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One-dimensional cactoids and universality.

SOPHIA ZAFIRIDOU
UNIVERSITY OF PATRAS

ABSTRACT. We present some properties of one-dimensional cactoids and construct a
universal element Z for the family of one-dimensional cactoids X such that a simple
cyclic chain between any two cut points of X is a cactus. One-dimensional cactoids
are partial case of planar totally regular curves and are investigated by Whyburn [13]
under the term “boundary curves”.

1 Introduction. In this paper under the term continuum is meant a nonempty, compact
and connected metric space. A curve is a one-dimensional continuum.

A continuum Z is universal for a class F of continua provided that Z € F and each mem-
ber of F can be homeomorphically imbedded in Z. A space is planar if it is homeomorphic
to a subset of the plane.

A Peano continuum is a locally connected continuum.

We will use the results of the papers of 1920s (see [2], [10], [11]) in which under the term
continuous curve was meant a metric space X that is a continuous image of segment [0, 1].
According to Hahn—-Mazurkiewicz Theorem (see [13, (4.1). p. 92]) the above condition for
X is equivalent to the property of X to be a Peano continuum.

The order of a space X at the point p € X, written ord(p, X), is the least cardinal
or ordinal number m such that p has an arbitrary small open neighborhood in X with
boundary of cardinality < m. In particular, ord(p, X) = w, where w denotes the least infinite
ordinal number, if p has arbitrary small open neighborhoods in X with finite boundaries
but ord(p, X) > n for every natural number n [6, §51, I, p. 274].

The points of B(X) = {x € X : ord(p, X) > 3} are called branch points of X and the
points of E(X) = {z € X : ord(p, X) = 1} are called end points of X.

A point p of a connected space X is a cut point if X \ {p} is not connected. The set of
all cut points of a connected space X will be denoted by ¢(X).

A simple closed curve is a space homeomorphic to the circle. An arc is a space A
homeomorphic with a segment [0, 1]. The arc A with end points p and ¢ is written pg. An
arc pg C X is called free in X if the set (pq) = pq \ {p, q} is an open subset of X.

A continuum X is said to be cyclicly connected provided that every two points of X lie
together on some simple closed curve of X. By a cyclic element of Peano continuum X will
be meant a cut point of X, an end point of X, or a nondegenerate cyclicly connected Peano
subcontinuum M of X such that M is not a proper subset of any other cyclicly connected
Peano subcontinuum of X. Any nondegenerate cyclic element of X is called true cyclic
element of X.

A Peano continuum each true cyclic element of which is homeomorphic to a simple
closed curve is called a one-dimensional cactoid [13]. The property of a Peano continuum
M to be a one-dimensional cactoid is equivalent with any of following properties:

(i) No two simple closed curve of M have more than one point in common.

(ii) M contains no é-curves.
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A graph is a continuum which can be written as the union of finitely many arcs any two
of which are either disjoint or intersect only in one or both of their end points [7]. A cactus
is a graph in which any two simple closed curves have at most one point in common [9].
Clearly, a cactus is a cactoid that is a graph.

A simple cyclic chain of Peano continuum X between two of its cyclic elements E; and
FE is a connected subset S that is a union of some family F of cyclic elements of X such
that Fy, Fs € F and no proper connected subset of S containing F; and Fs is the sum of
cyclic elements (see [11]). Note that a simple cyclic chain between any two cyclic elements
of Peano continuum is uniquely determined [11, Theorem 3.

The main result of the paper is a construction of a universal cactoid Z for the class of
all one-dimensional cactoids X such that a simple cyclic chain between any two cut points
of X is a cactus.

2 One-dimensional cactoids as a boundary curves. Let X is a Peano continuum of

the plane P. Any component of P\ X is called complementary domain of X. The boundary

of any complementary domain of X is a subcontinuum of X and is called a boundary curve.
Wilder in [10, Theorem 17] proved the following result:

Theorem 2.1. If a Peano continuum M is a boundary of complementary domain of a
Peano continuum, then M is the union of disjoint families of sets S1, Sa and P, where:

(1) Sy is a countable set of all simple closed curves contained in M no two of which have
more than one point in common,

(2) Sy is a countable set of arcs no two of which have in common an interior point of both,
and

(3) P= M\ (S1US2) is a totally disconnected set of limit points of S1 U Ss.
From Theorem 2.1 it follows that:
Corollary 2.1.1. Fach boundary curve is a one-dimensional cactoid.

The fact that any one-dimensional cactoid is planar follows from the result of Ayres [2,
Theorem in page 92]:

Theorem 2.2. In order that a Peano continuum M be homeomorphic with a plane Peano
continuum which is the boundary of one of its complementary domains it is necessary and
sufficient that every true cyclic element of M be a simple closed curve.

From Theorem 2.2 it also follows that:

Corollary 2.2.1. A Peano continuum M is a one-dimensional cactoid if and only if M is
homeomorphic with a plane Peano continuum which is the boundary of one of its comple-
mentary domains.

A continuum K is said to be regular if K has a basis of open sets with finite bound-
aries. Any regular continuum is hereditarily locally connected [6, §51, IV, Theorem 2, p.
283]. Since a one-dimensional cactoid contains no f-curves, it follows that (see [6, §52, IV,
Theorem 3, p. 329]):

Corollary 2.2.2. Any one-dimensional cactoid X is reqular and any connected subset of
X is arcwise connected.



A metric space (X,d) is uniformly locally arcwise connected provided that for every
€ > 0 there exists 6 > 0 such that if z,y € X and d(z,y) € (0,0), then 2 and y can
be joined by an arc of diameter < €. Any Peano continuum is uniformly locally arcwise
connected [6, §50, II, Theorem 4, p. 257], hence:

Corollary 2.2.3. Any one-dimensional cactoid is uniformly locally arcwise connected.

3 Properties of one-dimensional cactoid. Let N = {0,1,...,n,...}. Given a subset
G of a space X the closure and the boundary of G in X will be denoted by ¢lx(G) (or
cl(@)) and bdx (G) (or bd(G)), respectively.

Proposition 3.1. Fach branch point of a one-dimensional cactoid X is a cut point.

Proof. Let r € B(X). From the Menger n-Beinsatz (see [6, p. 277]), it follows that there
exist arcs A1 = rxy, As = rxo, and Az = rzz of X having the unique point 7 in common.

Suppose, on the contrary, that r is not a cut point. Then the connected subset X \ {r}
of X is arcwise connected. Thus there exists an arc A = x122 C X \ {r}. Since AN A;
is a compact subset of A \ r, the component of A; \ A containing r is a subarc By = rb;
of Ay such that By N A = by. Similarly, there exists a subarc By = by of Ay such that
BsN A =by. Let B = bybs is a unique determined subarc of A joining the points b; and bs.
Then B U B; U Bs is a closed curve containing the points r and by .

Since x3,b; € X\{r} and X \{r} is arcwise connected, there is an arc C' = byxz C X\{r}.
It is easy to see that the set B U B; U Bo U C' U A3z contains a f-curve. Hence, X is not a
cactoid which is a contradiction. O

Proposition 3.2. The set of branch points of one-dimensional cactoid is countable.

Proof. Let X be a cactoid. Since all save possibly a countable number of cut points of X
are of order 2 [13, (3.2), p. 49] in X, the cut points of X of order > 3 are countable. Hence,
B(X) is countable from Theorem 3.1. O

Definition 3.1. A subcontinuum G of one-dimensional cactoid X is called full provided
that each simple closed curve of X either is a subset of G, or does not intersect G, or
intersects GG in a single point.

Theorem 3.1. If X is a one-dimensional cactoid, then for any full subcontinuum G of X
and for any x € X \ G there exist a point r, € G and an arc A, from x to r, such that:

(1) Ax NG ={r,} and r, is a unique point that belongs any arc of X from x to any point
of G.

(2) If Gy is a component of X \ G containing x, then GNcl(Gy) = {rs}.

z, ifred

; 15 continuous.
Ty, ifr€X\G

(3) The mapr: X - G byr(x)—{
Proof. (1) Counsider any ro € G. Since X is arcwise connected there is an arc Ag = zrg C X.
Let S, be a component of Ay \ G containing . Clearly S, is a half-open subarc [zr,) of
Ag, where 1, € Ag N G. Hence, A, = cl(S,) is an arc from z to r, and A, NG = {r,}.
Let A; = 2r be an arc of X from z tor € G and S, be a component of A;\ G containing
x. As above for a point 7y we can find a point g € G and an arc A; = gz C A; such that
AyNG = {g}. Suppose on the contrary that r, ¢ A;. Then r, # g. Let S, be a component
of A;\ Ay containing r,. Then Ay = cl(S,,) is an arc from r, tob € A;NA,. Since b, g € Ay,
there exists an arc Az = bg C A,. Since r,,g9 € G and G is arcwise connected, there is an



arc Ay = gr; C G. From the above a simple closed curve As U A3 U A4 of X intersects G
in arc gr, which is a contradiction, because G is full subcontinuum of X. Hence, r, € A;.

Suppose that » € G and r belongs to any arc from z to any point of G. Then r € A,.
Since A, NG = {ry}, r =r,.

(2) Clearly, r, € Ay C cl(G,). Suppose that there exists p € G N cl(Gy) with p # 7.
Since p ¢ A, there exists an open and connected subset V,, of X such that p € V,, C X'\ A;.
Since p € CI(G,), there exists ¢ € V, N G,. Since V}, is arcwise connected from Corollary
2.2.2, there exists an arc gp C V,. Since z,q € G, and G is arcwise connected, there exists
arc q € G,. Then xqUgp contains an arc A from z to p € G. Hence r, € A from condition
1. On the other hand r, ¢ gp U xq. Hence r, ¢ A, which is a contradiction.

(3) Let g € G and W, be an open and connected neighborhood of 7(g) = g in X. To
prove that 7 is continuous at g it suffices to show that #(W,) C W,. Indeed, for x € W, NG
we have r(z) =z € W,. For x € W, \ G there exists an arc A C W, from z to g. Since
r(z) =1, € A from 1, r(x) € W,,.

Let x € X\ G and G, be a component of X\ G containing . Since X is locally connected,
G is open. To prove the continuity of r in x, it suffices to show that r(G,) = {r(z)}. Indeed,
if p € Gy \ {x}, then G, is a component of X \ G containing p. From condition 2 of the
Theorem it follows that {r,} = cl(G;) NG = {r,}. Thus r(p) =r, = ry = r(z). O

Remark 3.1. The map r defined in Theorem 3.1 is a retraction. We will call r the first
point map corresponding to full subcontinuum G of X.

Lemma 3.1. If a simple cyclic chain between any two cut points of one-dimensional cactoid
X is a cactus, then any simple cyclic chain of X that is a subset of X \ E(X) is a cactus.

Proof. Let C C X\ E(X) be a simple cyclic chain between cyclic elements F; and Es of X.
Then each of E; and E» is either a cut point or a simple closed curve. Suppose that E; and
Es are simple closed curves. Then E; N Es consists of at most one point. If Fy N Ey = {p},
then C = FE; U E» is a cactus.

Suppose that E1 N Ey = (). Consider the first point maps r; : X — E; and ry : X — Ej.
From Theorem 3.1 there are p € E5 and g € Ey such that r;(Es) = r1(p) and ro(E1) = r2(q).
Obviously, C* = (C'\ (E1 U E2))U{r1(p),r2(p)} is a simple cyclic chain between cut points
r1(p) and ro(q) of X. Hence C* and, therefore, C'= C* U E; U E5 are cactuses.

The proof is similar in the case that exactly one of F; and F5 is a cut point. O

Lemma 3.2. Let X be a one-dimensional cactoid, Y a full subcontinuum of X and r :
X =Y a first point map.

Ifx € X\Y, S is a cyclic element of X containing x, and C is a simple cyclic chain
between r(x) and S, then Y U C is full.

Proof. Let L be a simple closed curve of X that intersects Y U C. If L intersects Y, then
LNY = {y} because Y is full. If in addition L intersects C, then y = r(y) = r(C) = r(x) €
C'. We conclude that LN (Y UC) C LNC.

Suppose, on the contrary, that LN(YUC') contains two points z and w. Then z,w € LNC.
Thus there exists an arc A = zw C C. Since X contains no #-curves, A C L and L is a
unique simple closed curve containing A. Suppose that ¢ € A with ord(q, X) = 2. Since C
is a union of cyclic elements, it follows that ¢ is a cyclic element. Thus ¢ € ¢(X). Hence,
X\ {q} contains at least two component. Since ¢ does not separate L it follows that L\ {¢}
is containing in some component Wi of X \ {¢}. Let w belongs to a component Wy # Wj of
X \ {q}. Then there exists an arc B = wq C Wo U {q}. Then BN L = {q} and we conclude
that ord(q, X) = 3, which is a contradiction.

O



Lemma 3.3. If X is a Peano continuum, then X \ E(X) is dense in X.

Proof. Let U # () be an open subset of X. Since X is locally connected, there exists an
open and connected set V' # () such that V' C U. There exists an arc ab C V [7, Theorem
8.26]. Then ord(p, X) > ord(p,ab) = 2 for p € (ab). Clearly, p € U N (X \ E(X)). O

It is easy to prove the following Lemma.

Lemma 3.4. If a cactus K is a simple cyclic chain between two of its cyclic elements, then
K= U;‘L:1 C;, where n € N\ {0} and each C; is either a simple closed curve or a mazimal
free arc of K. Moreover, if n > 2, then

(1) C;NCjp1 =A{bj} forj=1,..,n—1, where b; € B(K), and
(it) C;NCy =0 for |i — j| > 2.

Theorem 3.2. Let X be a one-dimensional cactoid such that a simple cyclic chain between
any two cut points of X 1is a cactus.
Then there exists a sequence {Y3}52 | of full cactuses of X such that

(i

i) Y1 ={p1} or Y1 is a simple closed curve;
(id

E(Yy) C e(X) (including the case E(Yy) =0);
(i13) Yi C Yigas
(Vi1 \ Yi) N Y, = {pi} and pi, € ¢(X);

limYy = X;

(v

v

—~

)
)
)
)
)
)

if ri : X — Yy is the first point map for k = 1,2, ..., then the sequence of retractions
{re}52, converges uniformly to idx .

(vi

Proof. Since X is separable, from Lemma 3.3 it follows that there exists a dense subset
{z;}52, of X such that {z;}2; C X \ E(X).

Let Y7 be a maximal cyclic element of X containing z1. From definition of cyclic element
it follows that either Y; is a simple closed curve or Y7 = {x1} and x; € ¢(X).

Consider the first point map r1 : X — Y7. Put m; = min{i : x; € Y1} and r1(x,,) =
{p1}. Then either p; = 1 or Y7 is a simple closed curve and p; € Y1 N B(X). In any case
p1 € C(X)

Let 57 be the maximal cyclic element of X containing x,,,. Either S; is a simple closed
curve or S1 = {Zm, } and z,,, € ¢(X). Let C; be a cyclic chain between cyclic elements
p1 and S;. From Lemma 3.1 C; is a cactus. Let Yo = Y; U ;. By Lemma 3.2, Y5 is a
full subcontinuum of X. Since Y7 is full, z,,, € Y2\ Y7 and Y2 \ Y7 is a connected subset
(see [11, Theorem 6]) of X \ Y7, from Theorem 3.1(4) Y1 Ncl(Y2 \ Y1) = {p1}. Obviously,
E(Y2) C {1, @m, } C e(X).

Suppose that cactuses Y7, ..., Yy with properties (i) — (iv) have been defined.

Consider the first point map 7, : X — Yj,. Let my, = min{i : z; ¢ Y3} and rg(zp,) =
pr € Yi. If pr € E(Yy), then p € ¢(X) by inductive assumption. Otherwise, pj is a branch
point and, therefore, p; € ¢(X) from Theorem 3.1. Let Sy be a maximal cyclic element of
X containing z,,, and C be a cyclic chain between cyclic elements py and Si. Similarly as
for Y5 it can be shown that Y} is full and satisfies the properties (7) — (iv) of the Theorem.

To prove (v), set Ay = {z1,...,x5}. Since Ay C Agy1 and c({x;}52,) = X, it follows
that lim Ay = X. Since zj < 2y, and A,,, C Yiy1, it follows that Ay C Yy C X. Thus
limYk = hmAk = X.



In order to prove (vi) we consider the Hausdorff metric H; generated on the set of closed
subsets of X by metric d of X. Then

Hy(X,Y;) =inf{e* >0: X C U Ba(y,e")},
YyeYy

where By(y,e*) = {x € X : d(y,p) < *}. Let € > 0. Since X is uniformly locally arcwise
connected from Corollary 2.2.3, there exists § > 0 such that if z,y € X, and 0 < d(z,y) < §,
then there exists an arc A = zy with diameter < e. Since limY;, = X from (v), there exists
ko € N such that for all &k > kg we have Hy(X,Yy) < §. Thus

X C U By(y, ) for any k > ko.
YEYk

Let x € X and k > ko. Then there exists yx € Yy such that x € By(y,0). Hence, z
and yj can be joined by arc A of diameter < e. Since y; € Y; and ri(z) belongs to any
arc from 2 to any point of Yy, rx(x) € A¥. Since x,ry(z) € A, we conclude that

d(idx (z),r(x)) = d(z,r.(x)) < diam(A¥) < e.
O

Theorem 3.3. [7, 2.29] Let Y be a compact metric space, and let {Y;}5°, be a sequence of
compact subsets of Y such that, for each i = 1,2, ..., there are continuous and onto functions
Vi Yigr = Yo and r; 0 Y — Y, such that ; oripq = 1. If {ri}52, converges uniformly to
the identity map idy on'Y, then'Y is homeomorphic to inverse limit {iﬁl{mﬂ/}i}ﬁl.

The following Theorem follows directly from Theorems 3.2 and 3.3

Theorem 3.4. If X is a one-dimensional planar cactoid such that any two cut points of

X can be joined by a simple cyclic chain that is a cactus and {Y;}32, is the sequence of

cactuses satisfying Theorem 8.2, then X is homeomorphic to Xoo = Um{Yy, ¢y}, where
«—

Y = Tk‘Yk+1: Yit1 = Y, k=1,2,....
Theorem 3.5. Let X be one-dimensional planar cactoid such that any two cut points can

be joined by a simple cyclic chain that is a cactus.
Then there exists an inverse sequence {X;, g; 152, such that

(1) X; is a full cactus and g; : X; 11 — X; is a monotone retraction;
(i1) X1 is a point or a simple closed curve;

(7i1) X; C Xiy1 and there exists a unique point t; € X; such that g;l(ti) is non degenerate
and is either a simple closed curve or a free arc whose end points are in c¢(X);

(iv) X is homeomorphic to lim{X;, g;}.
—

Proof. From Theorem 3.4, X is homeomorphic to im{Y%, ¢y}, where {Y;}2, is the se-
—

quence of cactuses satisfying Theorem 3.2 and ¥y, = r ’YkH'

Clearly, each vy, : Yi41 — Y is a monotone retract.

From Theorem 3.2 there is a unique point p € Yj, for which wk_l(pk) is non degenerate.
Also there exits z,,, € X \ E(X) for which ¥} ' (px) = cl(Yi+1 \ Vi) is a cactus that is a
simple cyclic chain from p; € ¢(X) to the maximal cyclic element Sy of z,,. From Lemma



3.4 it follows that ¢, *(py) = Uit CF,
maximal free arc of K. Moreover, if ng > 2, then Cj’-€ N C’]’-“+1 = {bf} for j=1,...,n,—1
where b; € B(X), and Cf NCF =0 for |i — j| > 2.

For k = 1 we obtain ¢; ' (p1) = U2, Cj. We define

where each C’JIjc is either a simple closed curve or a

X1=Y1, X =Y1UC{, X3=X2UC3,...,X14pn, = Xp, UC, =Y>.

From Theorem 3.2 the set X; is a point or a simple closed curve.

Put t; = p; and t; = b;ﬂ for j =2,...,n1. Let g; : X;41 = X, =1,...,n1, be the
first point map. Then gj_l(tj) = C’; for j=1,...,n1.

Let ¢ > n1 + 1 be a positive integer. There exist a unique k(i) € {1,2,...} and a
unique m(i) € {1,...,np;} such that i = 14+ ny + - + nge—1 + m(i). We define
X, =Y, U (U;":(i) Cf(i)) . If m(i) = 1, then we define ¢; = pj(;). Otherwise we define

t; = b’:rfz)fl' Let g;_1 : X; — X,;_1 be the first point map. Then gi__l1 (t;) = C’:;((ZZ)) Clearly,

the condition (i) — (i4i) are satisfied.
To prove (iv) we observe that the inverse sequence {Y}, 9} is confinal in the sequence
{Xi,gi}. Hence the inverse limits lim{X;, g;} and lim{Y}%, ¢y} are homeomorphic [5, Corol-
— —
lary 2.5.11, page 102] . Since X is homeomorphic to lim{Y%, ¢}, it follows that X is
—

homeomorphic to im{X;, g; }. O
—

4 Construction of universal space Z. Let P denote the plane with a system Ozxy of
orthogonal coordinates and a metric d((z1,y1), (z2,¥2)) = /(¥1 — 22)2 + y1 — y2)2.
For any finite subset V of P we set

mesh(V) = min{d(z,y) : z,y € V,z # y}.
For any finite family of subsets G of P we set
mesh(G) = max{diam(G) : G € G}.

Given a segment E = pg of P we denote by mg the midpoint of E and define £(E) =

Triangle of P with vertexes vy, vq, v3 is the set v7v3 Uvzv3 Uviv3. For any triangle T' of
the plane we denote by V(T') the set of vertexes of T', by £(T') the set of sides of T, and by
T the 2-simplex of P with boundary T

We will construct a sequence of cactuses {Z;}$2, in P and monotone and surjective
mappings f; : Z;y1 — Z; such that Z; C Z;;; for each 7. Our method is similar to
construction of Wazewski’s Universal Dendrite [7].

Consider the points vo = (0,0) and v; = (1,0) of R%. Set Zy = wovr, & = {vov1},
Vo = {vo,v1}, and g = % Consider a family of disjoint triangles 7 = {T'}},ev, € R? such
that: v is a vertex of T}, Ty NZo = {v}, and T} C B(v, ). We define Z1 = ZoU (U, ey, To)
and fo AT by

z, if z € Zy.

)

v, ifz€ T}k vey,
fO(Z)Z{ ’



Put

& = (Y ewu(l emh)

Ee&y vEV)
Vi = {mg}ees, U(|J V(@)
vEVy
w1 = min{d(v,E):veV,,E€&,v¢E}
UO Ul

Z1 and the set of vertexes V;

We fix a positive real number g7 < imin{so, mesh(Vy), p1 }.
Suppose that for 1 < i < n there are defined:

(a;) the cactus Z; with set of vertexes V; and set o edges (segments) &;;
(b;) a finite family of disjoint triangles 7; = {T},ev;_, C R?;

(ci) the numbers &; > 0 and p; = min{d(v, E) :v € V;, E € &,v ¢ E} ;
(d;) a monotone surjective retraction f;_1 : Z; = Z;_1;

such that

(1)) Viea G Viand Z; 1 G Zi;

If T € T;, then v is a vertex of T}, T; N Z;—y = {v}, and T} C B(v, =*);

K2 I

(2:)

(3;) If | £ (2)| > 1, then z € V;_; and f ) (2) = T
(4:)

(5

DIfveV,NV;and 0 < j < i, then T: NTJ = {v}.
i) € < %min{ei_l,mesh(%),ui}.

Since Z,, is a union of finite family of line segments and V), is a finite subset of Z,,, there
exists a finite family of disjoint triangles T, 41 = {T"*1},cv, C R? such that: v is a vertex
of TP+, TP+t N Z, = {v}, and T C B(v, ).

We define Z,, 1 = Z,, U (Uvevn T and fy : Znga — Zn by

v, ifzeTrt veV,,
fn(z) = .
z, ifze€ Z,.

Put

& = (Y e®)u(l ear),

Eeé&, VEVn
Vap1 = {me}ees, U (|J V@),
UEV'IL
pnt1 = min{d(v,E):v € Vyy1,E € Eppr,v ¢ EY,

and fix a positive real number ¢,,,1 < imin{sn, mesh(Vp41), nt1 -

It is easy to see that the above properties (1;) — (5;) are satisfied for ¢ = n + 1. Denote
Jii=fijofjpio-ofin:Zy — Zjfor j <i—1, fj41 = fj, and fj; = idz;. Then for
0 < i we have the following property:

(6;) If 0 < ip < j < i, then fi;i = fioj 0 fji-

We will prove an additional property that holds for ¢ > 0:
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Z5 and the set of vertexes Vs

(7;) If w e Vi, 0 <ig < i, then fzgzl(u) C B(u,&4).

Let z € fzgzl(u) Then z € T € T;, where v € V;_1, 0 < ig < i and fi;(v) = u. If v = u,
then T, C B(u, “5*) from (2;). Thus z € B(u, “5*) C B(u, ;).

Otherwise z € TiH! € Tiyq, where v € Vi, 0 < ig < i and fi;(v) = u. Let i =ip +n
and fj;(v) =u; € Z; for j =ig+1,...,4— 1. Then u = f; (ui4+1), fj(ujy1) = u; for any
j,and v = f;(2).

From definition of f,,, the choice of ¢, and (2;) we obtain:

d(u, 2) < d(u, ujgt1) + d(Uig 11, Uig+2) + -+ + d(Wigpn—1,v) + d(v,2) <

€i € Eip+n— = €q 1 1

We set Z = cl (U,_g Zn) and Z, = @{Zn,fn}.

n=0 4n

Theorem 4.1. Z,, = @{Zn, fn} is homeomorphic to Z = cl ((Jo—y Zn)-

Proof. We define h : Zoo — Z by h({z}) = limz;. From [1, Theorem I] and its proof it
follows that h is a homeomorphism if the following conditions are satisfied:

(a) For each kg € N and each £ > 0, there exists 6 > 0 such that if kg < k, p,q € Z) and
d (frok(P)s frok(q)) > €, then d(p, q) > 4.

(b) For each & > 0 there exists kg € N such that diam(U,D,CO fk_o}v(z)) < g for any z € Zj,.

To prove (a) note that lim (mesh(&;)) = 0. Thus there exists m > ko with mesh(&,,) <

1—00
<. We have
€
4
For each k > ko the map fi,x : Zr — Zj, is uniformly continuous. So, for each
k € {ko ko + 1,...,m} there exists d; > 0 such that if a,b € Z; and d(a,b) < di, then
d(fkok(a)a fkok(b)) S 45m- Set

6 = min {5m75k076k0+1; .. -7§m} .

Let p,q € Z and d (fiok(p), frok(q)) > €. Then fiok(p) # fror(q)-
If k € {ko, ko + 1,...,m}, then d(fr,x(P), frok(q)) > 4€m. So d(p,q) > d > 6.

Suppose that k > m. Then Zj, ; Zim ; Zy,. We have three cases to consider.

1% case : p,q € Zm. Then frr(p) = p and frr(q) = ¢. S0, from(P) = fror(p) and
Jrom (@) = fror(q). Thus d (frgm(P), from(q)) > € > 4ep, and, therefore, d(p, q) > 6, > 0.

2" case : p,q € Zp \ Zm- Then frn(p), fruk(q) € V. Thus d(frmr(®), frr(q)) >
mesh(Vy,) > 4ep,. From (7,,): d(p, fmk(p)) < €k, and d(q, fmr(q)) < €k,. Since eg, < &m,
it follows that

d(pv q) > d(fmk(p)vfmk(Q)) - d(Qa fmk(q)) - d(pv fmk(p)) > 28, > d.

1 1
em < mesh(V,,) < 1 mesh(&,,) <
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3% case : p € Zp, and q € Zp \ Zy. Then p = frn(p) € E, € &, and fnr(q) = v, €
V. Since p,q & Zy,, it follows that E, C f;;)%(fkok(p)) and v, € fl;}n(fkok(p)). Since
Jreok (D) # frok(q), f,;ﬁn(fkok(p)) N f,;)ln(fkok(q)) = (). Hence, vy ¢ E,. From the choice of
W it follows that

d(vg,p) > d(vg, Ep) > ptim > 4dem,.

Since d(vq, q) < &, from (7,,), we conclude that
d(p7 q) Z d(pa vq) - d(qvvq) > 4€m —Em > Em > 6

To prove (b) take any € > 0. Since lim &; = 0, there exists kg € N such that 2¢j, < e.

11— 00

If z € Zy, \ (U@ko V;), then Uk ko fl;)}C(z) = {z}. So (a) holds.
Let z € Zy, N (Uizko Vi) and let i, > ko be the least integer such that z € V; . If

ko < k <i,, then f,;o}c(z) = {z}. Hence, Uk>k0 fl;)}c(z) = Uk>iz f;li(z)
From the properties (3x) and (7)) with k > i it follows that [, f;,i(z) C B(z,¢.).
Thus again

diam ( U f,;)}c(z)) = diam ( U f;,i(z)) < 2, < 2e, <e.
k>ko k>,

O

Theorem 4.2. Z is a one-dimensional cactoid such that any two cut points of Z can be
joined by a simple cyclic chain that is a cactus.

Proof. Since Zo, = Uim{Z,, f,}, where each Z, is locally connected and each f,, is a mono-
—

tone surjection, it follows that Z. is a locally connected continuum (see [7, 8.47]). Thus Z
is a locally connected continuum from Theorem 4.1.

Leta,b € c(Z),a#b. Ifa,b € J;—, Z, then there exists a cactus Zj, such that a,b € Zj.
Thus a and b can be joined by a simple cyclic chain that is a cactus. It suffices to show that
Z\ U;’io Zj, contains no cut points of Z. Suppose, on the contrary, that there exists a cut
point z € Z\UJ;2y Zk. Then Z\ {z} = O1 UO,, where O; and O are disjoint, non empty,
and open subsets of Z. Since | i, Zj is connected, we may suppose that | J;-, Zr C O;.
Then O N ({U;2, Zx) = 0. Hence, ¢l (U2, Zx) # Z which is a contradiction.

Let S be a true cyclic element of Z. Then E(S) = (). Hence, ordz(z) > ordg(x) > 1 for
each z € S. Therefore, SNE(Z) = 0. If S C ;= Zn, then S is a simple closed curve from
construction of Z,. It suffices to prove that Z \ J;~, Zn, C E(Z).

Let e € Z\ U2y Z; and € > 0. It remains to find an open subset U, of Z such that
e € U, C Ble,e) and bdz(U.) consists of one point.

The map h : Zoo — Z defined by h({z}2,) = limz; is a homeomorphism from the
proof of Theorem 4.1. Let h™'(e) = {e;}3°,. Then fi(e;+1) = e; € Z; for any i. Since
e = lime; ¢ U;2yZ; and each Z; is compact, it follows that {e;}2, ¢ Z; for any i.
Therefore, without loss of generality we may suppose that e; # e;11 for any i. Since
fi(ei+1) = e; # e;41, it follows that e; € V.

There exist ig, jo € N such that e; € B(e, 5) for any i > ig and €; < § for any j > jo.
Let ko = max{io, jo}. Then e, € B(e, 5) and g < § for any k > ky.

Let U, be a component of Z\ {ey, } containing e. Since Z is locally connected, U, is open.
Also bdz(Ue) = {ek, }- It is easy to see that U, = {e} U (U;O:ko TE+) . Let z € Ue. Then z €
TE+ for some k > ko. Therefore d(z,e) < 2 < £ . Thus d(e, z) < d(z, ex) +d(e, ex) < €.
Hence, z € B(e,¢). O
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5 The proof of universality of Z

Theorem 5.1. Z is a universal element in the family of all one-dimensional cactoids X
such that any two cut points of X can be joined by a simple cyclic chain that is a cactus.

Proof. The one-dimensional cactoid X, whose any two cut points can be joined by a simple
cyclic chain that is a cactus, is homeomorphic to X, = lim{Xy, gr}, where the inverse
—

sequence {Xy, gr}72, satisfies the conditions of Theorem 3.5. Also Z is homeomorphic to
Zso = lim{Zy, fr} by Theorem 4.1. It suffices to find an embedding of X, into Z.
—

We set Q(X) = {tx}72, and Q(Z) = Up—; Vi, where the point ¢ satisfies condition
(#i7) of Theorem 3.5 and Vj is a set of vertices of cactus Z;. Note that X N Q(X) is a
countable subset of X}, and Z; N Q(Z) is countable and dense in Zj, for each k.

Observe that X7 is either a point or a simple closed curve such that there exist a unique
point t; € X7 with |g; ' (t1)| > 1. We also observe that Z; = v UTL UTL , where T} are
triangles. If X7 = {t1}, then hy : X1 — Z; with hy(t1) = v1 is a homeomorphism. If X;
is a closed curve, then there exist a homeomorphism h; : X; — Tvl1 such that hq(t1) = vq
and hy (X1 NQ(X)) C Ty, NQ(Z). We put ny = 1.

Suppose that k& € N\ {0} and for each j € 1,...,k we have define an integer n; and an
embedding h; : X; — Z,, such that:

(1;) hi(X; N QX)) € Zn, NQ(Z);

(2;) the following diagram is commutative for j > 1:

gj—1
X]‘_l Xj
l hj_l J hj
Z".y‘—l Z"j
nj—1Mj

(33) ng > MNj—1 fOI‘j > 1.

We will define an integer ny41 and an embedding hg 1 : Xpy1 — 2y,
properties (1g+1) — (Bg+1)-

Consider the monotone retraction gi : Xyy+1 — Xy and the embedding hy : X — Z,,, .
By Theorem 3.5 there is a unique t;, € X}, such that g; ' (¢) is non degenerate. We denote
hi(te) = zi. From (1) we have zj, € Z,, N(U;2, Vi). Since V; C V44 for all i, there exists
m > 1 such that 2, € V,, ym. Put ngy1 =np +m+ 1

Since Zy,, € Zp,+m, hi is also embedding of Xy, into Z,,, +r,. Observe that Z,,, ym+1 =

w1 that satisfy the

Zn+m U (UveVn,ﬁm T,?k+m). Thus 2, is a vertex of some triangle T;* ™"+t C Z, 1

such that T/t Z, o = {2}
If g,zl(t;g) = A is a free arc of X1, then AN X}, = {¢;} and ¢; is an end point of A.
Let E be one of the sides of triangle 77+ ™ *1 with z;, € E. There exists a homeomorphism
ha: A — E such that ha(tx) = 2z, and ha(ANQ(X)) C ENQ(Z), because ENQ(Z) is
dense in F.
We define a homeomorphism hpy1 @ Xg11 = X UA = Z,

| ha(z), z€A
hk"’l(z){ h:(x), x € X

by

k41

If g, '(tx) = S is a closed curve of X1, then SN X}, = {t,}. There exists a homeomor-
phism hg : § — T+ such that hg(ty) = 2z and hs(S N Q(X)) C Tr+TmH N Q(Z),
because T+ N Q(Z) is dense in T+,
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We define a homeomorphism hyy1 @ Xgp1 = X US — Z,,_, by

k1
| hslz), z€S
hk+1(x) - { hk(!II), T c Xk

From (2;) and (3;), j > 1, the map hoo : Um{ Xy, gx}72, = Im{Z,, , fn, }72, defined by
— —

hoo (21)321) = (fax (Tk)) 7 s continuous and one-to-one (see [7, 2.22]). Since X is a con-

tinuum, Ao is embedding. Since inverse sequence {Z,, , fn, }52; is confinal in the sequence

{Zy, fr}32,, there exists a homeomorphism H : im{Z,,, fn, }72, — im{Z, fu}32, = Z.
— —

Hence, H o hy is an embedding of X into Z. O

6 Conclusions and problems. In this section we refer only to continua consisting of
more than one point. A continuum X is called totally regular [8] if for any countable subset
Q of X, each x € X, and each ¢ > 0, there exists an open neighborhood U of x in X such
that diam (U) < ¢, bd(U) is finite, and bd(U) N Q = @. Clearly, any graph is totally regular
continuum. Totally regular continua were studied also [11] under the term ”continua of
finite degree”. Since the property of being a totally regular continuum is cyclicly extensible
and reducible [11, (4.2)], any cactoid is totally regular.

The order of totally regular continuum X is the ordinal number ord(X) = sup{ord(p, X) :
p € X}. Note that [13, (3.2), p. 49] ord(X) > 2. If ord(X) = 2, then X is an arc or a
simple closed curve [7, Theorem 9.5]. The cactoid Z constructed in section 4 is a totally
regular planar continuum of order w.

R. D. Buskirk proved that that there exists a universal totally regular continuum [4].
The natural problems arisen are the following;:

1. Does there exists a universal one-dimensional cactoid.

2. Does there exists a universal one-dimensional cactoid in the family of one-dimensional
cactoids of order < n, where n > 2.

3. Does there exists a universal planar totally regular continuum.

4. Does there exists a universal planar totally regular continuum in the family of totally
regular continua of order < n, where n > 2.
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