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One-dimensional cactoids and universality.

Sophia Zafiridou
University of Patras

Abstract. We present some properties of one-dimensional cactoids and construct a
universal element Z for the family of one-dimensional cactoids X such that a simple
cyclic chain between any two cut points of X is a cactus. One-dimensional cactoids
are partial case of planar totally regular curves and are investigated by Whyburn [13]
under the term “boundary curves”.

1 Introduction. In this paper under the term continuum is meant a nonempty, compact
and connected metric space. A curve is a one-dimensional continuum.

A continuum Z is universal for a class F of continua provided that Z ∈ F and each mem-
ber of F can be homeomorphically imbedded in Z. A space is planar if it is homeomorphic
to a subset of the plane.

A Peano continuum is a locally connected continuum.
We will use the results of the papers of 1920s (see [2], [10], [11]) in which under the term

continuous curve was meant a metric space X that is a continuous image of segment [0, 1].
According to Hahn–Mazurkiewicz Theorem (see [13, (4.1). p. 92]) the above condition for
X is equivalent to the property of X to be a Peano continuum.

The order of a space X at the point p ∈ X, written ord(p,X), is the least cardinal
or ordinal number m such that p has an arbitrary small open neighborhood in X with
boundary of cardinality ≤ m. In particular, ord(p,X) = ω, where ω denotes the least infinite
ordinal number, if p has arbitrary small open neighborhoods in X with finite boundaries
but ord(p,X) > n for every natural number n [6, §51, I, p. 274].

The points of B(X) = {x ∈ X : ord(p,X) ≥ 3} are called branch points of X and the
points of E(X) = {x ∈ X : ord(p,X) = 1} are called end points of X.

A point p of a connected space X is a cut point if X \ {p} is not connected. The set of
all cut points of a connected space X will be denoted by c(X).

A simple closed curve is a space homeomorphic to the circle. An arc is a space A
homeomorphic with a segment [0, 1]. The arc A with end points p and q is written pq. An
arc pq ⊆ X is called free in X if the set (pq) = pq \ {p, q} is an open subset of X.

A continuum X is said to be cyclicly connected provided that every two points of X lie
together on some simple closed curve of X. By a cyclic element of Peano continuum X will
be meant a cut point of X, an end point of X, or a nondegenerate cyclicly connected Peano
subcontinuum M of X such that M is not a proper subset of any other cyclicly connected
Peano subcontinuum of X. Any nondegenerate cyclic element of X is called true cyclic
element of X.

A Peano continuum each true cyclic element of which is homeomorphic to a simple
closed curve is called a one-dimensional cactoid [13]. The property of a Peano continuum
M to be a one-dimensional cactoid is equivalent with any of following properties:

(i) No two simple closed curve of M have more than one point in common.
(ii) M contains no θ-curves.
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A graph is a continuum which can be written as the union of finitely many arcs any two
of which are either disjoint or intersect only in one or both of their end points [7]. A cactus
is a graph in which any two simple closed curves have at most one point in common [9].
Clearly, a cactus is a cactoid that is a graph.

A simple cyclic chain of Peano continuum X between two of its cyclic elements E1 and
E2 is a connected subset S that is a union of some family F of cyclic elements of X such
that E1, E2 ∈ F and no proper connected subset of S containing E1 and E2 is the sum of
cyclic elements (see [11]). Note that a simple cyclic chain between any two cyclic elements
of Peano continuum is uniquely determined [11, Theorem 3].

The main result of the paper is a construction of a universal cactoid Z for the class of
all one-dimensional cactoids X such that a simple cyclic chain between any two cut points
of X is a cactus.

2 One-dimensional cactoids as a boundary curves. Let X is a Peano continuum of
the plane P. Any component of P\X is called complementary domain of X. The boundary
of any complementary domain of X is a subcontinuum of X and is called a boundary curve.

Wilder in [10, Theorem 17] proved the following result:

Theorem 2.1. If a Peano continuum M is a boundary of complementary domain of a
Peano continuum, then M is the union of disjoint families of sets S1, S2 and P , where:

(1) S1 is a countable set of all simple closed curves contained in M no two of which have
more than one point in common,

(2) S2 is a countable set of arcs no two of which have in common an interior point of both,
and

(3) P = M \ (S1 ∪ S2) is a totally disconnected set of limit points of S1 ∪ S2.

From Theorem 2.1 it follows that:

Corollary 2.1.1. Each boundary curve is a one-dimensional cactoid.

The fact that any one-dimensional cactoid is planar follows from the result of Ayres [2,
Theorem in page 92]:

Theorem 2.2. In order that a Peano continuum M be homeomorphic with a plane Peano
continuum which is the boundary of one of its complementary domains it is necessary and
sufficient that every true cyclic element of M be a simple closed curve.

From Theorem 2.2 it also follows that:

Corollary 2.2.1. A Peano continuum M is a one-dimensional cactoid if and only if M is
homeomorphic with a plane Peano continuum which is the boundary of one of its comple-
mentary domains.

A continuum K is said to be regular if K has a basis of open sets with finite bound-
aries. Any regular continuum is hereditarily locally connected [6, §51, IV, Theorem 2, p.
283]. Since a one-dimensional cactoid contains no θ-curves, it follows that (see [6, §52, IV,
Theorem 3, p. 329]):

Corollary 2.2.2. Any one-dimensional cactoid X is regular and any connected subset of
X is arcwise connected.



3

A metric space (X, d) is uniformly locally arcwise connected provided that for every
ε > 0 there exists δ > 0 such that if x, y ∈ X and d(x, y) ∈ (0, δ), then x and y can
be joined by an arc of diameter < ε. Any Peano continuum is uniformly locally arcwise
connected [6, §50, II, Theorem 4, p. 257], hence:

Corollary 2.2.3. Any one-dimensional cactoid is uniformly locally arcwise connected.

3 Properties of one-dimensional cactoid. Let N = {0, 1, . . . , n, . . . }. Given a subset
G of a space X the closure and the boundary of G in X will be denoted by clX(G) (or
cl(G)) and bdX(G) (or bd(G)), respectively.

Proposition 3.1. Each branch point of a one-dimensional cactoid X is a cut point.

Proof. Let r ∈ B(X). From the Menger n-Beinsatz (see [6, p. 277]), it follows that there
exist arcs A1 = rx1, A2 = rx2, and A3 = rx3 of X having the unique point r in common.

Suppose, on the contrary, that r is not a cut point. Then the connected subset X \ {r}
of X is arcwise connected. Thus there exists an arc A = x1x2 ⊆ X \ {r}. Since A ∩ A1

is a compact subset of A1 \ r, the component of A1 \ A containing r is a subarc B1 = rb1
of A1 such that B1 ∩ A = b1. Similarly, there exists a subarc B2 = rb2 of A2 such that
B2 ∩A = b2. Let B = b1b2 is a unique determined subarc of A joining the points b1 and b2.
Then B ∪B1 ∪B2 is a closed curve containing the points r and b1 .

Since x3, b1 ∈ X\{r} andX\{r} is arcwise connected, there is an arc C = b1x3 ⊆ X\{r}.
It is easy to see that the set B ∪ B1 ∪ B2 ∪ C ∪ A3 contains a θ-curve. Hence, X is not a
cactoid which is a contradiction.

Proposition 3.2. The set of branch points of one-dimensional cactoid is countable.

Proof. Let X be a cactoid. Since all save possibly a countable number of cut points of X
are of order 2 [13, (3.2), p. 49] in X, the cut points of X of order ≥ 3 are countable. Hence,
B(X) is countable from Theorem 3.1.

Definition 3.1. A subcontinuum G of one-dimensional cactoid X is called full provided
that each simple closed curve of X either is a subset of G, or does not intersect G, or
intersects G in a single point.

Theorem 3.1. If X is a one-dimensional cactoid, then for any full subcontinuum G of X
and for any x ∈ X \G there exist a point rx ∈ G and an arc Ax from x to rx such that:

(1) Ax ∩G = {rx} and rx is a unique point that belongs any arc of X from x to any point
of G.

(2) If Gx is a component of X \G containing x, then G ∩ cl(Gx) = {rx}.

(3) The map r : X → G by r(x) =

{
x, if x ∈ G
rx, if x ∈ X \G is continuous.

Proof. (1) Consider any r0 ∈ G. Since X is arcwise connected there is an arc A0 = xr0 ⊆ X.
Let Sx be a component of A0 \ G containing x. Clearly Sx is a half-open subarc [xrx) of
A0, where rx ∈ A0 ∩G. Hence, Ax = cl(Sx) is an arc from x to rx and Ax ∩G = {rx}.

Let A1 = xr be an arc of X from x to r ∈ G and S̃x be a component of A1\G containing
x. As above for a point r0 we can find a point g ∈ G and an arc Ag = gx ⊆ A1 such that
Ag∩G = {g}. Suppose on the contrary that rx 6∈ A1. Then rx 6= g. Let Srx be a component
of Ax\Ag containing rx. Then A2 = cl(Srx) is an arc from rx to b ∈ Ag∩Ax. Since b, g ∈ Ag,
there exists an arc A3 = bg ⊆ Ag. Since rx, g ∈ G and G is arcwise connected, there is an
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arc A4 = grx ⊆ G. From the above a simple closed curve A2 ∪ A3 ∪ A4 of X intersects G
in arc grx which is a contradiction, because G is full subcontinuum of X. Hence, rx ∈ A1.

Suppose that r ∈ G and r belongs to any arc from x to any point of G. Then r ∈ Ax.
Since Ax ∩G = {rx}, r = rx.

(2) Clearly, rx ∈ Ax ⊆ cl(Gx). Suppose that there exists p ∈ G ∩ cl(Gx) with p 6= rx.
Since p 6∈ Ax, there exists an open and connected subset Vp of X such that p ∈ Vp ⊆ X \Ax.
Since p ∈ Cl(Gx), there exists q ∈ Vp ∩ Gx. Since Vp is arcwise connected from Corollary
2.2.2, there exists an arc qp ⊆ Vp. Since x, q ∈ Gx and Gx is arcwise connected, there exists
arc xq ∈ Gx. Then xq∪qp contains an arc A from x to p ∈ G. Hence rx ∈ A from condition
1. On the other hand rx 6∈ qp ∪ xq. Hence rx 6∈ A, which is a contradiction.

(3) Let g ∈ G and Wg be an open and connected neighborhood of r(g) = g in X. To
prove that r is continuous at g it suffices to show that r(Wg) ⊆Wg. Indeed, for x ∈Wg ∩G
we have r(x) = x ∈ Wg. For x ∈ Wg \ G there exists an arc A ⊆ Wg from x to g. Since
r(x) = rx ∈ A from 1, r(x) ∈Wg.

Let x ∈ X\G and Gx be a component of X\G containing x. Since X is locally connected,
Gx is open. To prove the continuity of r in x, it suffices to show that r(Gx) = {r(x)}. Indeed,
if p ∈ Gx \ {x}, then Gx is a component of X \ G containing p. From condition 2 of the
Theorem it follows that {rp} = cl(Gx) ∩G = {rx}. Thus r(p) = rp = rx = r(x).

Remark 3.1. The map r defined in Theorem 3.1 is a retraction. We will call r the first
point map corresponding to full subcontinuum G of X.

Lemma 3.1. If a simple cyclic chain between any two cut points of one-dimensional cactoid
X is a cactus, then any simple cyclic chain of X that is a subset of X \ E(X) is a cactus.

Proof. Let C ⊆ X \E(X) be a simple cyclic chain between cyclic elements E1 and E2 of X.
Then each of E1 and E2 is either a cut point or a simple closed curve. Suppose that E1 and
E2 are simple closed curves. Then E1 ∩E2 consists of at most one point. If E1 ∩E2 = {p},
then C = E1 ∪ E2 is a cactus.

Suppose that E1∩E2 = ∅. Consider the first point maps r1 : X → E1 and r2 : X → E2.
From Theorem 3.1 there are p ∈ E2 and q ∈ E1 such that r1(E2) = r1(p) and r2(E1) = r2(q).
Obviously, C∗ = (C \ (E1 ∪E2))∪{r1(p), r2(p)} is a simple cyclic chain between cut points
r1(p) and r2(q) of X. Hence C∗ and, therefore, C = C∗ ∪ E1 ∪ E2 are cactuses.

The proof is similar in the case that exactly one of E1 and E2 is a cut point.

Lemma 3.2. Let X be a one-dimensional cactoid, Y a full subcontinuum of X and r :
X → Y a first point map.

If x ∈ X \ Y , S is a cyclic element of X containing x, and C is a simple cyclic chain
between r(x) and S, then Y ∪ C is full.

Proof. Let L be a simple closed curve of X that intersects Y ∪ C. If L intersects Y , then
L∩Y = {y} because Y is full. If in addition L intersects C, then y = r(y) = r(C) = r(x) ∈
C. We conclude that L ∩ (Y ∪ C) ⊆ L ∩ C.

Suppose, on the contrary, that L∩(Y ∪C) contains two points z and w. Then z, w ∈ L∩C.
Thus there exists an arc A = zw ⊆ C. Since X contains no θ-curves, A ⊆ L and L is a
unique simple closed curve containing A. Suppose that q ∈ A with ord(q,X) = 2. Since C
is a union of cyclic elements, it follows that q is a cyclic element. Thus q ∈ c(X). Hence,
X \{q} contains at least two component. Since q does not separate L it follows that L\{q}
is containing in some component W1 of X \{q}. Let w belongs to a component W2 6= W1 of
X \ {q}. Then there exists an arc B = wq ⊆W2 ∪ {q}. Then B ∩L = {q} and we conclude
that ord(q,X) = 3, which is a contradiction.
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Lemma 3.3. If X is a Peano continuum, then X \ E(X) is dense in X.

Proof. Let U 6= ∅ be an open subset of X. Since X is locally connected, there exists an
open and connected set V 6= ∅ such that V ⊆ U . There exists an arc ab ⊆ V [7, Theorem
8.26]. Then ord(p,X) ≥ ord(p, ab) = 2 for p ∈ (ab). Clearly, p ∈ U ∩ (X \ E(X)).

It is easy to prove the following Lemma.

Lemma 3.4. If a cactus K is a simple cyclic chain between two of its cyclic elements, then
K =

⋃n
j=1 Cj, where n ∈ N \ {0} and each Cj is either a simple closed curve or a maximal

free arc of K. Moreover, if n ≥ 2, then

(i) Cj ∩ Cj+1 = {bj} for j = 1, ..., n− 1, where bj ∈ B(K), and

(ii) Cj ∩ Ci = ∅ for |i− j| > 2.

Theorem 3.2. Let X be a one-dimensional cactoid such that a simple cyclic chain between
any two cut points of X is a cactus.

Then there exists a sequence {Yk}∞k=1 of full cactuses of X such that

(i) Y1 = {p1} or Y1 is a simple closed curve;

(ii) E(Yk) ⊆ c(X) (including the case E(Yk) = ∅);

(iii) Yk ⊆ Yk+1;

(iv) cl(Yk+1 \ Yk) ∩ Yk = {pk} and pk ∈ c(X);

(v) limYk = X;

(vi) if rk : X → Yk is the first point map for k = 1, 2, ..., then the sequence of retractions
{rk}∞k=1 converges uniformly to idX .

Proof. Since X is separable, from Lemma 3.3 it follows that there exists a dense subset
{xi}∞i=1 of X such that {xi}∞i=1 ⊆ X \ E(X).

Let Y1 be a maximal cyclic element of X containing x1. From definition of cyclic element
it follows that either Y1 is a simple closed curve or Y1 = {x1} and x1 ∈ c(X).

Consider the first point map r1 : X → Y1. Put m1 = min{i : xi 6∈ Y1} and r1(xm1) =
{p1}. Then either p1 = x1 or Y1 is a simple closed curve and p1 ∈ Y1 ∩ B(X). In any case
p1 ∈ c(X).

Let S1 be the maximal cyclic element of X containing xm1
. Either S1 is a simple closed

curve or S1 = {xm1
} and xm1

∈ c(X). Let C1 be a cyclic chain between cyclic elements
p1 and S1. From Lemma 3.1 C1 is a cactus. Let Y2 = Y1 ∪ C1. By Lemma 3.2, Y2 is a
full subcontinuum of X. Since Y1 is full, xm1 ∈ Y2 \ Y1 and Y2 \ Y1 is a connected subset
(see [11, Theorem 6]) of X \ Y1, from Theorem 3.1(4) Y1 ∩ cl(Y2 \ Y1) = {p1}. Obviously,
E(Y2) ⊆ {x1, xm1

} ⊆ c(X).
Suppose that cactuses Y1, ..., Yk with properties (i)− (iv) have been defined.
Consider the first point map rk : X → Yk. Let mk = min{i : xi 6∈ Yk} and rk(xmk

) =
pk ∈ Yk. If pk ∈ E(Yk), then pk ∈ c(X) by inductive assumption. Otherwise, pk is a branch
point and, therefore, pk ∈ c(X) from Theorem 3.1. Let Sk be a maximal cyclic element of
X containing xmk

and Ck be a cyclic chain between cyclic elements pk and Sk. Similarly as
for Y2 it can be shown that Yk+1 is full and satisfies the properties (i)−(iv) of the Theorem.

To prove (v), set Ak = {x1, ..., xk}. Since Ak ⊆ Ak+1 and cl({xi}∞i=1) = X, it follows
that limAk = X. Since xk ≤ xmk

and Amk
⊆ Yk+1, it follows that Ak ⊆ Yk+1 ⊆ X. Thus

limYk = limAk = X.
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In order to prove (vi) we consider the Hausdorff metric Hd generated on the set of closed
subsets of X by metric d of X. Then

Hd(X,Yk) = inf{ε∗ > 0 : X ⊆
⋃

y∈Yk

Bd(y, ε∗)},

where Bd(y, ε∗) = {x ∈ X : d(y, p) < ε∗}. Let ε > 0. Since X is uniformly locally arcwise
connected from Corollary 2.2.3, there exists δ > 0 such that if x, y ∈ X, and 0 < d(x, y) < δ,
then there exists an arc A = xy with diameter < ε. Since limYk = X from (v), there exists
k0 ∈ N such that for all k ≥ k0 we have Hd(X,Yk) < δ. Thus

X ⊆
⋃

y∈Yk

Bd(y, δ) for any k ≥ k0.

Let x ∈ X and k ≥ k0. Then there exists yk ∈ Yk such that x ∈ Bd(yk, δ). Hence, x
and yk can be joined by arc Ak

x of diameter < ε. Since yk ∈ Yk and rk(x) belongs to any
arc from x to any point of Yk, rk(x) ∈ Ak

x. Since x, rk(x) ∈ Ak
x, we conclude that

d(idX(x), rk(x)) = d(x, rk(x)) ≤ diam(Ak
x) ≤ ε.

Theorem 3.3. [7, 2.29] Let Y be a compact metric space, and let {Yi}∞i=1 be a sequence of
compact subsets of Y such that, for each i = 1, 2, ..., there are continuous and onto functions
ψi : Yi+1 → Yi and ri : Y → Yi such that ψi ◦ ri+1 = ri. If {ri}∞i=1 converges uniformly to
the identity map idY on Y , then Y is homeomorphic to inverse limit lim

←−
{Yi, ψi}∞i=1.

The following Theorem follows directly from Theorems 3.2 and 3.3

Theorem 3.4. If X is a one-dimensional planar cactoid such that any two cut points of
X can be joined by a simple cyclic chain that is a cactus and {Yk}∞k=1 is the sequence of
cactuses satisfying Theorem 3.2, then X is homeomorphic to X∞ = lim

←−
{Yk, ψk}, where

ψk = rk
∣∣
Yk+1

: Yk+1 → Yk, k = 1, 2, ....

Theorem 3.5. Let X be one-dimensional planar cactoid such that any two cut points can
be joined by a simple cyclic chain that is a cactus.

Then there exists an inverse sequence {Xi, gi}∞i=1 such that

(i) Xi is a full cactus and gi : Xi+1 → Xi is a monotone retraction;

(ii) X1 is a point or a simple closed curve;

(iii) Xi ⊆ Xi+1 and there exists a unique point ti ∈ Xi such that g−1i (ti) is non degenerate
and is either a simple closed curve or a free arc whose end points are in c(X);

(iv) X is homeomorphic to lim
←−
{Xi, gi}.

Proof. From Theorem 3.4, X is homeomorphic to lim
←−
{Yk, ψk}, where {Yk}∞k=1 is the se-

quence of cactuses satisfying Theorem 3.2 and ψk = rk
∣∣
Yk+1

.

Clearly, each ψk : Yk+1 → Yk is a monotone retract.
From Theorem 3.2 there is a unique point pk ∈ Yk for which ψ−1k (pk) is non degenerate.

Also there exits xmk
∈ X \ E(X) for which ψ−1k (pk) = cl(Yk+1 \ Yk) is a cactus that is a

simple cyclic chain from pk ∈ c(X) to the maximal cyclic element Sk of xmk
. From Lemma
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3.4 it follows that ψ−1k (pk) =
⋃nk

j=1 C
k
j , where each Ck

j is either a simple closed curve or a

maximal free arc of K. Moreover, if nk ≥ 2, then Ck
j ∩ Ck

j+1 = {bkj } for j = 1, ..., nk − 1

where bj ∈ B(X), and Ck
j ∩ Ck

i = ∅ for |i− j| > 2.

For k = 1 we obtain ψ−11 (p1) =
⋃n1

j=1 C
1
j . We define

X1 = Y1, X2 = Y1 ∪ C1
1 , X3 = X2 ∪ C1

2 , . . . , X1+n1 = Xn1 ∪ C1
n1

= Y2.

From Theorem 3.2 the set X1 is a point or a simple closed curve.

Put t1 = p1 and tj = b1j−1 for j = 2, ..., n1. Let gj : Xj+1 → Xj , j = 1, . . . , n1, be the

first point map. Then g−1j (tj) = C1
j for j = 1, . . . , n1.

Let i > n1 + 1 be a positive integer. There exist a unique k(i) ∈ {1, 2, . . . } and a
unique m(i) ∈ {1, . . . , nk(i)} such that i = 1 + n1 + · · · + nk(i)−1 + m(i). We define

Xi = Yk ∪
(⋃m(i)

j=1 C
k(i)
j

)
. If m(i) = 1, then we define ti = pk(i). Otherwise we define

ti = b
k(i)
m(i)−1. Let gi−1 : Xi → Xi−1 be the first point map. Then g−1i−1(ti) = C

k(i)
m(i). Clearly,

the condition (i)− (iii) are satisfied.

To prove (iv) we observe that the inverse sequence {Yk, ψk} is confinal in the sequence
{Xi, gi}. Hence the inverse limits lim

←−
{Xi, gi} and lim

←−
{Yk, ψk} are homeomorphic [5, Corol-

lary 2.5.11, page 102] . Since X is homeomorphic to lim
←−
{Yk, ψk}, it follows that X is

homeomorphic to lim
←−
{Xi, gi}.

4 Construction of universal space Z. Let P denote the plane with a system Oxy of
orthogonal coordinates and a metric d((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + y1 − y2)2.

For any finite subset V of P we set

mesh(V) = min{d(x, y) : x, y ∈ V, x 6= y}.

For any finite family of subsets G of P we set

mesh(G) = max{diam(G) : G ∈ G}.

Given a segment E = pq of P we denote by mE the midpoint of E and define E(E) =
{pmE , qmE}.

Triangle of P with vertexes v1, v2, v3 is the set v1v2 ∪ v2v3 ∪ v1v3. For any triangle T of
the plane we denote by V(T ) the set of vertexes of T , by E(T ) the set of sides of T , and by

T̂ the 2-simplex of P with boundary T .

We will construct a sequence of cactuses {Zi}∞i=0 in P and monotone and surjective
mappings fi : Zi+1 → Zi such that Zi ⊆ Zi+1 for each i. Our method is similar to
construction of Ważewski’s Universal Dendrite [7].

Consider the points v0 = (0, 0) and v1 = (1, 0) of R2. Set Z0 = v0v1, E0 = {v0v1},
V0 = {v0, v1}, and ε0 = 1

2 . Consider a family of disjoint triangles T1 = {T 1
v }v∈V0

⊆ R2 such
that: v is a vertex of T 1

v , T 1
v ∩Z0 = {v}, and T 1

v ⊆ B(v, ε02 ). We define Z1 = Z0∪
(⋃

v∈V0
T 1
v

)
and f0 : Z1 → Z0 by

f0(z) =

{
v, if z ∈ T 1

v , v ∈ V0,
z, if z ∈ Z0.
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Put

E1 =
( ⋃
E∈E0

E(E)
)
∪
( ⋃
v∈V0

E(T 1
v )
)

V1 = {mE}E∈E0 ∪
( ⋃
v∈V0

V(T 1
v )
)

µ1 = min{d(v,E) : v ∈ V1, E ∈ E1, v 6∈ E}

v
0

v
1

Z1 and the set of vertexes V1

We fix a positive real number ε1 <
1
4 min{ε0,mesh(V1), µ1}.

Suppose that for 1 ≤ i ≤ n there are defined:

(ai) the cactus Zi with set of vertexes Vi and set o edges (segments) Ei;
(bi) a finite family of disjoint triangles Ti = {T i

v}v∈Vi−1
⊆ R2;

(ci) the numbers εi > 0 and µi = min{d(v,E) : v ∈ Vi, E ∈ Ei, v 6∈ E} ;
(di) a monotone surjective retraction fi−1 : Zi → Zi−1;
such that
(1i) Vi−1 $ Vi and Zi−1 $ Zi;
(2i) If T i

v ∈ Ti, then v is a vertex of T i
v, T i

v ∩ Zi−1 = {v}, and T i
v ⊆ B(v, εi−1

2 );

(3i) If |f−1i−1(z)| > 1, then z ∈ Vi−1 and f−1i−1(z) = T i
z ;

(4i) If v ∈ Vi ∩ Vj and 0 ≤ j < i, then T̂ i
v ∩ T̂ j

v = {v}.
(5i) εi <

1
4 min{εi−1,mesh(Vi), µi}.

Since Zn is a union of finite family of line segments and Vn is a finite subset of Zn, there
exists a finite family of disjoint triangles Tn+1 = {Tn+1

v }v∈Vn
⊆ R2 such that: v is a vertex

of Tn+1
v , Tn+1

v ∩ Zn = {v}, and Tn+1
v ⊆ B(v, εn2 ).

We define Zn+1 = Zn ∪
(⋃

v∈Vn
Tn+1
v

)
and fn : Zn+1 → Zn by

fn(z) =

{
v, if z ∈ Tn+1

v , v ∈ Vn,
z, if z ∈ Zn.

Put

En+1 =
( ⋃
E∈En

E(E)
)
∪
( ⋃
v∈Vn

E(Tn+1
v )

)
,

Vn+1 = {mE}E∈En ∪
( ⋃
v∈Vn

V(Tn+1
v )

)
,

µn+1 = min{d(v,E) : v ∈ Vn+1, E ∈ En+1, v 6∈ E},

and fix a positive real number εn+1 <
1
4 min{εn,mesh(Vn+1), µn+1}.

It is easy to see that the above properties (1i)− (5i) are satisfied for i = n+ 1. Denote
fji = fj ◦ fj+1 ◦ · · · ◦ fi−1 : Zi → Zj for j < i − 1, fjj+1 = fj , and fjj = idZj

. Then for
0 < i we have the following property:

(6i) If 0 ≤ i0 ≤ j ≤ i, then fi0i = fi0j ◦ fji.
We will prove an additional property that holds for i > 0:
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v0 v1

Z2 and the set of vertexes V2

(7i) If u ∈ Vi0 , 0 ≤ i0 < i, then f−1i0i
(u) ⊆ B(u, εi0).

Let z ∈ f−1i0i
(u). Then z ∈ T i

v ∈ Ti, where v ∈ Vi−1, 0 ≤ i0 < i and fi0i(v) = u. If v = u,

then T i
u ⊆ B(u, εi−1

2 ) from (2i). Thus z ∈ B(u, εi−1

2 ) ⊆ B(u, εi0).
Otherwise z ∈ T i+1

v ∈ Ti+1, where v ∈ Vi, 0 ≤ i0 < i and fi0i(v) = u. Let i = i0 + n
and fji(v) = uj ∈ Zj for j = i0 + 1, . . . , i− 1. Then u = fi0(ui0+1), fj(uj+1) = uj for any
j, and v = fi(z).

From definition of fn, the choice of εn, and (2j) we obtain:

d(u, z) ≤ d(u, ui0+1) + d(ui0+1, ui0+2) + · · ·+ d(ui0+n−1, v) + d(v, z) <

<
εi0
2

+
εi0+1

2
+ · · ·+ εi0+n−1

2
+
εi
2
<
εi0
2

(
1 +

1

4
+ · · ·+ 1

4n
+ . . .

)
< εi0 .

We set Z = cl (
⋃∞

n=0 Zn) and Z∞ = lim
←−
{Zn, fn}.

Theorem 4.1. Z∞ = lim
←−
{Zn, fn} is homeomorphic to Z = cl (

⋃∞
n=0 Zn).

Proof. We define h : Z∞ → Z by h({zi}) = lim zi. From [1, Theorem I] and its proof it
follows that h is a homeomorphism if the following conditions are satisfied:

(a) For each k0 ∈ N and each ε > 0, there exists δ > 0 such that if k0 < k, p, q ∈ Zk and
d (fk0k(p), fk0k(q)) > ε, then d(p, q) > δ.

(b) For each ε > 0 there exists k0 ∈ N such that diam
(⋃

k>k0
f−1k0k

(z)
)
< ε for any z ∈ Zk0

.

To prove (a) note that lim
i→∞

(mesh(Ei)) = 0. Thus there exists m > k0 with mesh(Em) <
ε
4 . We have

εm <
1

4
mesh(Vm) ≤ 1

4
mesh(Em) <

ε

4

For each k ≥ k0 the map fk0k : Zk → Zk0 is uniformly continuous. So, for each
k ∈ {ko, k0 + 1, . . . ,m} there exists δk > 0 such that if a, b ∈ Zk and d(a, b) ≤ δk, then
d(fk0k(a), fk0k(b)) ≤ 4εm. Set

δ = min {εm, δk0
, δk0+1, . . . , δm} .

Let p, q ∈ Zk and d (fk0k(p), fk0k(q)) > ε. Then fk0k(p) 6= fk0k(q).
If k ∈ {k0, k0 + 1, . . . ,m}, then d(fk0k(p), fk0k(q)) > 4εm. So d(p, q) > δk > δ.
Suppose that k > m. Then Zk0 $ Zm $ Zk. We have three cases to consider.
1st case : p, q ∈ Zm. Then fmk(p) = p and fmk(q) = q. So, fk0m(p) = fk0k(p) and

fk0m(q) = fk0k(q). Thus d (fk0m(p), fk0m(q)) > ε > 4εm and, therefore, d(p, q) > δm ≥ δ.
2nd case : p, q ∈ Zk \ Zm. Then fmk(p), fmk(q) ∈ Vm. Thus d(fmk(p), fmk(q)) ≥

mesh(Vm) > 4εm. From (7m): d(p, fmk(p)) < εk0
and d(q, fmk(q)) < εk0

. Since εk0
< εm,

it follows that

d(p, q) ≥ d(fmk(p), fmk(q))− d(q, fmk(q))− d(p, fmk(p)) > 2εm > δ.
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3d case : p ∈ Zm and q ∈ Zk \ Zm. Then p = fmk(p) ∈ Ep ∈ Em and fmk(q) = vq ∈
Vm. Since p, q 6∈ Zk0 , it follows that Ep ⊆ f−1k0m

(fk0k(p)) and vq ∈ f−1k0m
(fk0k(p)). Since

fk0k(p) 6= fk0k(q), f−1k0m
(fk0k(p)) ∩ f−1k0m

(fk0k(q)) = ∅. Hence, vq 6∈ Ep. From the choice of
µm it follows that

d(vq, p) > d(vq, Ep) > µm > 4εm.

Since d(vq, q) < εm from (7m), we conclude that

d(p, q) ≥ d(p, vq)− d(q, vq) > 4εm − εm > εm > δ.

To prove (b) take any ε > 0. Since lim
i→∞

εi = 0, there exists k0 ∈ N such that 2εk0
< ε.

If z ∈ Zk0 \
(⋃

i≥k0
Vi
)
, then

⋃
k>k0

f−1k0k
(z) = {z}. So (a) holds.

Let z ∈ Zk0
∩
(⋃

i≥k0
Vi
)

and let iz ≥ k0 be the least integer such that z ∈ Viz . If

k0 < k ≤ iz, then f−1k0k
(z) = {z}. Hence,

⋃
k>k0

f−1k0k
(z) =

⋃
k>iz

f−1izk
(z).

From the properties (3k) and (7k) with k > iz it follows that
⋃

k>iz
f−1izk

(z) ⊆ B(z, εiz ).
Thus again

diam
( ⋃
k>k0

f−1k0k
(z)
)

= diam
( ⋃
k>iz

f−1izk
(z)
)
< 2εiz < 2εk0 < ε.

Theorem 4.2. Z is a one-dimensional cactoid such that any two cut points of Z can be
joined by a simple cyclic chain that is a cactus.

Proof. Since Z∞ = lim
←−
{Zn, fn}, where each Zn is locally connected and each fn is a mono-

tone surjection, it follows that Z∞ is a locally connected continuum (see [7, 8.47]). Thus Z
is a locally connected continuum from Theorem 4.1.

Let a, b ∈ c(Z), a 6= b. If a, b ∈
⋃∞

i=0 Zk, then there exists a cactus Zk such that a, b ∈ Zk.
Thus a and b can be joined by a simple cyclic chain that is a cactus. It suffices to show that
Z \

⋃∞
i=0 Zk contains no cut points of Z. Suppose, on the contrary, that there exists a cut

point z ∈ Z \
⋃∞

i=0 Zk. Then Z \ {z} = O1 ∪O2, where O1 and O2 are disjoint, non empty,
and open subsets of Z. Since

⋃∞
i=0 Zk is connected, we may suppose that

⋃∞
i=0 Zk ⊆ O1.

Then O2 ∩ (
⋃∞

i=0 Zk) = ∅. Hence, cl (
⋃∞

i=0 Zk) 6= Z which is a contradiction.

Let S be a true cyclic element of Z. Then E(S) = ∅. Hence, ordZ(x) ≥ ordS(x) > 1 for
each x ∈ S. Therefore, S ∩E(Z) = ∅. If S ⊆

⋃∞
i=0 Zn, then S is a simple closed curve from

construction of Zn. It suffices to prove that Z \
⋃∞

i=0 Zn ⊆ E(Z).

Let e ∈ Z \
⋃∞

i=0 Zi and ε > 0. It remains to find an open subset Ue of Z such that
e ∈ Ue ⊆ B(e, ε) and bdZ(Ue) consists of one point.

The map h : Z∞ → Z defined by h({zi}∞i=0) = lim zi is a homeomorphism from the
proof of Theorem 4.1. Let h−1(e) = {ei}∞i=0. Then fi(ei+1) = ei ∈ Zi for any i. Since
e = lim ei 6∈

⋃∞
i=0 Zi and each Zi is compact, it follows that {ei}∞i=0 * Zi for any i.

Therefore, without loss of generality we may suppose that ei 6= ei+1 for any i. Since
fi(ei+1) = ei 6= ei+1, it follows that ei ∈ Vi.

There exist i0, j0 ∈ N such that ei ∈ B(e, ε2 ) for any i ≥ i0 and εj <
ε
2 for any j ≥ j0.

Let k0 = max{i0, j0}. Then ek ∈ B(e, ε2 ) and εk <
ε
2 for any k ≥ k0.

Let Ue be a component of Z\{ek0
} containing e. Since Z is locally connected, Ue is open.

Also bdZ(Ue) = {ek0}. It is easy to see that Ue = {e}∪
(⋃∞

k=k0
T k+1
ek

)
. Let z ∈ Ue. Then z ∈

T k+1
ek

for some k ≥ k0. Therefore d(z, ek) <
εk0

2 < ε
2 . Thus d(e, z) ≤ d(z, ek) +d(e, ek) < ε.

Hence, z ∈ B(e, ε).
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5 The proof of universality of Z

Theorem 5.1. Z is a universal element in the family of all one-dimensional cactoids X
such that any two cut points of X can be joined by a simple cyclic chain that is a cactus.

Proof. The one-dimensional cactoid X, whose any two cut points can be joined by a simple
cyclic chain that is a cactus, is homeomorphic to X∞ = lim

←−
{Xk, gk}, where the inverse

sequence {Xk, gk}∞k=1 satisfies the conditions of Theorem 3.5. Also Z is homeomorphic to
Z∞ = lim

←−
{Zk, fk} by Theorem 4.1. It suffices to find an embedding of X∞ into Z∞.

We set Q(X) = {tk}∞k=1 and Q(Z) =
⋃∞

k=1 Vk, where the point tk satisfies condition
(iii) of Theorem 3.5 and Vk is a set of vertices of cactus Zk. Note that Xk ∩ Q(X) is a
countable subset of Xk and Zk ∩Q(Z) is countable and dense in Zk for each k.

Observe that X1 is either a point or a simple closed curve such that there exist a unique
point t1 ∈ X1 with |g−11 (t1)| > 1. We also observe that Z1 = v0v1 ∪T 1

v0 ∪T
1
v1 , where T 1

vi are
triangles. If X1 = {t1}, then h1 : X1 → Z1 with h1(t1) = v1 is a homeomorphism. If X1

is a closed curve, then there exist a homeomorphism h1 : X1 → T 1
v1 such that h1(t1) = v1

and h1(X1 ∩Q(X)) ⊆ T 1
v1 ∩Q(Z). We put n1 = 1.

Suppose that k ∈ N \ {0} and for each j ∈ 1, ..., k we have define an integer nj and an
embedding hj : Xj → Znj

such that:
(1j) hj(Xj ∩Q(X)) ⊆ Znj

∩Q(Z);
(2j) the following diagram is commutative for j > 1:

?

Xj−1

Znj−1

hj−1

fnj−1nj

gj−1

�

�

Znj

?

Xj

hj

(3j) nj > nj−1 for j > 1.
We will define an integer nk+1 and an embedding hk+1 : Xk+1 → Znk+1

that satisfy the
properties (1k+1)− (3k+1).

Consider the monotone retraction gk : Xk+1 → Xk and the embedding hk : Xk → Znk
.

By Theorem 3.5 there is a unique tk ∈ Xk such that g−1k (tk) is non degenerate. We denote
hk(tk) = zk. From (1k) we have zk ∈ Znk

∩ (
⋃∞

i=1 Vi). Since Vi ⊆ Vi+1 for all i, there exists
m > 1 such that zk ∈ Vnk+m. Put nk+1 = nk +m+ 1.

Since Znk
⊆ Znk+m, hk is also embedding of Xk into Znk+m. Observe that Znk+m+1 =

Znk+m ∪
(⋃

v∈Vnk+m
Tnk+m
v

)
. Thus zk is a vertex of some triangle Tnk+m+1

zk
⊆ Znk+m+1

such that Tnk+m+1
zk

∩ Znk+m = {zk}.
If g−1k (tk) = A is a free arc of Xk+1, then A ∩Xk = {tk} and tk is an end point of A.

Let E be one of the sides of triangle Tnk+m+1
zk

with zk ∈ E. There exists a homeomorphism
hA : A → E such that hA(tk) = zk and hA(A ∩ Q(X)) ⊆ E ∩ Q(Z), because E ∩ Q(Z) is
dense in E.

We define a homeomorphism hk+1 : Xk+1 = Xk ∪A→ Znk+1
by

hk+1(x) =

{
hA(x), x ∈ A
hk(x), x ∈ Xk

If g−1k (tk) = S is a closed curve of Xk+1, then S∩Xk = {tk}. There exists a homeomor-
phism hS : S → Tnk+m+1

zk
such that hS(tk) = zk and hS(S ∩ Q(X)) ⊆ Tnk+m+1

zk
∩ Q(Z),

because Tnk+m+1
zk

∩Q(Z) is dense in Tnk+m+1
zk

.
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We define a homeomorphism hk+1 : Xk+1 = Xk ∪ S → Znk+1
by

hk+1(x) =

{
hS(x), x ∈ S
hk(x), x ∈ Xk

From (2j) and (3j), j > 1, the map h∞ : lim
←−
{Xk, gk}∞k=1 → lim

←−
{Znk

, fnk
}∞k=1 defined by

h∞ ((xk)∞k=1) = (fnk
(xk))

∞
k=1 is continuous and one-to-one (see [7, 2.22]). Since X is a con-

tinuum, h∞ is embedding. Since inverse sequence {Znk
, fnk
}∞k=1 is confinal in the sequence

{Zk, fk}∞k=1, there exists a homeomorphism H : lim
←−
{Znk

, fnk
}∞k=1 → lim

←−
{Zk, fk}∞k=1 = Z.

Hence, H ◦ h∞ is an embedding of X into Z.

6 Conclusions and problems. In this section we refer only to continua consisting of
more than one point. A continuum X is called totally regular [8] if for any countable subset
Q of X, each x ∈ X, and each ε > 0, there exists an open neighborhood U of x in X such
that diam (U) < ε, bd(U) is finite, and bd(U)∩Q = ∅. Clearly, any graph is totally regular
continuum. Totally regular continua were studied also [11] under the term ”continua of
finite degree”. Since the property of being a totally regular continuum is cyclicly extensible
and reducible [11, (4.2)], any cactoid is totally regular.

The order of totally regular continuumX is the ordinal number ord(X) = sup{ord(p,X) :
p ∈ X}. Note that [13, (3.2), p. 49] ord(X) ≥ 2. If ord(X) = 2, then X is an arc or a
simple closed curve [7, Theorem 9.5]. The cactoid Z constructed in section 4 is a totally
regular planar continuum of order ω.

R. D. Buskirk proved that that there exists a universal totally regular continuum [4].
The natural problems arisen are the following:

1. Does there exists a universal one-dimensional cactoid.
2. Does there exists a universal one-dimensional cactoid in the family of one-dimensional

cactoids of order ≤ n, where n > 2.
3. Does there exists a universal planar totally regular continuum.
4. Does there exists a universal planar totally regular continuum in the family of totally

regular continua of order ≤ n, where n > 2.
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