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Abstract. We propose a nonlinear network autoregressive (NNAR) model to investi-
gate the dynamics of complex network time series with high-dimensionality and nonlin-

ear spatial-temporal dependence. We assume that the current network at a given time

point non-linearly depends on the lagged values, neighborhood effect, and a set of node-
specific covariates via a nonparametric smooth function. We conduct estimation using

the profile least square method where the unknown link function is estimated using the

local linear regression technique. We demonstrate the application of the NNAR with
the daily natural gas flows in a real-life high-pressure gas pipeline network, where the

response is the high dimensional vector of gas flows at 128 nodes. The NNAR model

provides more accurate forecasts of the gas flow network compared to the linear net-
work vector autoregression model proposed by Zhu et al. (2017) and some multivariate

autoregression and naive benchmark models.

1. Introduction

In this data-rich era, the development in data acquisition and storage has made it avail-

able to collect large-scale network data in many fields varying from biomedical sciences (Wu

et al. 2014) and physics (Benson et al. 2016) to finance (Chen et al. 2018; Zhu et al. 2019)

and socialization (Wasserman & Faust 1994; Zhu et al. 2017). Network data contains rich

information for statistical inference, while the complexity of data with high-dimensionality,

spatial-temporal dependence structure, non-linearity, and dynamic evolution creates extra

challenges for statistical modeling and computation. To describe the dynamics and make

a prediction of this complex data effectively and efficiently, it requires more flexible time

series modeling in addition to the conventional tools that are designed for linear and low-

dimensional time series data.
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Let Yit be the continuous response collected from subject (node) i at time point t

with 0 < t ≤ T (e.g., natural gas flows at certain location). Accordingly, denote Yt =

(Y1t, ..., YNt) ∈ RN as an ultra-high dimensional vector with a large number of total nodes

N . We assume that Yit exhibits serial dependence on previous values and has certain spatial

correlation among the nodes, i.e., network structure, and the dependence is unnecessary to

be linear. In the literature of time series, some common univariate models such as AutoRe-

gressive (AR) and AutoRegressive Moving Average (ARMA) based models have been well

studied to forecast the dynamics of serially dependent time series in both theory and applica-

tions. However, these models study each time series Yit separately, and the rich correlation

information across different time series, e.g. the lead-lag dependence, is lost. Multivariate

models such as Vector Autoregression (VAR) (Lütkepohl 2005; Box et al. 2015) are pro-

posed with the information of multiple time series fully considered. On the other hand,

the linear relationship assumption may not be valid in practice. Many nonlinear models

have been proposed, such as functional coefficient autoregressive models for univariate time

series (Huang & Shen 2004; Cai et al. 2000) and nonlinear VAR models for multivariate

time series (Härdle et al. 1998); See also Fan & Yao (2008) for a good reference. However,

in a high-dimensional case with sufficiently large N , these linear and nonlinear multivariate

regression models will suffer from the “curse of dimensionality”, which will cause a problem

of overfitting and overparameterization, leading to poor out-of-sample forecast accuracy as

well. Thus it is necessary to reduce dimension and many techniques have been therefore

proposed, see e.g. factor modeling (Pan & Yao 2008; Park et al. 2009) and penalty estima-

tion (Hsu et al. 2008). However, besides the serial and cross dependence, there could exist

network information among the N nodes which needs to be taken into consideration.

The recent development of network modeling provides a wide variety of tools and methods

to model the high-dimensional and complexly structured time series. In the literature,

researchers mainly focus on conducting static analysis of network structure (Lee et al. 2010;

Chen et al. 2013; Zhao et al. 2012; Zhou et al. 2017) or investigating the inherent dynamics

of the network over time (Chen et al. 2018; Zhu & Pan 2018; Zhu et al. 2019). Among

others, Zhu et al. (2017) proposed the linear network vector autoregression (NAR) model to

study the dynamics of large scale network with the network information among individuals
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incorporated, while dependence between the response and explanatory variables is assumed

to be linear. Though convenient, in reality, linear regression-based models may not capture

the data-driven complex relationship with both high-dimensionality and non-linearity. The

single-index model (Carroll et al. 1997) is a prevalent way to flexibly handle the data-

driven non-linearity and circumvent the problem of high-dimensionality simultaneously.

For example, Jia et al. (2019) proposed partial autoregression single-index (PASI) model

to handle linear network dependence and nonlinear influence of static covariates; See also

Wang & Yang (2009), Yu & Ruppert (2002), Li & Genton (2009), and Liang et al. (2010) for

more reference of single-index model. However, Jia et al. (2019) did not consider the non-

linearity of network dependence. In our work, we propose a flexible semiparametric model

also by combining the single-index technique and dynamic autoregression network model,

which inherits the advantages of both models and handles the non-linearity of network

dependence as well.

We propose a nonlinear network autoregressive (NNAR) model to investigate the dynam-

ics of network time series with nonlinear spatial-temporal dependence in high-dimensional

framework, and simultaneously allow the measurement of the nonlinear impact of multivari-

ate node-specific covariates, if applicable. In particular, we assume response Yit depends

on a single index defined on three items: its own lagged value, the weighted average of its

neighbors, and exogenous covariates via a nonlinear link function, referring as the momen-

tum effect, the network effect and the nodal effect by Zhu et al. (2017), respectively. The

link function is assumed to be unknown and smooth. We conduct estimation using the

profile least square method (Fan & Gijbels 1996) where the link function is estimated using

the local linear regression technique. This paper makes contributions in two aspects: (1)

We propose a flexible nonlinear network autoregressive model to investigate the dynamics of

large-scale network with complex spatial-temporal dependence. The proposed model helps

capture the nonlinear network dependence and node-specific exogenous covariates’ impact.

While Zhu et al. (2017) and Jia et al. (2019) only considered the linear network depen-

dence. (2) We demonstrate the application of the NNAR model on forecasting gas flows at

128 distribution nodes of a high-pressure natural gas transmission network in Europe. It



4 Xiaofei Xu and Nazgul Zakiyeva

provides a more accurate out-of-sample forecast for the gas flows network compared with

the linear network model and some multivariate time series and naive benchmark models.

The rest of the paper is organized as follows. Section 2 details the NNAR model and

parameter estimation procedure using the profile least square method. Section 3 presents

the gas flow network data on an energy transmission system. Section 4 implements the

NNAR model to investigate the dynamics of gas flows network and conducts forecasting

with comparison to several alternative models. Section 5 concludes.

2. Method

In this section, we present the nonlinear network autoregressive (NNAR) model and the

estimation procedure using the profile least square method.

2.1. The NNAR model. Recall that the number of nodes in the network is N , and Yit

is the continuous response collected from node i at time point t with 0 < t ≤ T and

1 ≤ i ≤ N . Denote Yt = (Y1t, ..., YNt) ∈ RN an ultra-high dimensional vector with a

large number of N . In addition, for each node i, assume a p−dimensional node-specific

random vector Zit = (Z
(1)
it , . . . , Z

(p)
it )> ∈ Rp can be observed. To model Yt, we propose the

following nonlinear network autoregressive model (NNAR):

(1) Yit = g

(
β1

N∑
j=1

wijYj(t−1) + β2Yi(t−1) + Z>i(t−1)γ

)
+ εit,

where g(·) is an unknown link function which is assumed be smooth. wij ∈ [0, 1] is a given

weight to measure the strength of the connection between node i and j for i, j = 1, · · · , N .

In specific, if we know the adjacency matrix of the network structure, which can be defined

as A = (aij) ∈ RN×N , where aij = 1 if there exists a relationship between node i and j, and

aij = 0 otherwise, then wij is commonly defined as wij = aij/ni where ni =
∑

j 6=i aij is the

total number of nodes that node i is connected, i.e. out-degree (Wasserman & Faust 1994).

Such a choice is quite common in many kinds of research like graphical and social network

analysis (Bondy & Murty 1976; Zhu et al. 2017). However, in our real data implementation

to natural gas flow network at next section, the adjacency matrix for the gas network is

unknown, we thus define wij as the inverse of the shortest path between the gas node

i and j, with further located nodes given smaller weight. The quantity
∑N

j=1 ωijYj(t−1)
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characterizes the average impact from the network to ith node at time t− 1. Its associated

parameter β1 is referred as the network effect. The term Yi(t−1) is the autoregressive term

which stands for the serial dependence and β2 is the corresponding parameter. The term

Z>i(t−1)γ evaluates the influence of exogenous impact to the ith node at time t − 1, where

γ = (γ1, . . . , γp)> ∈ Rp is the associated coefficient (i.e. exogenous nodal effect). Moreover,

εit is the error term, we assume that it is independent to response and exogenous covariates,

i.e., E(εit, Yis) = 0 and E(εit, Z
(j)
is ) = 0 for any s < t and j = 1, · · · , p, and follows normal

distribution with εit ∼i.i.d N(0, σ2).

For notation simplicity, let β = (β1, β2)> ∈ R2, and θ = (β>,γ>)> ∈ Rp+2 standing

for the vector of all the unknown parameters. We further employ the profile least-square

estimation technique to estimate θ and the unknown link function g(·). We rewrite the

NNAR model in (1) as

Yit = g

(
β1

N∑
j=1

wijYj(t−1) + β2Yi(t−1) + Z>i(t−1)γ

)
+ εit,(2)

= g

(
X>itθ

)
+ εit,

where Xit = (
∑N

j=1 wijYj(t−1), Yi(t−1),Z
>
i(t−1))

> ∈ Rp+2 is the variable vector consisting of

the network effect, lag effect and exogenous nodal effect to node i at time t− 1. To ensure

the identification, we set ||θ||2 = 1 with the first element positive, where || · ||2 is the L2

norm.

2.2. Estimation. In semiparametric models, it is popular to estimate the unknown para-

metric components using the profile likelihood approach, see Liang et al. (2010). We apply

this technique for estimating parameter θ. First we start estimating the nonlinear link

function g(·) for a given parameter value θ using the local linear approximation method

(Fan & Gijbels 1996). In particular, by defining uit = X>itθ ∈ R we linearly approximate

the function g(·) at a given point u0. Since the unknown function g(·) is assumed to be

smooth, we approximate it locally by a linear function (Taylor expansion),

g(u) ≈ g(u0) + g′(u0)(u− u0), for u ∈ u0 ± h,

where h is a bandwidth referring to the size of the neighborhoods that the linear approxi-

mation holds. For notation simplicity, denote a = g(u0), and b = g′(u0). This leads to the
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following locally approximated NNAR model:

Yit = g(uit) + εit,

≈ a+ b(uit − u0) + εit, uit ∈ u0 ± h.

We consider to estimate the local parameters a and b by minimizing the below objective

function using the weighted least squares method:

(3) S(a, b) =

T∑
t=1

N∑
i=1

(
Yit − a− b(uit − u0)

)2

Kh(uit − u0),

where Kh(·) = K(·/h)/h, and K(·) is a nonnegative unimodal kernel function. In our study,

we use the Gaussian kernel function and select the optimal bandwidth via cross-validation

(CV) method.

By computing the derivatives of S(a, b) with respect to a and b, we find the minimizers

of Eq.(3) for a given value of θ:

(4) ĝ(u0;θ) = â|θ =
K20(u0,θ)K01(u0,θ)−K10(u0,θ)K11(u0,θ)

K00(u0,θ)K20(u0,θ)−K2
10(u0,θ)

,

where Kj`(u,θ) =
∑T

t=1

∑N
i=1[Kh(X>itθ − u)](X>itθ − u)jY `

it with exponents j = 0, 1, 2 and

` = 0, 1. The proof is given in the appendix.

Next we estimate the parameter θ using the estimates of the nonparametric component

ĝ(u0;θ) in Eq. (4). If assuming u0 = X>itθ, we have Yit ≈ g(X>itθ;θ) + εit. We then

obtain the estimator θ̂ by minimizing the following profile least-square function following

the assumption of Jennrich (1969):

(5) Q(θ) =

T∑
t=1

N∑
i=1

{
Yit − ĝ(X>itθ;θ)

}2

.

Since there is no closed-form solution for the estimate θ in above Eq.(5), we apply stochastic

gradient descent algorithm (Kushner & Yin 2003) to iteratively update the estimations

by minimizing the above objective function. The calculation stops when the parameters

converge, and we set the final iterative estimator as θ̂.

Finally, plugging in the optimal value θ̂ to Eq.(4), and replacing the notation of u0 with

a general parameter symbol u, we have the following estimate of link function g(·)

(6) ĝ(u; θ̂) = â|θ̂ =
K20(u, θ̂)K01(u, θ̂)−K10(u, θ̂)K11(u, θ̂)

K00(u, θ̂)K20(u, θ̂)−K2
10(u, θ̂)

,

where Kj`(u,θ) has the same definition as before.
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3. Data

Natural gas has become an important and clean energy source for power systems with

its advantages varying from lower pollutant emission and smaller construction period, to

higher efficiency of conversion and loading. About 24% of the worldwide energy demand is

met by natural gas in 2018 (BP 2019). In particular, natural gas is a key energy resource

for Europe and accounts for about 20% of the European energy demand (Petkovic et al.

2019). Natural gas is transported through transit countries and to the local distribution

nodes through the high-pressure transmission pipeline network which is operated by so-

called transmissions system operators or TSOs. The European gas market is moving to

more short-term operations, for example, day-ahead contracts. This increases the necessity

of modeling the underlying network dynamics of future gas flows for not only one node or a

few nodes, but large-dimensional nodes in the transmission network. Accurate short-term

forecasting of natural gas demand and supply is of importance for TSOs to monitor the

situation and conduct operational decisions to ensure the safety of supply. There exists rich

literature in natural gas forecasting, see e.g. Stoll & Wiebauer (2010), Soldo (2012), Banda

& Herty (2008), Koch et al. (2015), Chen et al. (2018), and Chen et al. (2020). However, the

dynamics of gas flow network structure has less been explored in the context of forecasting.

Our work is motivated by the challenging problem of short-term forecasting of gas sup-

ply and demand in the high-dimensional gas transmission network. We collect the high-

resolution natural gas flow data atN=128 nodes in the gas pipeline network in one European

country. The daily average gas in-flow or out-flow is observed for the consecutive T=637

days over 22 months. The gas flow network data is standardized with zero mean and unit

variance to use because of the significant scale difference of flow values at various nodes.

The response (i.e. Yit) considered here is the daily average gas flow of node i ∈ {1, · · · , 128}

at day t ∈ [1, T ]. In addition, we consider the daily average air temperature at each node

as an exogenous variable. Given that the natural gas is being widely used for heating pur-

poses in European countries, the temperature is usually considered as a possible affected

factor in forecasting gas flows (Chen et al. 2018). As gas flows in/out through all nodes

in the network where gas nodes are connected with a pipeline, and it is unclear about the

adjacency matrix A = (aij) of the network as well, we define the weight matrix, denoted as
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W with the (i, j)−th element being the weight wij , as the inverse shortest path among each

pair of nodes i and j. Here, the shortest path is defined as the Euclidean distance between

two nodes.

Figure 1 displays the time series plot of gas flows at 25 arbitrarily selected nodes as

a graphical demonstration. We can see similar dynamics of gas flow time series at these

nodes, and synchronous behaviors associating with seasons. Figure 2 displays the lag-1

sample cross-correlation matrix of natural gas flows at 128 nodes. We can see a strong

correlation among the 128 nodes. Figure 3 displays the correlation coefficients between

variables from day 1 to day 637. In the figure, the columns represent the response variable

of gas flow Yt, network term WYt−1 referring to the network impact, lag-1 gas flow variable

Yt−1 representing momentum impact, and the temperature variable Zt−1 representing node-

specific exogenous covariate’s impact from left to right respectively. As shown, the Pearson

linear correlation coefficients between Yt and three regressive terms are 0.48, 0.84, and -0.59

respectively, which indicate the existance of correlation among them. In addition, we can

see some nonlinear dependence from the scatter plots. These motivate the use of the NNAR

model which helps jointly analyze the nonlinearity, momentum impact, network impact, and

exogenous variable effect simultaneously to utilize the rich information.

4. Forecasting Results

In this section, we demonstrate the forecasting performance of the NNAR model using

the natural gas network data described in Section 3. We perform out-of-sample forecasts of

daily natural gas and compare it with several alternative methods.

4.1. Setup and evaluation. We divide the network dataset into two phases with the first

500 days used as training period (T1), which covers 80% of the total period, and 137 days

from day 501 to the end at day 637 as the forecasting period (T2). We train the model and

estimate parameters in T1, and select the optimal bandwidth as h = 4 via cross-validation.

As alternative methods, we consider the linear NAR model (Zhu et al. 2017), VAR and

naive methods including Random Walk and Sample Mean to forecast 1-day ahead daily

natural gas flows of 128 nodes. The NAR model considers linear network dependence

among nodes. VAR method is popular in forecasting gas consumption, and we select the
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Figure 1. Time series plot of gas flows at 25 illustrative nodes from day
1 to day 637.

lag order of VAR via Bayesian Information Criteria (BIC). In addition, naive forecasting

methods of Sample Mean (SM) and Random Walk (RW) are used as benchmark models.

Here, at time t, the SM model forecasts h-step-ahead value by taking the average of all

observed data up to time t, that is, Ŷi,t+h = 1
t

∑t
j=1 Yi,j , for i = 1, . . . , N.

We evaluate the relative forecast accuracy according to the average forecast error of

individual nodes in the network. We use mean absolute percentage error (MAPE) as an

error evaluation criteria. The smaller the MAPE, the better accuracy is obtained by the

forecast model. First, for each node i = 1 . . . N we obtain daily predicted gas flow series

Ŷit. The 1-day-ahead prediction performance is evaluated over the forecasting period of T2

for each node. The MAPE for each node i is obtained as:

MAPEi =
1

|T2|
∑
t∈T2

∣∣∣ Ŷit − Yit
Yit

∣∣∣,
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Figure 2. Sample lag 1 cross-correlation matrix of 128 nodes.

for i = 1, · · · , 128, where |T2| is the length of forecasting period T2. Average forecast

performance evaluation is obtained via an average MAPE as

aMAPE =

∑N
i=1 MAPEi

N
.

4.2. Results. We demonstrate the 1-day-ahead out-of-sample forecasting results in the

large scale gas network. Table 1 reports the aMAPE and its standard deviation (sd) as

well as range over 128 nodes of de-standardized gas-flows for the NNAR model and the

alternative models. The MAPE over different models is compared in the boxplot of Figure

4. As can be seen, the NNAR model performs much better than the VAR model, the RW,

and the SM models with smaller aMAPE, smaller sd, and more narrow range. The NNAR

model slightly outperforms the NAR model with aMAPE of 13.06%, sd of 11.589%, and
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Figure 3. Correlation coefficients between variables from day 1 to day
637. The columns represent the response variable of gas flow Yt, net-
work term WYt−1 (the network impact), lag-1 gas flow Yt−1 (momentum
impact), and exogenous variable Zt−1(temperature) from left to right re-
spectively. Here, ρ is the Pearson correlation coefficient.

range [2.206%; 84.452%] respectively. Our model is only slightly better than the linear NAR

model, this could be because the non-linearity dependence in the gas network is not that

significant, and the linear network model can fit the gas date well. It is worth mentioning

that the NNAR model provides some advantage in flexibly capturing real network data with

either linear or nonlinear dependence structure compared to the linear NAR model.
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aMAPE (sd) Range

NNAR 13.060% (11.589%) [2.206%; 84.452%]
NAR 13.570% (12.398%) [2.104%; 88.598%]

Random Walk 47.405% (19.268%) [3.817%; 98.546%]
VAR (BIC) 38.405% (20.324%) [3.878%; 149.517%]

Sample Mean 38.405% (20.324%) [3.878%; 149.517%]

Table 1. The 1-day-ahead out-of-sample forecast performance of the
NNAR and alternative models. Average MAPE (aMAPE) and its stan-
dard deviation (sd) as well as range (Range) over 128 nodes are reported.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

MAPE

Nonlinear NAR

Linear NAR

VAR (BIC)

Random Walk

Sample Mean

Figure 4. The boxplot of MAPE of the NNAR and four alternative mod-
els over 128 nodes.

Figure 5 displays the 1-day-ahead out-of-sample forecasts of the NNAR model for daily

gas flow at the 25 nodes as an illustration from day 501 to the end at day 637. We can

see that the NNAR model successfully captures the dynamic evolution of the gas flow time

series at each individual node. The NNAR model also fits the observed gas flows well at the

rest nodes. In general, we find that our proposed model delivers stable forecast performance

no matter the node’s type and dynamic. We have to mention that since we analyze the

gas network partially i.e. with a selected number of gas nodes, and the nodes connection

information in pipeline network is not clear as well, the conclusion from our modeling may

have some limitations.
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Figure 5. The daily gas flows and 1-step-ahead forecast of the NNAR
model at 25 nodes from day 501 to day 637. The data are normalized to
display.

5. Conclusion

We propose a nonlinear network autoregressive model to investigate the complex dy-

namics of high-dimensional network with nonlinear spatial-temporal dependence structure,

where the nonlinear impact of node-specific exogenous covariates is incorporated simul-

taneously. The proposed model assumes that the current network at a given time point

non-linearly depends on three items: the past values, network effect, and exogenous co-

variates via a nonlinear smooth function. We conduct estimation using the profile least

square method where the unknown link function is estimated via the local linear regression

technique. We demonstrate the application of the NNAR with the daily natural gas flows

in a real-life high-pressure gas pipeline network, where the response is the high dimensional
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vector of gas flows at 128 nodes. The NNAR model provides more accurate forecasts of

the gas flow network compared with several alternative models. It shows that the NNAR

model has some advantages in flexibly capturing real-life network data with either linear or

nonlinear dependence structure compared to linear models.
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Appendix: Estimation derivation

Here we describe the estimation of the nonlinear function g in more detail. First, we

write the NNAR model for node i at time point t as follows,

Yit = g(X>itθ) + εit,

and define uit = X>itθ. Then we rewrite the model in terms of uit as

Yit = g(uit) + εit.

We assume unknown link function g(·) is second order differentiable. At a given point u0,

we consider to approximate the function g(·) by their first order Taylor’s expansion with

respect to u as

g(u) = g(u0) + g′(u0)(u− u0), for u ∈ u0 ± h,

where h is a bandwidth. Denote a = g(u0), and b = g′(u0), we can estimate the nonlinear

function g by minimizing the following objective function using the weighted least square

method,

(A.1) S(a, b) =

T∑
t=1

N∑
i=1

[Yit − a− b(uit − u0)]2Kh(uit − u0).

To find the minimizer of local parameters a and b in (A.1), we take its derivatives with

respect to a and b, respectively, then we have

∂S

∂a
=

T∑
t=1

N∑
i=1

[Yit − a− b(uit − u0)]Kh(uit − u0),

∂S

∂b
=

T∑
t=1

N∑
i=1

[Yit − a− b(uit − u0)](uit − u0)Kh(uit − u0).

Setting the above two derivatives to zero, we obtain

(A.2)

T∑
t=1

N∑
i=1

[Yit − a− b(uit − u0)]Kh(uit − u0) = 0,

and

(A.3)

T∑
t=1

N∑
i=1

[Yit − a− b(uit − u0)](uit − u0)Kh(uit − u0) = 0.

From (A.2) we obtain the following estimate for b as

(A.4) b̂ =

∑T
t=1

∑N
i=1 YitKh(uit − u0)− a

∑T
t=1

∑N
i=1Kh(uit − u0)∑T

t=1

∑N
i=1(uit − u0)Kh(uit − u0)

.
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For notation simplicity, we denote Kh(uit−u0) = K?
h. Plug (A.4) into (A.3), we can derive

the estimate of a as:

â =

∑T
t=1

∑N
i=1{K?

h

[∑T
t=1

∑N
i=1(uit − u0)2K?

h − (uit − u0)
∑T

t=1

∑N
i=1(uit − u0)K?

h

]
}Yit∑T

t=1

∑N
i=1{K?

h

[∑T
t=1

∑N
i=1(uit − u0)2K?

h − (uit − u0)
∑T

t=1

∑N
i=1(uit − u0)K?

h

]
}
.

Recall that g(u0) = a, we can directly get

(A.5) ĝ(u0;θ) = â|θ =
K20(u0,θ)K01(u0,θ)−K10(u0,θ)K11(u0,θ)

K00(u0,θ)K20(u0,θ)−K2
10(u0,θ)

,

where Kj`(u0,θ) =
∑T

t=1

∑N
i=1K

?
h(X>itθ − u0)jY `

it, with exponents j = 0, 1, 2 and ` = 0, 1.
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