One-dimensional cactoids and universality.

Sophia Zafiridou
University of Patras

Abstract

We present some properties of one-dimensional cactoids and construct a universal element Z for the family of one-dimensional cactoids X such that a simple cyclic chain between any two cut points of X is a cactus. One-dimensional cactoids are partial case of planar totally regular curves and are investigated by Whyburn [13] under the term "boundary curves".

1 Introduction. In this paper under the term continuum is meant a nonempty, compact and connected metric space. A curve is a one-dimensional continuum.

A continuum Z is universal for a class \mathcal{F} of continua provided that $Z \in \mathcal{F}$ and each member of \mathcal{F} can be homeomorphically imbedded in Z. A space is planar if it is homeomorphic to a subset of the plane.

A Peano continuum is a locally connected continuum.
We will use the results of the papers of 1920s (see [2], [10], [11]) in which under the term continuous curve was meant a metric space X that is a continuous image of segment $[0,1]$. According to Hahn-Mazurkiewicz Theorem (see [13, (4.1). p. 92]) the above condition for X is equivalent to the property of X to be a Peano continuum.

The order of a space X at the point $p \in X$, written $\operatorname{ord}(p, X)$, is the least cardinal or ordinal number \mathfrak{m} such that p has an arbitrary small open neighborhood in X with boundary of cardinality $\leq \mathfrak{m}$. In particular, $\operatorname{ord}(p, X)=\omega$, where ω denotes the least infinite ordinal number, if p has arbitrary small open neighborhoods in X with finite boundaries but $\operatorname{ord}(p, X)>n$ for every natural number $n[6, \S 51, \mathrm{I}$, p. 274].

The points of $B(X)=\{x \in X: \operatorname{ord}(p, X) \geq 3\}$ are called branch points of X and the points of $E(X)=\{x \in X: \operatorname{ord}(p, X)=1\}$ are called end points of X.

A point p of a connected space X is a cut point if $X \backslash\{p\}$ is not connected. The set of all cut points of a connected space X will be denoted by $c(X)$.

A simple closed curve is a space homeomorphic to the circle. An arc is a space A homeomorphic with a segment $[0,1]$. The arc A with end points p and q is written $p q$. An arc $p q \subseteq X$ is called free in X if the set $(p q)=p q \backslash\{p, q\}$ is an open subset of X.

A continuum X is said to be cyclicly connected provided that every two points of X lie together on some simple closed curve of X. By a cyclic element of Peano continuum X will be meant a cut point of X, an end point of X, or a nondegenerate cyclicly connected Peano subcontinuum M of X such that M is not a proper subset of any other cyclicly connected Peano subcontinuum of X. Any nondegenerate cyclic element of X is called true cyclic element of X.

A Peano continuum each true cyclic element of which is homeomorphic to a simple closed curve is called a one-dimensional cactoid [13]. The property of a Peano continuum M to be a one-dimensional cactoid is equivalent with any of following properties:
(i) No two simple closed curve of M have more than one point in common.
(ii) M contains no θ-curves.

[^0]A graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both of their end points [7]. A cactus is a graph in which any two simple closed curves have at most one point in common [9]. Clearly, a cactus is a cactoid that is a graph.

A simple cyclic chain of Peano continuum X between two of its cyclic elements E_{1} and E_{2} is a connected subset S that is a union of some family \mathcal{F} of cyclic elements of X such that $E_{1}, E_{2} \in \mathcal{F}$ and no proper connected subset of S containing E_{1} and E_{2} is the sum of cyclic elements (see [11]). Note that a simple cyclic chain between any two cyclic elements of Peano continuum is uniquely determined [11, Theorem 3].

The main result of the paper is a construction of a universal cactoid Z for the class of all one-dimensional cactoids X such that a simple cyclic chain between any two cut points of X is a cactus.

2 One-dimensional cactoids as a boundary curves. Let X is a Peano continuum of the plane \mathbf{P}. Any component of $\mathbf{P} \backslash X$ is called complementary domain of X. The boundary of any complementary domain of X is a subcontinuum of X and is called a boundary curve. Wilder in [10, Theorem 17] proved the following result:

Theorem 2.1. If a Peano continuum M is a boundary of complementary domain of a Peano continuum, then M is the union of disjoint families of sets S_{1}, S_{2} and P, where:
(1) S_{1} is a countable set of all simple closed curves contained in M no two of which have more than one point in common,
(2) S_{2} is a countable set of arcs no two of which have in common an interior point of both, and
(3) $P=M \backslash\left(S_{1} \cup S_{2}\right)$ is a totally disconnected set of limit points of $S_{1} \cup S_{2}$.

From Theorem 2.1 it follows that:
Corollary 2.1.1. Each boundary curve is a one-dimensional cactoid.
The fact that any one-dimensional cactoid is planar follows from the result of Ayres [2, Theorem in page 92]:

Theorem 2.2. In order that a Peano continuum M be homeomorphic with a plane Peano continuum which is the boundary of one of its complementary domains it is necessary and sufficient that every true cyclic element of M be a simple closed curve.

From Theorem 2.2 it also follows that:
Corollary 2.2.1. A Peano continuum M is a one-dimensional cactoid if and only if M is homeomorphic with a plane Peano continuum which is the boundary of one of its complementary domains.

A continuum K is said to be regular if K has a basis of open sets with finite boundaries. Any regular continuum is hereditarily locally connected [6, §51, IV, Theorem 2, p. 283]. Since a one-dimensional cactoid contains no θ-curves, it follows that (see [6, §52, IV, Theorem 3, p. 329]):

Corollary 2.2.2. Any one-dimensional cactoid X is regular and any connected subset of X is arcwise connected.

A metric space (X, d) is uniformly locally arcwise connected provided that for every $\varepsilon>0$ there exists $\delta>0$ such that if $x, y \in X$ and $d(x, y) \in(0, \delta)$, then x and y can be joined by an arc of diameter $<\varepsilon$. Any Peano continuum is uniformly locally arcwise connected [6, §50, II, Theorem 4, p. 257], hence:

Corollary 2.2.3. Any one-dimensional cactoid is uniformly locally arcwise connected.
3 Properties of one-dimensional cactoid. Let $\mathbb{N}=\{0,1, \ldots, n, \ldots\}$. Given a subset G of a space X the closure and the boundary of G in X will be denoted by $c l_{X}(G)$ (or $c l(G))$ and $b d_{X}(G)($ or $b d(G))$, respectively.

Proposition 3.1. Each branch point of a one-dimensional cactoid X is a cut point.
Proof. Let $r \in B(X)$. From the Menger n-Beinsatz (see [6, p. 277]), it follows that there exist $\operatorname{arcs} A_{1}=r x_{1}, A_{2}=r x_{2}$, and $A_{3}=r x_{3}$ of X having the unique point r in common.

Suppose, on the contrary, that r is not a cut point. Then the connected subset $X \backslash\{r\}$ of X is arcwise connected. Thus there exists an arc $A=x_{1} x_{2} \subseteq X \backslash\{r\}$. Since $A \cap A_{1}$ is a compact subset of $A_{1} \backslash r$, the component of $A_{1} \backslash A$ containing r is a subarc $B_{1}=r b_{1}$ of A_{1} such that $B_{1} \cap A=b_{1}$. Similarly, there exists a subarc $B_{2}=r b_{2}$ of A_{2} such that $B_{2} \cap A=b_{2}$. Let $B=b_{1} b_{2}$ is a unique determined subarc of A joining the points b_{1} and b_{2}. Then $B \cup B_{1} \cup B_{2}$ is a closed curve containing the points r and b_{1}.

Since $x_{3}, b_{1} \in X \backslash\{r\}$ and $X \backslash\{r\}$ is arcwise connected, there is an $\operatorname{arc} C=b_{1} x_{3} \subseteq X \backslash\{r\}$. It is easy to see that the set $B \cup B_{1} \cup B_{2} \cup C \cup A_{3}$ contains a θ-curve. Hence, X is not a cactoid which is a contradiction.

Proposition 3.2. The set of branch points of one-dimensional cactoid is countable.
Proof. Let X be a cactoid. Since all save possibly a countable number of cut points of X are of order $2[13,(3.2)$, p. 49] in X, the cut points of X of order ≥ 3 are countable. Hence, $B(X)$ is countable from Theorem 3.1.

Definition 3.1. A subcontinuum G of one-dimensional cactoid X is called full provided that each simple closed curve of X either is a subset of G, or does not intersect G, or intersects G in a single point.

Theorem 3.1. If X is a one-dimensional cactoid, then for any full subcontinuum G of X and for any $x \in X \backslash G$ there exist a point $r_{x} \in G$ and an arc A_{x} from x to r_{x} such that:
(1) $A_{x} \cap G=\left\{r_{x}\right\}$ and r_{x} is a unique point that belongs any arc of X from x to any point of G.
(2) If G_{x} is a component of $X \backslash G$ containing x, then $G \cap \operatorname{cl}\left(G_{x}\right)=\left\{r_{x}\right\}$.
(3) The map $r: X \rightarrow G$ by $r(x)=\left\{\begin{array}{ll}x, & \text { if } x \in G \\ r_{x}, & \text { if } x \in X \backslash G\end{array}\right.$ is continuous.

Proof. (1) Consider any $r_{0} \in G$. Since X is arcwise connected there is an arc $A_{0}=x r_{0} \subseteq X$. Let S_{x} be a component of $A_{0} \backslash G$ containing x. Clearly S_{x} is a half-open subarc $\left[x r_{x}\right)$ of A_{0}, where $r_{x} \in A_{0} \cap G$. Hence, $A_{x}=\operatorname{cl}\left(S_{x}\right)$ is an arc from x to r_{x} and $A_{x} \cap G=\left\{r_{x}\right\}$.

Let $A_{1}=x r$ be an arc of X from x to $r \in G$ and \widetilde{S}_{x} be a component of $A_{1} \backslash G$ containing x. As above for a point r_{0} we can find a point $g \in G$ and an arc $A_{g}=g x \subseteq A_{1}$ such that $A_{g} \cap G=\{g\}$. Suppose on the contrary that $r_{x} \notin A_{1}$. Then $r_{x} \neq g$. Let $S_{r_{x}}$ be a component of $A_{x} \backslash A_{g}$ containing r_{x}. Then $A_{2}=\operatorname{cl}\left(S_{r_{x}}\right)$ is an arc from r_{x} to $b \in A_{g} \cap A_{x}$. Since $b, g \in A_{g}$, there exists an $\operatorname{arc} A_{3}=b g \subseteq A_{g}$. Since $r_{x}, g \in G$ and G is arcwise connected, there is an
$\operatorname{arc} A_{4}=g r_{x} \subseteq G$. From the above a simple closed curve $A_{2} \cup A_{3} \cup A_{4}$ of X intersects G in arc $g r_{x}$ which is a contradiction, because G is full subcontinuum of X. Hence, $r_{x} \in A_{1}$.

Suppose that $r \in G$ and r belongs to any arc from x to any point of G. Then $r \in A_{x}$. Since $A_{x} \cap G=\left\{r_{x}\right\}, r=r_{x}$.
(2) Clearly, $r_{x} \in A_{x} \subseteq \operatorname{cl}\left(G_{x}\right)$. Suppose that there exists $p \in G \cap \operatorname{cl}\left(G_{x}\right)$ with $p \neq r_{x}$. Since $p \notin A_{x}$, there exists an open and connected subset V_{p} of X such that $p \in V_{p} \subseteq X \backslash A_{x}$. Since $p \in C l\left(G_{x}\right)$, there exists $q \in V_{p} \cap G_{x}$. Since V_{p} is arcwise connected from Corollary 2.2.2, there exists an $\operatorname{arc} q p \subseteq V_{p}$. Since $x, q \in G_{x}$ and G_{x} is arcwise connected, there exists arc $x q \in G_{x}$. Then $x q \cup q p$ contains an arc A from x to $p \in G$. Hence $r_{x} \in A$ from condition 1. On the other hand $r_{x} \notin q p \cup x q$. Hence $r_{x} \notin A$, which is a contradiction.
(3) Let $g \in G$ and W_{g} be an open and connected neighborhood of $r(g)=g$ in X. To prove that r is continuous at g it suffices to show that $r\left(W_{g}\right) \subseteq W_{g}$. Indeed, for $x \in W_{g} \cap G$ we have $r(x)=x \in W_{g}$. For $x \in W_{g} \backslash G$ there exists an arc $A \subseteq W_{g}$ from x to g. Since $r(x)=r_{x} \in A$ from $1, r(x) \in W_{g}$.

Let $x \in X \backslash G$ and G_{x} be a component of $X \backslash G$ containing x. Since X is locally connected, G_{x} is open. To prove the continuity of r in x, it suffices to show that $r\left(G_{x}\right)=\{r(x)\}$. Indeed, if $p \in G_{x} \backslash\{x\}$, then G_{x} is a component of $X \backslash G$ containing p. From condition 2 of the Theorem it follows that $\left\{r_{p}\right\}=\operatorname{cl}\left(G_{x}\right) \cap G=\left\{r_{x}\right\}$. Thus $r(p)=r_{p}=r_{x}=r(x)$.

Remark 3.1. The map r defined in Theorem 3.1 is a retraction. We will call r the first point map corresponding to full subcontinuum G of X.

Lemma 3.1. If a simple cyclic chain between any two cut points of one-dimensional cactoid X is a cactus, then any simple cyclic chain of X that is a subset of $X \backslash E(X)$ is a cactus.

Proof. Let $C \subseteq X \backslash E(X)$ be a simple cyclic chain between cyclic elements E_{1} and E_{2} of X. Then each of E_{1} and E_{2} is either a cut point or a simple closed curve. Suppose that E_{1} and E_{2} are simple closed curves. Then $E_{1} \cap E_{2}$ consists of at most one point. If $E_{1} \cap E_{2}=\{p\}$, then $C=E_{1} \cup E_{2}$ is a cactus.

Suppose that $E_{1} \cap E_{2}=\emptyset$. Consider the first point maps $r_{1}: X \rightarrow E_{1}$ and $r_{2}: X \rightarrow E_{2}$. From Theorem 3.1 there are $p \in E_{2}$ and $q \in E_{1}$ such that $r_{1}\left(E_{2}\right)=r_{1}(p)$ and $r_{2}\left(E_{1}\right)=r_{2}(q)$. Obviously, $C^{*}=\left(C \backslash\left(E_{1} \cup E_{2}\right)\right) \cup\left\{r_{1}(p), r_{2}(p)\right\}$ is a simple cyclic chain between cut points $r_{1}(p)$ and $r_{2}(q)$ of X. Hence C^{*} and, therefore, $C=C^{*} \cup E_{1} \cup E_{2}$ are cactuses.

The proof is similar in the case that exactly one of E_{1} and E_{2} is a cut point.
Lemma 3.2. Let X be a one-dimensional cactoid, Y a full subcontinuum of X and r : $X \rightarrow Y$ a first point map.

If $x \in X \backslash Y, S$ is a cyclic element of X containing x, and C is a simple cyclic chain between $r(x)$ and S, then $Y \cup C$ is full.

Proof. Let L be a simple closed curve of X that intersects $Y \cup C$. If L intersects Y, then $L \cap Y=\{y\}$ because Y is full. If in addition L intersects C, then $y=r(y)=r(C)=r(x) \in$ C. We conclude that $L \cap(Y \cup C) \subseteq L \cap C$.

Suppose, on the contrary, that $L \cap(Y \cup C)$ contains two points z and w. Then $z, w \in L \cap C$. Thus there exists an arc $A=z w \subseteq C$. Since X contains no θ-curves, $A \subseteq L$ and L is a unique simple closed curve containing A. Suppose that $q \in A$ with $\operatorname{ord}(q, X)=2$. Since C is a union of cyclic elements, it follows that q is a cyclic element. Thus $q \in c(X)$. Hence, $X \backslash\{q\}$ contains at least two component. Since q does not separate L it follows that $L \backslash\{q\}$ is containing in some component W_{1} of $X \backslash\{q\}$. Let w belongs to a component $W_{2} \neq W_{1}$ of $X \backslash\{q\}$. Then there exists an $\operatorname{arc} B=w q \subseteq W_{2} \cup\{q\}$. Then $B \cap L=\{q\}$ and we conclude that $\operatorname{ord}(q, X)=3$, which is a contradiction.

Lemma 3.3. If X is a Peano continuum, then $X \backslash E(X)$ is dense in X.
Proof. Let $U \neq \emptyset$ be an open subset of X. Since X is locally connected, there exists an open and connected set $V \neq \emptyset$ such that $V \subseteq U$. There exists an arc $a b \subseteq V[7$, Theorem 8.26]. Then $\operatorname{ord}(p, X) \geq \operatorname{ord}(p, a b)=2$ for $p \in(a b)$. Clearly, $p \in U \cap(X \backslash E(X))$.

It is easy to prove the following Lemma.
Lemma 3.4. If a cactus K is a simple cyclic chain between two of its cyclic elements, then $K=\bigcup_{j=1}^{n} C_{j}$, where $n \in \mathbb{N} \backslash\{0\}$ and each C_{j} is either a simple closed curve or a maximal free arc of K. Moreover, if $n \geq 2$, then
(i) $C_{j} \cap C_{j+1}=\left\{b_{j}\right\}$ for $j=1, \ldots, n-1$, where $b_{j} \in B(K)$, and
(ii) $C_{j} \cap C_{i}=\emptyset$ for $|i-j|>2$.

Theorem 3.2. Let X be a one-dimensional cactoid such that a simple cyclic chain between any two cut points of X is a cactus.

Then there exists a sequence $\left\{Y_{k}\right\}_{k=1}^{\infty}$ of full cactuses of X such that
(i) $Y_{1}=\left\{p_{1}\right\}$ or Y_{1} is a simple closed curve;
(ii) $E\left(Y_{k}\right) \subseteq c(X)$ (including the case $\left.E\left(Y_{k}\right)=\emptyset\right)$;
(iii) $Y_{k} \subseteq Y_{k+1}$;
(iv) $\operatorname{cl}\left(Y_{k+1} \backslash Y_{k}\right) \cap Y_{k}=\left\{p_{k}\right\}$ and $p_{k} \in c(X) ;$
(v) $\lim Y_{k}=X$;
(vi) if $r_{k}: X \rightarrow Y_{k}$ is the first point map for $k=1,2, \ldots$, then the sequence of retractions $\left\{r_{k}\right\}_{k=1}^{\infty}$ converges uniformly to $i d_{X}$.

Proof. Since X is separable, from Lemma 3.3 it follows that there exists a dense subset $\left\{x_{i}\right\}_{i=1}^{\infty}$ of X such that $\left\{x_{i}\right\}_{i=1}^{\infty} \subseteq X \backslash E(X)$.

Let Y_{1} be a maximal cyclic element of X containing x_{1}. From definition of cyclic element it follows that either Y_{1} is a simple closed curve or $Y_{1}=\left\{x_{1}\right\}$ and $x_{1} \in c(X)$.

Consider the first point map $r_{1}: X \rightarrow Y_{1}$. Put $m_{1}=\min \left\{i: x_{i} \notin Y_{1}\right\}$ and $r_{1}\left(x_{m_{1}}\right)=$ $\left\{p_{1}\right\}$. Then either $p_{1}=x_{1}$ or Y_{1} is a simple closed curve and $p_{1} \in Y_{1} \cap B(X)$. In any case $p_{1} \in c(X)$.

Let S_{1} be the maximal cyclic element of X containing $x_{m_{1}}$. Either S_{1} is a simple closed curve or $S_{1}=\left\{x_{m_{1}}\right\}$ and $x_{m_{1}} \in c(X)$. Let C_{1} be a cyclic chain between cyclic elements p_{1} and S_{1}. From Lemma 3.1 C_{1} is a cactus. Let $Y_{2}=Y_{1} \cup C_{1}$. By Lemma 3.2, Y_{2} is a full subcontinuum of X. Since Y_{1} is full, $x_{m_{1}} \in Y_{2} \backslash Y_{1}$ and $Y_{2} \backslash Y_{1}$ is a connected subset (see [11, Theorem 6]) of $X \backslash Y_{1}$, from Theorem 3.1(4) $Y_{1} \cap \operatorname{cl}\left(Y_{2} \backslash Y_{1}\right)=\left\{p_{1}\right\}$. Obviously, $E\left(Y_{2}\right) \subseteq\left\{x_{1}, x_{m_{1}}\right\} \subseteq c(X)$.

Suppose that cactuses Y_{1}, \ldots, Y_{k} with properties $(i)-(i v)$ have been defined.
Consider the first point map $r_{k}: X \rightarrow Y_{k}$. Let $m_{k}=\min \left\{i: x_{i} \notin Y_{k}\right\}$ and $r_{k}\left(x_{m_{k}}\right)=$ $p_{k} \in Y_{k}$. If $p_{k} \in E\left(Y_{k}\right)$, then $p_{k} \in c(X)$ by inductive assumption. Otherwise, p_{k} is a branch point and, therefore, $p_{k} \in c(X)$ from Theorem 3.1. Let S_{k} be a maximal cyclic element of X containing $x_{m_{k}}$ and C_{k} be a cyclic chain between cyclic elements p_{k} and S_{k}. Similarly as for Y_{2} it can be shown that Y_{k+1} is full and satisfies the properties $(i)-(i v)$ of the Theorem.

To prove (v), set $A_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$. Since $A_{k} \subseteq A_{k+1}$ and $\operatorname{cl}\left(\left\{x_{i}\right\}_{i=1}^{\infty}\right)=X$, it follows that $\lim A_{k}=X$. Since $x_{k} \leq x_{m_{k}}$ and $A_{m_{k}} \subseteq Y_{k+1}$, it follows that $A_{k} \subseteq Y_{k+1} \subseteq X$. Thus $\lim Y_{k}=\lim A_{k}=X$.

In order to prove $(v i)$ we consider the Hausdorff metric H_{d} generated on the set of closed subsets of X by metric d of X. Then

$$
H_{d}\left(X, Y_{k}\right)=\inf \left\{\varepsilon^{*}>0: X \subseteq \bigcup_{y \in Y_{k}} B_{d}\left(y, \varepsilon^{*}\right)\right\}
$$

where $B_{d}\left(y, \varepsilon^{*}\right)=\left\{x \in X: d(y, p)<\varepsilon^{*}\right\}$. Let $\varepsilon>0$. Since X is uniformly locally arcwise connected from Corollary 2.2.3, there exists $\delta>0$ such that if $x, y \in X$, and $0<d(x, y)<\delta$, then there exists an arc $A=x y$ with diameter $<\varepsilon$. Since $\lim Y_{k}=X$ from (v), there exists $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}$ we have $H_{d}\left(X, Y_{k}\right)<\delta$. Thus

$$
X \subseteq \bigcup_{y \in Y_{k}} B_{d}(y, \delta) \text { for any } k \geq k_{0}
$$

Let $x \in X$ and $k \geq k_{0}$. Then there exists $y_{k} \in Y_{k}$ such that $x \in B_{d}\left(y_{k}, \delta\right)$. Hence, x and y_{k} can be joined by arc A_{x}^{k} of diameter $<\varepsilon$. Since $y_{k} \in Y_{k}$ and $r_{k}(x)$ belongs to any arc from x to any point of $Y_{k}, r_{k}(x) \in A_{x}^{k}$. Since $x, r_{k}(x) \in A_{x}^{k}$, we conclude that

$$
d\left(i d_{X}(x), r_{k}(x)\right)=d\left(x, r_{k}(x)\right) \leq \operatorname{diam}\left(A_{x}^{k}\right) \leq \varepsilon
$$

Theorem 3.3. [7, 2.29] Let Y be a compact metric space, and let $\left\{Y_{i}\right\}_{i=1}^{\infty}$ be a sequence of compact subsets of Y such that, for each $i=1,2, \ldots$, there are continuous and onto functions $\psi_{i}: Y_{i+1} \rightarrow Y_{i}$ and $r_{i}: Y \rightarrow Y_{i}$ such that $\psi_{i} \circ r_{i+1}=r_{i}$. If $\left\{r_{i}\right\}_{i=1}^{\infty}$ converges uniformly to the identity map $i d_{Y}$ on Y, then Y is homeomorphic to inverse limit $\lim \left\{Y_{i}, \psi_{i}\right\}_{i=1}^{\infty}$.

The following Theorem follows directly from Theorems 3.2 and 3.3
Theorem 3.4. If X is a one-dimensional planar cactoid such that any two cut points of X can be joined by a simple cyclic chain that is a cactus and $\left\{Y_{k}\right\}_{k=1}^{\infty}$ is the sequence of cactuses satisfying Theorem 3.2, then X is homeomorphic to $X_{\infty}=\lim _{\leftarrow}\left\{Y_{k}, \psi_{k}\right\}$, where $\psi_{k}=\left.r_{k}\right|_{Y_{k+1}}: Y_{k+1} \rightarrow Y_{k}, k=1,2, \ldots$

Theorem 3.5. Let X be one-dimensional planar cactoid such that any two cut points can be joined by a simple cyclic chain that is a cactus.

Then there exists an inverse sequence $\left\{X_{i}, g_{i}\right\}_{i=1}^{\infty}$ such that
(i) X_{i} is a full cactus and $g_{i}: X_{i+1} \rightarrow X_{i}$ is a monotone retraction;
(ii) X_{1} is a point or a simple closed curve;
(iii) $X_{i} \subseteq X_{i+1}$ and there exists a unique point $t_{i} \in X_{i}$ such that $g_{i}^{-1}\left(t_{i}\right)$ is non degenerate and is either a simple closed curve or a free arc whose end points are in $c(X)$;
(iv) X is homeomorphic to $\underset{\longleftarrow}{\lim }\left\{X_{i}, g_{i}\right\}$.

Proof. From Theorem 3.4, X is homeomorphic to $\lim \left\{Y_{k}, \psi_{k}\right\}$, where $\left\{Y_{k}\right\}_{k=1}^{\infty}$ is the sequence of cactuses satisfying Theorem 3.2 and $\psi_{k}=\left.\overleftarrow{r_{k}}\right|_{Y_{k+1}}$.

Clearly, each $\psi_{k}: Y_{k+1} \rightarrow Y_{k}$ is a monotone retract.
From Theorem 3.2 there is a unique point $p_{k} \in Y_{k}$ for which $\psi_{k}^{-1}\left(p_{k}\right)$ is non degenerate. Also there exits $x_{m_{k}} \in X \backslash E(X)$ for which $\psi_{k}^{-1}\left(p_{k}\right)=\operatorname{cl}\left(Y_{k+1} \backslash Y_{k}\right)$ is a cactus that is a simple cyclic chain from $p_{k} \in c(X)$ to the maximal cyclic element S_{k} of $x_{m_{k}}$. From Lemma
3.4 it follows that $\psi_{k}^{-1}\left(p_{k}\right)=\bigcup_{j=1}^{n_{k}} C_{j}^{k}$, where each C_{j}^{k} is either a simple closed curve or a maximal free arc of K. Moreover, if $n_{k} \geq 2$, then $C_{j}^{k} \cap C_{j+1}^{k}=\left\{b_{j}^{k}\right\}$ for $j=1, \ldots, n_{k}-1$ where $b_{j} \in B(X)$, and $C_{j}^{k} \cap C_{i}^{k}=\emptyset$ for $|i-j|>2$.

For $k=1$ we obtain $\psi_{1}^{-1}\left(p_{1}\right)=\bigcup_{j=1}^{n_{1}} C_{j}^{1}$. We define

$$
X_{1}=Y_{1}, X_{2}=Y_{1} \cup C_{1}^{1}, X_{3}=X_{2} \cup C_{2}^{1}, \ldots, X_{1+n_{1}}=X_{n_{1}} \cup C_{n_{1}}^{1}=Y_{2}
$$

From Theorem 3.2 the set X_{1} is a point or a simple closed curve.
Put $t_{1}=p_{1}$ and $t_{j}=b_{j-1}^{1}$ for $j=2, \ldots, n_{1}$. Let $g_{j}: X_{j+1} \rightarrow X_{j}, j=1, \ldots, n_{1}$, be the first point map. Then $g_{j}^{-1}\left(t_{j}\right)=C_{j}^{1}$ for $j=1, \ldots, n_{1}$.

Let $i>n_{1}+1$ be a positive integer. There exist a unique $k(i) \in\{1,2, \ldots\}$ and a unique $m(i) \in\left\{1, \ldots, n_{k(i)}\right\}$ such that $i=1+n_{1}+\cdots+n_{k(i)-1}+m(i)$. We define $X_{i}=Y_{k} \cup\left(\bigcup_{j=1}^{m(i)} C_{j}^{k(i)}\right)$. If $m(i)=1$, then we define $t_{i}=p_{k(i)}$. Otherwise we define $t_{i}=b_{m(i)-1}^{k(i)}$. Let $g_{i-1}: X_{i} \rightarrow X_{i-1}$ be the first point map. Then $g_{i-1}^{-1}\left(t_{i}\right)=C_{m(i)}^{k(i)}$. Clearly, the condition $(i)-(i i i)$ are satisfied.

To prove (iv) we observe that the inverse sequence $\left\{Y_{k}, \psi_{k}\right\}$ is confinal in the sequence $\left\{X_{i}, g_{i}\right\}$. Hence the inverse limits $\lim _{\longleftarrow}\left\{X_{i}, g_{i}\right\}$ and $\lim _{\longleftarrow}\left\{Y_{k}, \psi_{k}\right\}$ are homeomorphic [5, Corollary 2.5.11, page 102]. Since X is homeomorphic to $\underset{\leftarrow}{\lim }\left\{Y_{k}, \psi_{k}\right\}$, it follows that X is homeomorphic to $\underset{\leftarrow}{\lim }\left\{X_{i}, g_{i}\right\}$.

4 Construction of universal space Z. Let \mathbf{P} denote the plane with a system $O x y$ of orthogonal coordinates and a metric $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left.\left(x_{1}-x_{2}\right)^{2}+y_{1}-y_{2}\right)^{2}}$.

For any finite subset \mathcal{V} of \mathbf{P} we set

$$
\operatorname{mesh}(\mathcal{V})=\min \{d(x, y): x, y \in \mathcal{V}, x \neq y\}
$$

For any finite family of subsets \mathcal{G} of \mathbf{P} we set

$$
\operatorname{mesh}(\mathcal{G})=\max \{\operatorname{diam}(G): G \in \mathcal{G}\}
$$

Given a segment $E=\overline{p q}$ of \mathbf{P} we denote by m_{E} the midpoint of E and define $\mathcal{E}(E)=$ $\left\{\overline{p m}_{E}, \overline{q m}_{E}\right\}$.

Triangle of \mathbf{P} with vertexes v_{1}, v_{2}, v_{3} is the set $\overline{v_{1} v_{2}} \cup \overline{v_{2} v_{3}} \cup \overline{v_{1} v_{3}}$. For any triangle T of the plane we denote by $\mathcal{V}(T)$ the set of vertexes of T, by $\mathcal{E}(T)$ the set of sides of T, and by \widehat{T} the 2-simplex of \mathbf{P} with boundary T.

We will construct a sequence of cactuses $\left\{Z_{i}\right\}_{i=0}^{\infty}$ in \mathbf{P} and monotone and surjective mappings $f_{i}: Z_{i+1} \rightarrow Z_{i}$ such that $Z_{i} \subseteq Z_{i+1}$ for each i. Our method is similar to construction of Ważewski's Universal Dendrite [7].

Consider the points $v_{0}=(0,0)$ and $v_{1}=(1,0)$ of \mathbf{R}^{2}. Set $Z_{0}=\overline{v_{0} v_{1}}, \mathcal{E}_{0}=\left\{\overline{v_{0} v_{1}}\right\}$, $\mathcal{V}_{0}=\left\{v_{0}, v_{1}\right\}$, and $\varepsilon_{0}=\frac{1}{2}$. Consider a family of disjoint triangles $\mathcal{T}_{1}=\left\{T_{v}^{1}\right\}_{v \in V_{0}} \subseteq \mathbb{R}^{2}$ such that: v is a vertex of $T_{v}^{1}, T_{v}^{1} \cap Z_{0}=\{v\}$, and $T_{v}^{1} \subseteq B\left(v, \frac{\varepsilon_{0}}{2}\right)$. We define $Z_{1}=Z_{0} \cup\left(\bigcup_{v \in V_{0}} T_{v}^{1}\right)$ and $f_{0}: Z_{1} \rightarrow Z_{0}$ by

$$
f_{0}(z)= \begin{cases}v, & \text { if } z \in T_{v}^{1}, v \in \mathcal{V}_{0} \\ z, & \text { if } z \in Z_{0}\end{cases}
$$

Put

$$
\begin{aligned}
& \mathcal{E}_{1}=\left(\bigcup_{E \in \mathcal{E}_{0}} \mathcal{E}(E)\right) \cup\left(\bigcup_{v \in \mathcal{V}_{0}} \mathcal{E}\left(T_{v}^{1}\right)\right) \\
& \mathcal{V}_{1}=\left\{m_{E}\right\}_{E \in \mathcal{E}_{0}} \cup\left(\bigcup_{v \in \mathcal{V}_{0}} \mathcal{V}\left(T_{v}^{1}\right)\right) \\
& \mu_{1}=\min \left\{d(v, E): v \in \mathcal{V}_{1}, E \in \mathcal{E}_{1}, v \notin E\right\}
\end{aligned}
$$

We fix a positive real number $\varepsilon_{1}<\frac{1}{4} \min \left\{\varepsilon_{0}, \operatorname{mesh}\left(\mathcal{V}_{1}\right), \mu_{1}\right\}$.
Suppose that for $1 \leq i \leq n$ there are defined:
$\left(\mathrm{a}_{i}\right)$ the cactus Z_{i} with set of vertexes \mathcal{V}_{i} and set o edges (segments) \mathcal{E}_{i};
$\left(\mathrm{b}_{i}\right)$ a finite family of disjoint triangles $\mathcal{T}_{i}=\left\{T_{v}^{i}\right\}_{v \in V_{i-1}} \subseteq \mathbb{R}^{2}$;
$\left(c_{i}\right)$ the numbers $\varepsilon_{i}>0$ and $\mu_{i}=\min \left\{d(v, E): v \in \mathcal{V}_{i}, E \in \mathcal{E}_{i}, v \notin E\right\} ;$
$\left(\mathrm{d}_{i}\right)$ a monotone surjective retraction $f_{i-1}: Z_{i} \rightarrow Z_{i-1}$;
such that
$\left(1_{i}\right) \mathcal{V}_{i-1} \varsubsetneqq \mathcal{V}_{i}$ and $Z_{i-1} \varsubsetneqq Z_{i}$;
$\left(2_{i}\right)$ If $T_{v}^{i} \in \mathcal{T}_{i}$, then v is a vertex of $T_{v}^{i}, T_{v}^{i} \cap Z_{i-1}=\{v\}$, and $T_{v}^{i} \subseteq B\left(v, \frac{\varepsilon_{i-1}}{2}\right)$;
$\left(3_{i}\right)$ If $\left|f_{i-1}^{-1}(z)\right|>1$, then $z \in \mathcal{V}_{i-1}$ and $f_{i-1}^{-1}(z)=T_{z}^{i}$;
(4i) If $v \in \mathcal{V}_{i} \cap \mathcal{V}_{j}$ and $0 \leq j<i$, then $\widehat{T}_{v}^{i} \cap \widehat{T}_{v}^{j}=\{v\}$.
$\left(5_{i}\right) \varepsilon_{i}<\frac{1}{4} \min \left\{\varepsilon_{i-1}, \operatorname{mesh}\left(\mathcal{V}_{i}\right), \mu_{i}\right\}$.
Since Z_{n} is a union of finite family of line segments and \mathcal{V}_{n} is a finite subset of Z_{n}, there exists a finite family of disjoint triangles $\mathcal{T}_{n+1}=\left\{T_{v}^{n+1}\right\}_{v \in V_{n}} \subseteq \mathbb{R}^{2}$ such that: v is a vertex of $T_{v}^{n+1}, T_{v}^{n+1} \cap Z_{n}=\{v\}$, and $T_{v}^{n+1} \subseteq B\left(v, \frac{\varepsilon_{n}}{2}\right)$.

We define $Z_{n+1}=Z_{n} \cup\left(\bigcup_{v \in V_{n}} T_{v}^{n+1}\right)$ and $f_{n}: Z_{n+1} \rightarrow Z_{n}$ by

$$
f_{n}(z)= \begin{cases}v, & \text { if } z \in T_{v}^{n+1}, v \in \mathcal{V}_{n} \\ z, & \text { if } z \in Z_{n}\end{cases}
$$

Put

$$
\begin{aligned}
\mathcal{E}_{n+1} & =\left(\bigcup_{E \in \mathcal{E}_{n}} \mathcal{E}(E)\right) \cup\left(\bigcup_{v \in \mathcal{V}_{n}} \mathcal{E}\left(T_{v}^{n+1}\right)\right) \\
\mathcal{V}_{n+1} & =\left\{m_{E}\right\}_{E \in \mathcal{E}_{n}} \cup\left(\bigcup_{v \in \mathcal{V}_{n}} \mathcal{V}\left(T_{v}^{n+1}\right)\right) \\
\mu_{n+1} & =\min \left\{d(v, E): v \in \mathcal{V}_{n+1}, E \in \mathcal{E}_{n+1}, v \notin E\right\}
\end{aligned}
$$

and fix a positive real number $\varepsilon_{n+1}<\frac{1}{4} \min \left\{\varepsilon_{n}, \operatorname{mesh}\left(\mathcal{V}_{n+1}\right), \mu_{n+1}\right\}$.
It is easy to see that the above properties $\left(1_{i}\right)-\left(5_{i}\right)$ are satisfied for $i=n+1$. Denote $f_{j i}=f_{j} \circ f_{j+1} \circ \cdots \circ f_{i-1}: Z_{i} \rightarrow Z_{j}$ for $j<i-1, f_{j j+1}=f_{j}$, and $f_{j j}=i d_{Z_{j}}$. Then for $0<i$ we have the following property:
$\left(6_{i}\right)$ If $0 \leq i_{0} \leq j \leq i$, then $f_{i_{0} i}=f_{i_{0} j} \circ f_{j i}$.
We will prove an additional property that holds for $i>0$:

Z_{2} and the set of vertexes \mathcal{V}_{2}
$\left(7_{i}\right)$ If $u \in \mathcal{V}_{i_{0}}, 0 \leq i_{0}<i$, then $f_{i_{0} i}^{-1}(u) \subseteq B\left(u, \varepsilon_{i_{0}}\right)$.
Let $z \in f_{i_{0} i}^{-1}(u)$. Then $z \in T_{v}^{i} \in \mathcal{T}_{i}$, where $v \in \mathcal{V}_{i-1}, 0 \leq i_{0}<i$ and $f_{i_{0} i}(v)=u$. If $v=u$, then $T_{u}^{i} \subseteq B\left(u, \frac{\varepsilon_{i-1}}{2}\right)$ from $\left(2_{i}\right)$. Thus $z \in B\left(u, \frac{\varepsilon_{i-1}}{2}\right) \subseteq B\left(u, \varepsilon_{i_{0}}\right)$.

Otherwise $z \in T_{v}^{i+1} \in \mathcal{T}_{i+1}$, where $v \in \mathcal{V}_{i}, 0 \leq i_{0}<i$ and $f_{i_{0} i}(v)=u$. Let $i=i_{0}+n$ and $f_{j i}(v)=u_{j} \in Z_{j}$ for $j=i_{0}+1, \ldots, i-1$. Then $u=f_{i_{0}}\left(u_{i_{0}+1}\right), f_{j}\left(u_{j+1}\right)=u_{j}$ for any j, and $v=f_{i}(z)$.

From definition of f_{n}, the choice of ε_{n}, and $\left(2_{j}\right)$ we obtain:

$$
\begin{aligned}
d(u, z) & \leq d\left(u, u_{i_{0}+1}\right)+d\left(u_{i_{0}+1}, u_{i_{0}+2}\right)+\cdots+d\left(u_{i_{0}+n-1}, v\right)+d(v, z)< \\
& <\frac{\varepsilon_{i_{0}}}{2}+\frac{\varepsilon_{i_{0}+1}}{2}+\cdots+\frac{\varepsilon_{i_{0}+n-1}}{2}+\frac{\varepsilon_{i}}{2}<\frac{\varepsilon_{i_{0}}}{2}\left(1+\frac{1}{4}+\cdots+\frac{1}{4^{n}}+\ldots\right)<\varepsilon_{i_{0}}
\end{aligned}
$$

We set $Z=c l\left(\bigcup_{n=0}^{\infty} Z_{n}\right)$ and $Z_{\infty}=\lim _{\leftarrow}\left\{Z_{n}, f_{n}\right\}$.
Theorem 4.1. $Z_{\infty}=\lim _{\leftarrow}\left\{Z_{n}, f_{n}\right\}$ is homeomorphic to $Z=c l\left(\bigcup_{n=0}^{\infty} Z_{n}\right)$.
Proof. We define $h: Z_{\infty} \rightarrow Z$ by $h\left(\left\{z_{i}\right\}\right)=\lim z_{i}$. From [1, Theorem I] and its proof it follows that h is a homeomorphism if the following conditions are satisfied:
(a) For each $k_{0} \in \mathbb{N}$ and each $\varepsilon>0$, there exists $\delta>0$ such that if $k_{0}<k, p, q \in Z_{k}$ and $d\left(f_{k_{0} k}(p), f_{k_{0} k}(q)\right)>\varepsilon$, then $d(p, q)>\delta$.
(b) For each $\varepsilon>0$ there exists $k_{0} \in \mathbb{N}$ such that $\operatorname{diam}\left(\bigcup_{k>k_{0}} f_{k_{0} k}^{-1}(z)\right)<\varepsilon$ for any $z \in Z_{k_{0}}$.

To prove (a) note that $\lim _{i \rightarrow \infty}\left(\operatorname{mesh}\left(\mathcal{E}_{i}\right)\right)=0$. Thus there exists $m>k_{0}$ with $\operatorname{mesh}\left(\mathcal{E}_{m}\right)<$ $\frac{\varepsilon}{4}$. We have

$$
\varepsilon_{m}<\frac{1}{4} \operatorname{mesh}\left(\mathcal{V}_{m}\right) \leq \frac{1}{4} \operatorname{mesh}\left(\mathcal{E}_{m}\right)<\frac{\varepsilon}{4}
$$

For each $k \geq k_{0}$ the map $f_{k_{0} k}: Z_{k} \rightarrow Z_{k_{0}}$ is uniformly continuous. So, for each $k \in\left\{k_{o}, k_{0}+1, \ldots, m\right\}$ there exists $\delta_{k}>0$ such that if $a, b \in Z_{k}$ and $d(a, b) \leq \delta_{k}$, then $d\left(f_{k_{0} k}(a), f_{k_{0} k}(b)\right) \leq 4 \varepsilon_{m}$. Set

$$
\delta=\min \left\{\varepsilon_{m}, \delta_{k_{0}}, \delta_{k_{0}+1}, \ldots, \delta_{m}\right\}
$$

Let $p, q \in Z_{k}$ and $d\left(f_{k_{0} k}(p), f_{k_{0} k}(q)\right)>\varepsilon$. Then $f_{k_{0} k}(p) \neq f_{k_{0} k}(q)$.
If $k \in\left\{k_{0}, k_{0}+1, \ldots, m\right\}$, then $d\left(f_{k_{0} k}(p), f_{k_{0} k}(q)\right)>4 \varepsilon_{m}$. So $d(p, q)>\delta_{k}>\delta$.
Suppose that $k>m$. Then $Z_{k_{0}} \varsubsetneqq Z_{m} \varsubsetneqq Z_{k}$. We have three cases to consider.
$1^{\text {st }}$ case $: p, q \in Z_{m}$. Then $f_{m k}(p)=p$ and $f_{m k}(q)=q$. So, $f_{k_{0} m}(p)=f_{k_{0} k}(p)$ and $f_{k_{0} m}(q)=f_{k_{0} k}(q)$. Thus $d\left(f_{k_{0} m}(p), f_{k_{0} m}(q)\right)>\varepsilon>4 \varepsilon_{m}$ and, therefore, $d(p, q)>\delta_{m} \geq \delta$.
$2^{\text {nd }}$ case $: p, q \in Z_{k} \backslash Z_{m}$. Then $f_{m k}(p), f_{m k}(q) \in \mathcal{V}_{m}$. Thus $d\left(f_{m k}(p), f_{m k}(q)\right) \geq$ $\operatorname{mesh}\left(\mathcal{V}_{m}\right)>4 \varepsilon_{m}$. From $\left(7_{m}\right): d\left(p, f_{m k}(p)\right)<\varepsilon_{k_{0}}$ and $d\left(q, f_{m k}(q)\right)<\varepsilon_{k_{0}}$. Since $\varepsilon_{k_{0}}<\varepsilon_{m}$, it follows that

$$
d(p, q) \geq d\left(f_{m k}(p), f_{m k}(q)\right)-d\left(q, f_{m k}(q)\right)-d\left(p, f_{m k}(p)\right)>2 \varepsilon_{m}>\delta
$$

3^{d} case $: p \in Z_{m}$ and $q \in Z_{k} \backslash Z_{m}$. Then $p=f_{m k}(p) \in E_{p} \in \mathcal{E}_{m}$ and $f_{m k}(q)=v_{q} \in$ \mathcal{V}_{m}. Since $p, q \notin Z_{k_{0}}$, it follows that $E_{p} \subseteq f_{k_{0} m}^{-1}\left(f_{k_{0} k}(p)\right)$ and $v_{q} \in f_{k_{0} m}^{-1}\left(f_{k_{0} k}(p)\right)$. Since $f_{k_{0} k}(p) \neq f_{k_{0} k}(q), f_{k_{0} m}^{-1}\left(f_{k_{0} k}(p)\right) \cap f_{k_{0} m}^{-1}\left(f_{k_{0} k}(q)\right)=\emptyset$. Hence, $v_{q} \notin E_{p}$. From the choice of μ_{m} it follows that

$$
d\left(v_{q}, p\right)>d\left(v_{q}, E_{p}\right)>\mu_{m}>4 \varepsilon_{m} .
$$

Since $d\left(v_{q}, q\right)<\varepsilon_{m}$ from $\left(7_{m}\right)$, we conclude that

$$
d(p, q) \geq d\left(p, v_{q}\right)-d\left(q, v_{q}\right)>4 \varepsilon_{m}-\varepsilon_{m}>\varepsilon_{m}>\delta .
$$

To prove (b) take any $\varepsilon>0$. Since $\lim _{i \rightarrow \infty} \varepsilon_{i}=0$, there exists $k_{0} \in \mathbb{N}$ such that $2 \varepsilon_{k_{0}}<\varepsilon$. If $z \in Z_{k_{0}} \backslash\left(\bigcup_{i \geq k_{0}} \mathcal{V}_{i}\right)$, then $\bigcup_{k>k_{0}} f_{k_{0} k}^{-1}(z)=\{z\}$. So (a) holds.

Let $z \in Z_{k_{0}} \cap\left(\bigcup_{i \geq k_{0}} \mathcal{V}_{i}\right)$ and let $i_{z} \geq k_{0}$ be the least integer such that $z \in \mathcal{V}_{i_{z}}$. If $k_{0}<k \leq i_{z}$, then $f_{k_{0} k}^{-1}(z)=\{z\}$. Hence, $\bigcup_{k>k_{0}} f_{k_{0} k}^{-1}(z)=\bigcup_{k>i_{z}} f_{i_{z} k}^{-1}(z)$.

From the properties $\left(3_{k}\right)$ and $\left(7_{k}\right)$ with $k>i_{z}$ it follows that $\bigcup_{k>i_{z}} f_{i_{z} k}^{-1}(z) \subseteq B\left(z, \varepsilon_{i_{z}}\right)$. Thus again

$$
\operatorname{diam}\left(\bigcup_{k>k_{0}} f_{k_{0} k}^{-1}(z)\right)=\operatorname{diam}\left(\bigcup_{k>i_{z}} f_{i_{z} k}^{-1}(z)\right)<2 \varepsilon_{i_{z}}<2 \varepsilon_{k_{0}}<\varepsilon .
$$

Theorem 4.2. Z is a one-dimensional cactoid such that any two cut points of Z can be joined by a simple cyclic chain that is a cactus.

Proof. Since $Z_{\infty}=\underset{\longleftarrow}{\lim }\left\{Z_{n}, f_{n}\right\}$, where each Z_{n} is locally connected and each f_{n} is a monotone surjection, it follows that Z_{∞} is a locally connected continuum (see [7, 8.47]). Thus Z is a locally connected continuum from Theorem 4.1.

Let $a, b \in c(Z), a \neq b$. If $a, b \in \bigcup_{i=0}^{\infty} Z_{k}$, then there exists a cactus Z_{k} such that $a, b \in Z_{k}$. Thus a and b can be joined by a simple cyclic chain that is a cactus. It suffices to show that $Z \backslash \bigcup_{i=0}^{\infty} Z_{k}$ contains no cut points of Z. Suppose, on the contrary, that there exists a cut point $z \in Z \backslash \bigcup_{i=0}^{\infty} Z_{k}$. Then $Z \backslash\{z\}=O_{1} \cup O_{2}$, where O_{1} and O_{2} are disjoint, non empty, and open subsets of Z. Since $\bigcup_{i=0}^{\infty} Z_{k}$ is connected, we may suppose that $\bigcup_{i=0}^{\infty} Z_{k} \subseteq O_{1}$. Then $O_{2} \cap\left(\bigcup_{i=0}^{\infty} Z_{k}\right)=\emptyset$. Hence, cl $\left(\bigcup_{i=0}^{\infty} Z_{k}\right) \neq Z$ which is a contradiction.

Let S be a true cyclic element of Z. Then $E(S)=\emptyset$. Hence, $\operatorname{ord}_{Z}(x) \geq \operatorname{ord}_{S}(x)>1$ for each $x \in S$. Therefore, $S \cap E(Z)=\emptyset$. If $S \subseteq \bigcup_{i=0}^{\infty} Z_{n}$, then S is a simple closed curve from construction of Z_{n}. It suffices to prove that $Z \backslash \bigcup_{i=0}^{\infty} Z_{n} \subseteq E(Z)$.

Let $e \in Z \backslash \bigcup_{i=0}^{\infty} Z_{i}$ and $\varepsilon>0$. It remains to find an open subset U_{e} of Z such that $e \in U_{e} \subseteq B(e, \varepsilon)$ and $b d_{Z}\left(U_{e}\right)$ consists of one point.

The map $h: Z_{\infty} \rightarrow Z$ defined by $h\left(\left\{z_{i}\right\}_{i=0}^{\infty}\right)=\lim z_{i}$ is a homeomorphism from the proof of Theorem 4.1. Let $h^{-1}(e)=\left\{e_{i}\right\}_{i=0}^{\infty}$. Then $f_{i}\left(e_{i+1}\right)=e_{i} \in Z_{i}$ for any i. Since $e=\lim e_{i} \notin \bigcup_{i=0}^{\infty} Z_{i}$ and each Z_{i} is compact, it follows that $\left\{e_{i}\right\}_{i=0}^{\infty} \nsubseteq Z_{i}$ for any i. Therefore, without loss of generality we may suppose that $e_{i} \neq e_{i+1}$ for any i. Since $f_{i}\left(e_{i+1}\right)=e_{i} \neq e_{i+1}$, it follows that $e_{i} \in \mathcal{V}_{i}$.

There exist $i_{0}, j_{0} \in \mathbb{N}$ such that $e_{i} \in B\left(e, \frac{\varepsilon}{2}\right)$ for any $i \geq i_{0}$ and $\varepsilon_{j}<\frac{\varepsilon}{2}$ for any $j \geq j_{0}$. Let $k_{0}=\max \left\{i_{0}, j_{0}\right\}$. Then $e_{k} \in B\left(e, \frac{\varepsilon}{2}\right)$ and $\varepsilon_{k}<\frac{\varepsilon}{2}$ for any $k \geq k_{0}$.

Let U_{e} be a component of $Z \backslash\left\{e_{k_{0}}\right\}$ containing e. Since Z is locally connected, U_{e} is open. Also $b d_{Z}\left(U_{e}\right)=\left\{e_{k_{0}}\right\}$. It is easy to see that $U_{e}=\{e\} \cup\left(\bigcup_{k=k_{0}}^{\infty} T_{e_{k}}^{k+1}\right)$. Let $z \in U_{e}$. Then $z \in$ $T_{e_{k}}^{k+1}$ for some $k \geq k_{0}$. Therefore $d\left(z, e_{k}\right)<\frac{\varepsilon_{k_{0}}}{2}<\frac{\varepsilon}{2}$. Thus $d(e, z) \leq d\left(z, e_{k}\right)+d\left(e, e_{k}\right)<\varepsilon$. Hence, $z \in B(e, \varepsilon)$.

5 The proof of universality of Z

Theorem 5.1. Z is a universal element in the family of all one-dimensional cactoids X such that any two cut points of X can be joined by a simple cyclic chain that is a cactus.

Proof. The one-dimensional cactoid X, whose any two cut points can be joined by a simple cyclic chain that is a cactus, is homeomorphic to $X_{\infty}=\lim _{\leftarrow}\left\{X_{k}, g_{k}\right\}$, where the inverse sequence $\left\{X_{k}, g_{k}\right\}_{k=1}^{\infty}$ satisfies the conditions of Theorem 3.5. Also Z is homeomorphic to $Z_{\infty}=\lim _{\longleftarrow}\left\{Z_{k}, f_{k}\right\}$ by Theorem 4.1. It suffices to find an embedding of X_{∞} into Z_{∞}.

We set $Q(X)=\left\{t_{k}\right\}_{k=1}^{\infty}$ and $Q(Z)=\bigcup_{k=1}^{\infty} \mathcal{V}_{k}$, where the point t_{k} satisfies condition (iii) of Theorem 3.5 and \mathcal{V}_{k} is a set of vertices of cactus Z_{k}. Note that $X_{k} \cap Q(X)$ is a countable subset of X_{k} and $Z_{k} \cap Q(Z)$ is countable and dense in Z_{k} for each k.

Observe that X_{1} is either a point or a simple closed curve such that there exist a unique point $t_{1} \in X_{1}$ with $\left|g_{1}^{-1}\left(t_{1}\right)\right|>1$. We also observe that $Z_{1}=\overline{v_{0} v_{1}} \cup T_{v_{0}}^{1} \cup T_{v_{1}}^{1}$, where $T_{v_{i}}^{1}$ are triangles. If $X_{1}=\left\{t_{1}\right\}$, then $h_{1}: X_{1} \rightarrow Z_{1}$ with $h_{1}\left(t_{1}\right)=v_{1}$ is a homeomorphism. If X_{1} is a closed curve, then there exist a homeomorphism $h_{1}: X_{1} \rightarrow T_{v_{1}}^{1}$ such that $h_{1}\left(t_{1}\right)=v_{1}$ and $h_{1}\left(X_{1} \cap Q(X)\right) \subseteq T_{v_{1}}^{1} \cap Q(Z)$. We put $n_{1}=1$.

Suppose that $k \in \mathbb{N} \backslash\{0\}$ and for each $j \in 1, \ldots, k$ we have define an integer n_{j} and an embedding $h_{j}: X_{j} \rightarrow Z_{n_{j}}$ such that:
$\left(1_{j}\right) h_{j}\left(X_{j} \cap Q(X)\right) \subseteq Z_{n_{j}} \cap Q(Z)$;
$\left(2_{j}\right)$ the following diagram is commutative for $j>1$:

$\left(3_{j}\right) n_{j}>n_{j-1}$ for $j>1$.
We will define an integer n_{k+1} and an embedding $h_{k+1}: X_{k+1} \rightarrow Z_{n_{k+1}}$ that satisfy the properties $\left(1_{k+1}\right)-\left(3_{k+1}\right)$.

Consider the monotone retraction $g_{k}: X_{k+1} \rightarrow X_{k}$ and the embedding $h_{k}: X_{k} \rightarrow Z_{n_{k}}$. By Theorem 3.5 there is a unique $t_{k} \in X_{k}$ such that $g_{k}^{-1}\left(t_{k}\right)$ is non degenerate. We denote $h_{k}\left(t_{k}\right)=z_{k}$. From $\left(1_{k}\right)$ we have $z_{k} \in Z_{n_{k}} \cap\left(\bigcup_{i=1}^{\infty} \mathcal{V}_{i}\right)$. Since $\mathcal{V}_{i} \subseteq \mathcal{V}_{i+1}$ for all i, there exists $m>1$ such that $z_{k} \in \mathcal{V}_{n_{k}+m}$. Put $n_{k+1}=n_{k}+m+1$.

Since $Z_{n_{k}} \subseteq Z_{n_{k}+m}, h_{k}$ is also embedding of X_{k} into $Z_{n_{k}+m}$. Observe that $Z_{n_{k}+m+1}=$ $Z_{n_{k}+m} \cup\left(\bigcup_{v \in V_{n_{k}+m}} T_{v}^{n_{k}+m}\right)$. Thus z_{k} is a vertex of some triangle $T_{z_{k}}^{n_{k}+m+1} \subseteq Z_{n_{k}+m+1}$

If $g_{k}^{-1}\left(t_{k}\right)=A$ is a free arc of X_{k+1}, then $A \cap X_{k}=\left\{t_{k}\right\}$ and t_{k} is an end point of A. Let E be one of the sides of triangle $T_{z_{k}}^{n_{k}+m+1}$ with $z_{k} \in E$. There exists a homeomorphism $h_{A}: A \rightarrow E$ such that $h_{A}\left(t_{k}\right)=z_{k}$ and $h_{A}(A \cap Q(X)) \subseteq E \cap Q(Z)$, because $E \cap Q(Z)$ is dense in E.

We define a homeomorphism $h_{k+1}: X_{k+1}=X_{k} \cup A \rightarrow Z_{n_{k+1}}$ by

$$
h_{k+1}(x)= \begin{cases}h_{A}(x), & x \in A \\ h_{k}(x), & x \in X_{k}\end{cases}
$$

If $g_{k}^{-1}\left(t_{k}\right)=S$ is a closed curve of X_{k+1}, then $S \cap X_{k}=\left\{t_{k}\right\}$. There exists a homeomorphism $h_{S}: S \rightarrow T_{z_{k}+m+1}^{n_{k}+m}$ such that $h_{S}\left(t_{k}\right)=z_{k}$ and $h_{S}(S \cap Q(X)) \subseteq T_{z_{k}}^{n_{k}+m+1} \cap Q(Z)$, because $T_{z_{k}}^{n_{k}+m+1} \cap Q(Z)$ is dense in $T_{z_{k}}^{n_{k}+m+1}$.

We define a homeomorphism $h_{k+1}: X_{k+1}=X_{k} \cup S \rightarrow Z_{n_{k+1}}$ by

$$
h_{k+1}(x)= \begin{cases}h_{S}(x), & x \in S \\ h_{k}(x), & x \in X_{k}\end{cases}
$$

From $\left(2_{j}\right)$ and $\left(3_{j}\right), j>1$, the map $h_{\infty}: \lim _{\leftarrow}^{\leftrightarrows}\left\{X_{k}, g_{k}\right\}_{k=1}^{\infty} \rightarrow \underset{\longleftarrow}{\lim }\left\{Z_{n_{k}}, f_{n_{k}}\right\}_{k=1}^{\infty}$ defined by $h_{\infty}\left(\left(x_{k}\right)_{k=1}^{\infty}\right)=\left(f_{n_{k}}\left(x_{k}\right)\right)_{k=1}^{\infty}$ is continuous and one-to-one (see [7, 2.22]). Since X is a continuum, h_{∞} is embedding. Since inverse sequence $\left\{Z_{n_{k}}, f_{n_{k}}\right\}_{k=1}^{\infty}$ is confinal in the sequence $\left\{Z_{k}, f_{k}\right\}_{k=1}^{\infty}$, there exists a homeomorphism $H: \lim _{\leftrightarrows}^{\leftrightarrows}\left\{Z_{n_{k}}, f_{n_{k}}\right\}_{k=1}^{\infty} \rightarrow \underset{\leftrightarrows}{\lim }\left\{Z_{k}, f_{k}\right\}_{k=1}^{\infty}=Z$. Hence, $H \circ h_{\infty}$ is an embedding of X into Z.

6 Conclusions and problems. In this section we refer only to continua consisting of more than one point. A continuum X is called totally regular [8] if for any countable subset Q of X, each $x \in X$, and each $\varepsilon>0$, there exists an open neighborhood U of x in X such that diam $(U)<\varepsilon, b d(U)$ is finite, and $b d(U) \cap Q=\emptyset$. Clearly, any graph is totally regular continuum. Totally regular continua were studied also [11] under the term "continua of finite degree". Since the property of being a totally regular continuum is cyclicly extensible and reducible $[11,(4.2)]$, any cactoid is totally regular.

The order of totally regular continuum X is the ordinal number $\operatorname{ord}(X)=\sup \{\operatorname{ord}(p, X)$: $p \in X\}$. Note that $[13,(3.2)$, p. 49] $\operatorname{ord}(X) \geq 2$. If $\operatorname{ord}(X)=2$, then X is an arc or a simple closed curve [7, Theorem 9.5]. The cactoid Z constructed in section 4 is a totally regular planar continuum of order ω.
R. D. Buskirk proved that that there exists a universal totally regular continuum [4]. The natural problems arisen are the following:

1. Does there exists a universal one-dimensional cactoid.
2. Does there exists a universal one-dimensional cactoid in the family of one-dimensional cactoids of order $\leq n$, where $n>2$.
3. Does there exists a universal planar totally regular continuum.
4. Does there exists a universal planar totally regular continuum in the family of totally regular continua of order $\leq n$, where $n>2$.

References

[1] R. D. Anderson and Gustave Choquet, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: an application of inverse limits, Proc. Amer. Math. Soc., 10(1959), 347-353.
[2] W. L. Ayres, Continuous curves homeomorphic with the boundary of a plane domain, Fund. Math. 14 (1929), 92-95.
[3] W. Bula, J. Nikiel, E. D. Tymchatyn, The Königsberg bridge problem for Peano continua, Canad. J. Math. 46 (1994), no. 6, 1175-1187.
[4] R. D. Buskirk, A universal totally regular continuum, Houston J. Math. 20 (1994), no. 4, 745755.
[5] R. Engelking, General topology, Second edition. Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989.
[6] K. Kuratowski, Topology, Vol. II, New York, 1968.
[7] S. B. Nadler, Jr. Continuum theory: An introduction, M. Dekker 1992.
[8] J. Nikiel, Locally connected curves viewed as inverse limits, Fund. Math. 133 (1989), no. 2, 125-134.
[9] P. Papasoglu, E. Swenson, The cactus tree of a metric space, Algebr. Geom. Topol. 11 (2011), No. 5, 2547-2578.
[10] R. L. Wilder, Conserning continuous curve, Fund. Math vol. 7 (1925), 341-377.
[11] G. T. Whyburn, Concerning the structure of a continuous curve, American Journal of mathematics, Vol. 50, No. 2 (1928), pp. 167-194.
[12] G. T. Whyburn, Concerning continua of finite degree and local separating points, American Journal of mathematics, Vol. 57, No. 1 (1935), pp. 11-16.
[13] G. T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, 28, New York: American Mathematical Society, (1942).

[^0]: 2010 Mathematics Subject Classification. Primary 54C25; Secondary 54F50.
 Key words and phrases. One-dimensional cactoid, planar curve, universal space.

