, we get u ≦ z. Therefore, z is the greatest lower bound for x and y.

□

Next, we shall prove an important proposition which is applied to theorems
in Section 4.

Proposition 3.5 If there exists the only one element z satisfying the condition
(I)x,y, then z is the greatest lower bound of x and y.

Proof Let z be the only one element satisfying the condition (I)x,y. Suppose
that the greatest lower bound u of x and y exists, which is not equal to z, by
Proposition 3.1 and Proposition 3.3, then

y ∧ x ≦ u, x ∧ y ≦ u. (3.10)

0n the other hand, by the fact that z is the only element with the condition
(I)x,y, this implies that u doesn’t satisfying the condition (I)x,y. Then, we have
that u doesn’t satisfy the inequality (ii),

y ∧ x > u or y ∧ x ̸≧ u, y ∧ x ̸≦ u, (3.11)

and more u doesn’t satisfy the condition (iii), then

x ∧ y > u or x ∧ y ̸≧ u, x ∧ y ̸≧ u. (3.12)

The inequality (3.10) contradict with (3.11), (3.12). Hence u doesn’t exist.
Therefore, by Proposition 3.4, z is the greatest lower bound x and y.

□

For any ordered two elements in a BCK-algebra have several basic properties.

Proposition 3.6 If z ≦ x, then z = x ∧ z.

Proof By the assumption z ≦ x and (7) in Proposition 2.2, we have

z = z ∗ 0 = z ∗ (z ∗ x) = x ∧ z.

□

Proposition 3.7 Let x ∧ y = y ∧ x. If there exists an element u satisfying
the condition (I)x,y and u ̸= x ∧ y, then x ∧ y < u.

Proof By the assumption, u satisfies the condition (I)x,y. By Proposition 3.3,
this implies

x ∧ y ≦ u. (3.13)

By (3.13) and u ̸= x ∧ y, we have
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x ∧ y = y ∧ x < u.

□

Let |X| denote the cardinal of X for a set X.

Corollary 3.8 If x ∧ y = y ∧ x and |I(x, y)| ≧ 2, then x ∧ y is the least
lower element in I(x, y).

Lemma 3.9 If x and y satisfy the order x ≦ y, and z satisfies the condition
(I)x,y, then x ∧ y ≦ z = x = y ∧ x.

Proof Since z satisfies the condition (I)x,y, we have

x ∗ z ≦ x ∗ y. (3.14)

Further, by x ≦ y, we have

x ∗ y = 0. (3.15)

The inequality (3.14) satisfies (3.15), This implies x ∗ z ≦ 0.

Then, we obtain, x ∗ z = 0. This implies

x ≦ z. (3.16)

Conversely, since z is a common lower bound of x and y,

x ≧ z. (3.17)

Then, by (3.16), (3.17), we have

z = x. (3.18)

By x ≦ y,

x = x ∗ (x ∗ y) = y ∧ x. (3.19)

On the other hand, by (II) in Definition 2.1, we have

x ∧ y = y ∗ (y ∗ x) ≦ x (3.20)

From (3.18), (3.19), (3.20),

x ∧ y ≦ z = x = y ∧ x.

□

Here, the next Proposition 3.10 is derived naturally from Lemma 3.9.

Proposition 3.10 If x and y satisfy the order x ≦ y, then I(x, y) = {x}.

When we add the condition z ≦ x∧ y to the hypothesis of Lemma 3.9, the
next Proposition 3.11 holds.

Proposition 3.11 If x and y satisfy the order x ≦ y, z satisfies the condition
(I)x,y and z ≦ x ∧ y, then z = x ∧ y = y ∧ x.
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Proposition 3.12 Let z ≦ x, z ≦ y. Then z ∧ x = x ∧ z is equivalent to
z ≦ y ∧ x.

Proof By z ≦ x and Proposition 3.6, we have z = x ∧ z.
Let x ∧ z = z ∧ x. Then

z ∧ x = x ∧ z = z. (3.21)

By z ≦ y and (2) in Proposition 2.2, we have x ∗ y ≦ x ∗ z.

Again, using (2) in Proposition 2.2, we have x ∗ (x ∗ z) ≦ x ∗ (x ∗ y).
Then, we obtain

z ∧ x ≦ y ∧ x (3.22)

Hence, (3.21), (3.22) lead to z ≦ y ∧ x.

Conversely, by z ≦ x and Proposition 3.6, we have

z = x ∧ z. (3.23)

By (3) in Proposition 2.2,

(z ∧ x) ∗ z = {x ∗ (x ∗ z)} ∗ z
= (x ∗ z) ∗ (x ∗ z)
= 0

Then, we have

z ∧ x ≦ z. (3.24)

On the other hand, for any y with z ≦ y, by the assumption z ≦ y∧x, we have

z ∗ (y ∧ x) = 0.

If y = z, then z ∗ (z ∧ x) = 0, this implies

z ≦ z ∧ x. (3.25)

Hence, by (3.24), (3.25), we obtain

z = z ∧ x. (3.26)

Therefore, by (3.23), (3.26), x ∧ z = z ∧ x.

□

Using Proposition 3.3 and Proposition 3.12, we have the next theorem. This
theorem gives a characterization of the commutativity of any x, y in a BCK-
algebra X.

Theorem 3.13 For x, y, z in a BCK-algebra X, x and y are commutative
if and only if there exists an element z satisfying the condition (I)x,y and z∧x =
x ∧ z, z ∧ y = y ∧ z.

We wish to characterize x∧ y = y∧x by using only the condition (I)x,y, but
the above result is obtained at present.
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4 BCK-algebras with Condition (I) and lower
semilattices

As are described in (1) of Proposition 2.2, BCK-algebras are partially ordered
sets with respect to the relation ≦. Then, we define the next.

Definition 4.1 In a BCK-algebra X, we called that the relation ≦ is BCK-
order. A BCK-algebra X is called a lower BCK-semilattice if when X is a lower
semilattice with respect to BCK-order ≦.

We will classify this class further using the condition (I)x,y. In the following,
let X be a BCK-algebra and any x, y, z in X.

Definition 4.2 If z is the only one element satisfying the condition (I)x,y,
then we say that z satisfies the single condition (I)x,y.

Definition 4.3 If z satisfies the following two requirement i) and ii) ;

i) z is the only one element satisfying the condition (I)x,y,
ii) z = x ∧ y = y ∧ x.

then we say that z satisfies the canonical condition (I)x,y.

By Definition 4.2 and Definition 4.3, we will define the two special classes in
BCK-algebras.

Let X be a BCK-algebra.

Definition 4.4 For any x, y in X, if z exists in X and satisfies the canonical
condition (I)x,y, then X is called that a BCK-algebra with Canonical Condition
(I).

Definition 4.5 For any x, y in X, if z exists in X and satisfies the single
condition (I)x,y, then X is called that a BCK-algebra with Condition (I).
At this time, we define x× y by z. Surely, x× y = y × x.

First, we will show the fundamental properties of BCK-algebras with Canon-
ical Condition (I).

Theorem 4.6 A commutative BCK-algebra is a BCK-algebra with Canonical
Condition (I), and the converse also holds.

Proof Let X be a commutative BCK-algebra. For any x, y in X, put

z = x ∧ y = y ∧ x. (4.1)

Clearly, the element z satisfies requirement ii).
And more, by Proposition 3.2, the element z satisfies the condition (I)x,y. Here,
if any u exists in X and satisfies the condition (I)x,y, by (3) in Proposition 3.3,
we have

y ∧ x ≦ u, x ∧ y ≦ u. (4.2)

In addition, sinceX is a commutative BCK-algebra, we have x∧u = u∧x, y∧u =
u ∧ y. By Proposition 3.12, this implies

u ≦ y ∧ x, u ≦ x ∧ y. (4.3)
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Hence, by (4.2), (4.3), implies

u = y ∧ x = x ∧ y. (4.4)

By (4.1), (4.4), we have u = z. Therefore, this shows the requirement i).
The other, the converse is clear. We complete the proof of Theorem 4.6.

□

Theorem 4.7 A lower semilattice with respect to the operation ∧ is a BCK-
algebra with Canonical Condition (I), and the converse also holds.

Proof Let X =< X;∧, 0 > be a lower semilattice for the operation ∧.
For any x, y in X, x ∧ y is the greatest lower bound of x and y. Then, put
z = x ∧ y = y ∧ x. The requirement ii) is clear.

And more, by Proposition 3.1, the greatest lower bound x ∧ y satisfies the
condition (I)x,y. If any u satisfies the condition (I)x,y, by (3) in Proposition 3.3,
this implies

x ∧ y ≦ u. (4.5)

Since X is a lower semilattice for the operation ∧, and u ≦ x, we have

u = u ∧ x = x ∧ u. (4.6)

From (4.6) and Proposition 3.12,

u ≦ y ∧ x = x ∧ y. (4.7)

Thus, by (4.5), (4.7), u = x ∧ y. This shows the requirement i).
Conversely, let X be a BCK-algebra with Canonical Condition (I). For any

x, y in X, the element z exists in X and satisfies the requirement i), ii) of
Definition 4.2. By Proposition 3.5, we have that the commutative element z
is the greatest lower bound of x and y. Therefore, we complete the proof of
Theorem 4.7.

□

Clearly, Theorem 4.6 and Theorem 4.7 implies Tanaka’s theorem (Theo-
rem 2.3) and the inverse of Theorem 2.3. Consequently, we get the canonical
condition (I)x,y in Definition 4.3 is an equivalent to the commutativity in BCK-
algebras.

Secondly, we will show the following fundamental property of BCK-algebras
with Condition (I).

Theorem 4.8 A lower semilattice with respect to the operation × is a BCK-
algebra with Condition (I), and the converse also holds.

Proof Let X =< X;×, 0 > be a lower semilattice for the operation ×. For
any x, y in X, the greatest lower bound of x and y exists in X. This element
is defined by x× y in Definition 4.5. By the assumption, x× y is the only one
element satisfying the condition (I)x,y.

Conversely, let X be a BCK-algebra with Condition (I). For any x, y in X,
there exists the only one element z in I(x, y). By Proposition 3.5, this implies
that z is the greatest lower bound of x and y. Then, we denote z = x× y. The
converse is showed. Therefore, we complete the proof of Theorem 4.8.

□
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5 Examples of BCK-algebras

Example 5.1 Let X = {0, a, b, c} be a set with four elements. And more,
the set X satisfies the following Hasse daiagram: Figure.1, as BCK-order.

0

a b

c

F igure.1

At this time, there are four types in the role of algebraic structure of non-
isomorphic BCK-algebras on the partially ordered set X: Figure.1, as follow
four Cayley Tables 1.A, 1.B, 1.C and 1.D exist.

∗ 0 c a b

0 0 0 0 0
c c 0 0 0
a a c 0 c
b b c c 0

∗ 0 c a b

0 0 0 0 0
c c 0 0 0
a a c 0 c
b b b b 0

Table 1.A Table 1.B

∗ 0 c a b

0 0 0 0 0
c c 0 0 0
a a a 0 c
b b c c 0

∗ 0 c a b

0 0 0 0 0
c c 0 0 0
a a a 0 a
b b b b 0

Table 1.C Table 1.D
The above four BCK-algebras are written as follow XA =< X; ∗, 0 >,XB =<
X; ∗, 0 >,XC =< X; ∗, 0 > and XD =< X; ∗, 0 > in the order of Cayley Table
1.A, 1.B, 1.C and 1.D.

First, for the BCK-algebra XA given in Table 1.A, the next Table1.A-∧ is
available for the operation ∧.

∧ 0 c a b

0 0 0 0 0
c 0 c c c
a 0 c a c
b 0 c c b

Table 1.A-∧

10



Thus, the BCK-algebra XA is commutative. Further, the operation ∧ matches
the lattice-meet ∩ obtain from the Hasse diagram: Figure.1.

Next, we will examine that the elements satisfying the condition (I)x,y for
any two elements in XA. The results is as follows.

{, } I(x, y)

{0, c} {0}
{0, a} {0}
{0, b} {0}
{c, a} {c}
{c, b} {c}
{a, b} {c}

Table 1.A-(I)

Therefore, the BCK-algebra XA is a BCK-algebra with Condition (I). Clearly,
the operation× matches the lattice-meet ∩, and this algebra also coincides with
the operation ∧. Then, the BCK-algebra XA is a BCK-algebra with Canonical
Condition (I).

Second, for the BCK-algebra XB given in the Table 1.B, the following rela-
tion holds for the operation ∧.

c = c ∗ (c ∗ b) = b ∧ c ̸= c ∧ b = b ∗ (b ∗ c) = 0,

c = a ∗ (a ∗ b) = b ∧ a ̸= a ∧ b = b ∗ (b ∗ a) = 0.

Therefore, the BCK-algebra XB is not commutative. However, we will examine
that the elements satisfying the condition (I)x,y for any two elements in XB .
The result is as follows.

{, } I(x, y)

{0, c} {0}
{0, a} {0}
{0, b} {0}
{c, a} {c}
{c, b} {c}
{a, b} {c}

Table 1.B-(I)

From this table, any two elements in the BCK-algebra XB satisfy the single
condition (I)x,y. Then, the BCK-algebra XB is a BCK-algebra with Condition
(I). Therefore, the following the Table 1.B-× is obtained with respect to the
operation ×.

× 0 c a b

0 0 0 0 0
c 0 c c c
a 0 c a c
b 0 c c b

Table 1.B-×
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This table matches the lattice-meet ∩ that obtained from the Hasse diagram:
Figure.1.

Similarly, for the BCK-algebra XC is given in the Table 1.C, the following
relations hold for the operation ∧.

c = c ∗ (c ∗ a) = a ∧ c ̸= c ∧ a = a ∗ (a ∗ c) = 0,

c = b ∗ (b ∗ a) = a ∧ b ̸= b ∧ a = a ∗ (a ∗ b) = a.

Therefore, the BCK-algebra XC is not commutative. However, we will examine
that the elements satisfying the condition (I)x,y for any two elements in XC .
The result is follows.

{, } I(x, y)

{0, c} {0}
{0, a} {0}
{0, b} {0}
{c, a} {c}
{c, b} {c}
{a, y} {c}

Table 1.C-(I)

From this table,XC is a BCK-algebra with Condition (I). This table is consistent
with the lattice-meet ∩ obtained from the Hasse diagram: Figure.1.

Thirdly, for the operation ∧ in the BCK-algebra XD, we have the following
relation.

0 = a ∗ (a ∗ c) = c ∧ a ̸= a ∧ c = c ∗ (c ∗ a) = c,

0 = b ∗ (b ∗ c) = c ∧ b ̸= b ∧ c = c ∗ (c ∗ b) = c

Then, the BCK-algebra XD is not commutative. Further, we will examine that
the elements satisfying the condition (I)x,y for any two elements in XD, the
following is obtained.

{, } I(x, y)

{0, c} {0}
{0, a} {0}
{0, b} {0}
{c, a} {c}
{c, b} {c}
{a, b} {0, c}

Table 1.D-(I)

The following can be understood. In the BCK-algebra XD, there are two ele-
ments satisfying the condition (I)x,y for a and b.

a = a ∗ 0 ≦ a ∗ b = a, b = b ∗ 0 ≦ b ∗ a = b,
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a = a ∗ c ≦ a ∗ b = b, b = b ∗ c ≦ b ∗ a = b.

Therefore, two elements a and b don’t satisfy the single condition (I)x,y, then
the BCK-algebra XD is not a BCK-algebra with Condition (I).

Example 5.2 Let Y = {0, x, y, 1} be a set with four elements. And more, the
set Y satisfies the following totally order 0 ≦ a ≦ b ≦ 1, as BCK-order of Y .

At this time, there are six types in the role of algebraic structure of non-
isomorfic BCK-algebras on the totally ordered set Y , as follow Cayley Table
2.A, 2.B, 2.C, 2.D, 2.E and 2.F exist.

∗ 0 a b 1

0 0 0 0 0
a a 0 0 0
b b a 0 0
1 1 b a 0

∗ 0 a b 1

0 0 0 0 0
a a 0 0 0
b b b 0 0
1 1 b a 0

Table 2.A Table 2.B

∗ 0 a b 1

0 0 0 0 0
a a 0 0 0
b b a 0 0
1 1 a a 0

∗ 0 a b 1

0 0 0 0 0
a a 0 0 0
b b b 0 0
1 1 1 b 0

Table 2.C Table 2.D

∗ 0 a b 1

0 0 0 0 0
a a 0 0 0
b b a 0 0
1 1 1 1 0

∗ 0 a b 1

0 0 0 0 0
a a 0 0 0
b b b 0 0
1 1 1 1 1

Table 2.E Table 2.F

The above six BCK-algebras are written as follow YA =< Y ; ∗, 0 >,YB =<
Y ; ∗, 0 >,YC =< Y ; ∗, 0 >,YD =< Y ; ∗, 0 >, YE =< Y ; ∗, 0 > and YF =<
Y ; ∗, 0 > in order of Cayley Table 2.A, 2.B, 2.C, 2.D, and 2.F.

First, for the BCK-algebra YA given in Table 2.A, the following Table 2.
A-∧ is available for the operation ∧.

∧ 0 a b 1

0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

Table 2.A-∧

Therefore, the BCK-algebra YA is commutative. Further, the operation ∧
matches the lattice-meet ∩ obtain from BCK-order of Y .

Next, we will examine that the elements satisfying the condition (I)x,y for any
two elements in YA. The result is the following.
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{, } I(x, y)

{0, a} {0}
{0, b} {0}
{0, 1} {0}
{a, b} {a}
{a, 1} {a}
{b, 1} {b}

Table 2.A-(I)

Therefore, the BCK-algebra YA is a BCK-algebra with Condition (I). Clearly,
the operation × matches the lattice-meet ∩, and this algebra also coincides with
the operation ∧. Then, the BCK-algebra YA is a BCK-algebra with Canonical
Condition (I).

Second, for the BCK-algebras YB, YC , YD, YE , and YF given in the Table
2.B, Table 2.C, Table 2.D, Table 2.E and Table 2.F, the following relation holds
for the operation ∧.

In the BCK-algebra YB,

0 = b ∗ (b ∗ a) = a ∧ b ̸= b ∧ a = a ∗ (a ∗ b) = a ;

In the BCK-algebra YC ,

a = 1 ∗ (1 ∗ b) = b ∧ 1 ̸= 1 ∧ b = b ∗ (b ∗ 1) = b ;

In the BCK-algebra YD,

0 = b ∗ (b ∗ a) = a ∧ b ̸= b ∧ a = a ∗ (a ∗ b) = a,

0 = 1 ∗ (1 ∗ a) = x ∧ 1 ̸= 1 ∧ a = a ∗ (a ∗ 1) = b ;

In the BCK-algebra YE ,

0 = 1 ∗ (1 ∗ a) = a ∧ 1 ̸= 1 ∧ a = a ∗ (a ∗ 1) = a,

0 = 1 ∗ (1 ∗ b) = b ∧ 1 ̸= 1 ∧ b = b ∗ (b ∗ 1) = b ;

In the BCK-algebra YF ,

0 = b ∗ (b ∗ a) = a ∧ b ̸= b ∧ a = a ∗ (a ∗ b) = a,

0 = 1 ∗ (1 ∗ a) = a ∧ 1 ̸= 1 ∧ a = a ∗ (∗1) = a.

0 = 1 ∗ (1 ∗ b) = b ∧ 1 ̸= 1 ∧ b = b ∗ (b ∗ 1) = b ;

Therefore, the BCK-algebras YB , YC , YD, YE and YF are not commutative.

Next, we consider that the elements satisfying the condition (I)x,y for any
two elements in YB. This is clear from the next Corollary 5.3. Because of that
the set Y is a totally ordered set, the Proposition 3.10 implies the Corollary 5.3.
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Corollary 5.3 For the totally ordered sets, the algebraic structure of the
BCK-algebra with Condition (I) is always given.

Then, the BCK-algebras YB , YC , YD, YE , and YF are BCK-algebras with
Condition (I).

6 Additional Remarks

P. M. Idziak showed that a lower BCK-semilattice is as a variety in the article
[1]. Then, a BCK-algebra with Condition (I) should be as a variety. Therefore,
we should be able to define this class with the condition for only identities
including the operation ×. However, this condition expression has not been
provided yet. If we can this condition expression, we will investigate into BCK-
algebras with Condition (I) more deeply.

In addition, we don’t know whether the BCK-algebras with Condition (I) is
the maximum class in lower BCK-semilattices.
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