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Abstract

Cellular automata have a configuration consisting of cells which may
become a state “live (infected)” and “dead (non-infected)”, and a con-
figuration evolves according to some rules with respect to time. Cellular
automata also have been used for simulations of spreading some disease.
We often have difficulty to estimate the evolution of configurations. In
this manuscript, we focus on a cycle graph with 2k(k > 1) cells and 1D
cellular automaton rule 90. We first show that any initial configuration
becomes a null configuration which consists of all “non-infected” cells with
a time period of a finite number. Furthermore, some theorems give an
estimation for the time period of an initial configuration until the null con-
figuration by the position of the cells without any simulation or numerical
computations.

1 Introduction
The system of cellular automata has been originally proposed by Stanislaw Ulam
and John von Neumann for studying the growth of crystals [3] and building self-
replicating robots [8]. Cellular automata have been used for representing some
epidemic models [11, 7, 2, 9] with 2D models as well. Recently, we have faced
some epidemic diseases such as influenza, MERS, SARS, and COVID-19, and
it is important to estimate how diseases are spread with respect to time in real
applications. Moreover, we often want to obtain an upper bound of the time
period until disappearing infected patients or epidemics.

Before considering 2D models, we focus on the cellular automata in cycle
graphs with 2k cells (k ∈ N, N is the set of natural numbers). We have a cell
whose stage can be either “live (1)” or “dead (0)”. We could consider the two
stages which are “infected” and “cured (non-infected)” in some graphs whose
edges represent the connection between people. A disease is often spread with
respected to time by the interaction with people, i.e. an infected person interacts
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Table 1: Cellular automaton rule 90

state 111 110 101 100 011 010 001 000
future state 0 1 0 1 1 0 1 0

with a non-infected person. Therefore, we need to define a rule how a disease
is spread in human society or some graphs.

In 1D cellular automata, there are 256 rules in total, and many rules have
been studied in [5, 10, 13]. This manuscript focuses on rule 90 which has known
as a generator of Sierpinski triangle [6, 12] (see Table 1). In the top of Table 1,
we have three consecutive cells (state) at time t. The center of the three becomes
0 or 1 at future time t+1 (future state) according to the neighbor cells. We can
interpret the state 101 at time t and the center cell 0 stays 0 at the future state as
follows; when two infected people around a non-infected person, the non-infected
person pays an attention of a disease carefully for not getting infected. This rule
is named rule 90 because 0∗27+1∗26+0∗25+1∗24+1∗23+0∗22+1∗21+0∗20 = 90.

We prepare an initial configuration which consists of cells in cycle graphs
and observe how the initial configuration evolves with respect to time according
to rule 90. This manuscript first shows that any initial configurations become
a null configuration which consists of “dead” cells with a time period of t,
t ≤ 2k−1. In real life applications, it is important to know the time period until
all people get cured from some disease. However, we often have some difficulty
of predicting the behavior of configuration in general cellular automata because
the evolution of configurations often acts “randomly” or “repeatedly” [12]. That
is because an initial configuration with a small number of “live” cells does not
usually mean that it becomes a null space quickly. Therefore, we detect a set of
initial configurations which become the null configuration with a time period of
t, where t = 2k−1, t ≤ 2k−2, etc. The objective of this manuscript is to estimate
an upper bound of a time period of a given initial configuration until the null
configuration without any simulations.

The remainder of this manuscript is organized as follows. First in Section 2,
we introduce cycle graphs and show any initial configuration becomes a null
configuration with a time period of some finite number. In Section 3, we de-
tect a set of initial configurations which becomes a null configuration with a
time period of t, t = 2k−1, t ≤ 2k−2. In Section 4, we give simulations with
some instances following our theorems. Finally, the manuscript is concluded in
Section 5.

2 Cycle graphs
We let Cn be a cycle graph consisting n vertices (cells) and n edges. We let
a vector of n consecutive cells in the cycle graph B = [b0, . . . , bn−1], where a
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cell at position i, bi ∈ {0, 1}. The cells bi (i = 0, . . . , n − 1) at the position i
are located clockwise. If a cell bi = 0, 1 holds, then a cell i is “dead”, “live”,
respectively. We note that b0 and bn−1 are connected with an edge. If all cells
bi (i = 0, . . . , n − 1) are 0, then the configuration is called a null configuration
Bnull. We also describe a configuration B(t) = [b

(t)
0 , . . . , b

(t)
n−1] at time t.

We again introduce rule 90 of 1D cell automaton (see Table 1). A future
state b

(t+1)
i at time t+1 and position i can be defined by two cells b

(t)
i−1, b

(t)
i+1 at

previous time t and position i − 1, i + 1 as follows, b(t+1)
i = b

(t)
i−1 + b

(t)
i+1 (mod

2). Therefore, the future configuration according to rule 90 can be obtained by
the following matrix multiplication in modulo 2.

B(t+1)T = Adj(Cn)B
(t)T (mod 2), (1)

where BT represents the transpose of a vector B and Adj(Cn) is an adjacency
matrix of Cn.

For instance, if an initial configuration at time 0 in a cycle graph with eight
cells is B(0) = [1, 1, 0, 0, 1, 0, 1, 1], then the next configurations at time 1, 2, 3 are
B(1) = [0, 1, 1, 1, 0, 0, 1, 0], B(2) = [1, 1, 0, 1, 1, 1, 0, 1], B(3) = [0, 1, 0, 1, 0, 1, 0, 1],
B(4) = [0, 0, 0, 0, 0, 0, 0, 0] according to rule 90. This instance never becomes a
null configuration because of “repeatedly”.

Although this manuscript focuses on rule 90, rule 60, 102, and 150 can be
expressed with some modifications for equation (1) (see details in Appendix A).
We also obtain the following equation by induction;

B(t)T = Adj(Cn)
t−1B(0)T (mod 2). (2)

This manuscript focuses on circle graphs Cn, n = 2k, a natural number
k > 1. We show a theorem that any initial configurations B(0) become a null
configuration Bnull with a time period of t, t ≤ 2k−1. We prove the theorem
combinatorically although the theorem has been proved polynomially [13]. For
the theorem, we first prepare some lemmas. We first introduce the feature of
an adjacency matrix. We note that the (i, j)th entry aij of Adj(Cn)

m counts
the number of walks (ways) of length m having start and end cells bi and bj ,
respectively [4].

Next, we consider Pascal’s triangle and values with rows 2k, 2k − 1 of the
triangle. At first, we consider values with 2kth row. We show that all values(
2k

n

)
except the two ends (n = 0, 2k) are even by using mathematical induction.

Lemma 2.1. If n, k ∈ N and 0 < n < 2k holds, then
(
2k

n

)
is even.

Proof. By induction, we assume that (x+ 1)2
k

= x2k + 1 (mod 2). We obtain

(x+1)2
k+1

= ((x+1)2
k

)2 = (x2k +1)2 = x2k+1

+2x2k +1 = x2k+1

+1 (mod 2).

We consider the values with 2k − 1th row of Pascal’s triangle. We show that
all values

(
2k−1
n

)
are odd by using lemma 2.1.
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Lemma 2.2. If n, k ∈ N and 1 ≤ k holds, then
(
2k−1
n

)
is odd.

Proof. All values
(
2k−1

n

)
in row 2k−1 of Pascal’s triangle are odd since all values

in row 2k is even except for the two ends
(
2k

0

)
,
(
2k

2k

)
by lemma 2.1.

Theorem 2.1. For a natural number k > 1, any initial configurations B(0) of
C2k become Bnull with a time period t, t ≤ 2k−1.

Proof. We first consider Adj(C2k)
2k−1 , and (i, j)th entry of Adj(C2k)

2k−1 rep-
resents the number of walks (ways) to reach a cell bi from a cell bj with length
2k−1. Without loss of generality, in cycle graphs we consider a cell b0. For the
convenience of proof, we consider the number of walks of length 2k−1 from b0
to bj , 0 ≤ j ≤ 2k−1 in a half circle.

The distance between bj and b0 is j, and we consider all possible walks to
get to bj from b0 with length 2k−1.

Let x and y, x, y ∈ N, be the number of lengths to clockwise and counter-
clockwise, respectively. Then, we obtain the following equations;

x+ y = 2k−1, x− y = j. (3)

We next obtain
x =

j + 2k−1

2
, y =

−j + 2k−1

2
. (4)

When j ∈ N is odd, x, y /∈ N, which means that the number of walks from b0 to
bj is 0. When j ∈ N is even, the number of walks from b0 to bj can be obtained
as follow; (

x+ y

x

)
=

(
2k−1

x

)
. (5)

In the case j = 2k−1,
(
2k−1

2k−1

)
= 1, and there is another way from the other half

circle, therefore there are two walks to b2k−1 .
In the other case 0 ≤ j ≤ 2k−1 − 2, we obtain 2k−2 ≤ x ≤ 2k−1 − 1 and(

2k−1

x

)
= 0, (mod 2) by lemma 2.1. Finally, we obtain Adj(C2k)

2k−1

= O in
modulo 2. We obtain Adj(C2k)

2k−1

B(0)T = OB(0)T = BT
null (mod 2).

By a similar manner of Theorem 2.1, when B(t+1) becomes a null configura-
tion at time t+ 1, the configuration B(t) has only two configurations. The first
case is a configuration with all “live” cells. The second case is a configuration
which locates “live” and “dead” cells alternately. We can confirm that with
some instances in Section 4.

3 Survival period
We consider a set of initial configurations which takes a time period of exactly
2k−1 until a null configuration. We first obtain a set of initial configurations
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which a time period of t, t ≤ 2k−1 − 1. The compliment of the obtained set is
a set that we want to obtain.

After that, we consider a set of initial configurations which takes a time
period of t, t ≤ 2k−2 until a null configuration.

Theorem 3.1. If
∑2k−1−1

i=0 b
(0)
2i or

∑2k−1−1
i=0 b

(0)
2i+1 is odd, then an initial configu-

ration B(0) = [b
(0)
0 , . . . , b

(0)

2k−1
] becomes Bnull with a time period of exactly 2k−1.

Proof. We again consider a half circle between a cell b0 and a cell bj , 0 ≤
j ≤ 2k−1. Let x and y, x, y ∈ N be the number of lengths to clockwise and
counter-clockwise, respectively. The distance between bj and b0 is j, where
0 ≤ j ≤ 2k−1 − 1. We obtain the following equations:

x+ y = 2k−1 − 1, x− y = j. (6)

We obtain
x =

j + 2k−1 − 1

2
, y =

−j + 2k−1 − 1

2
. (7)

When j is even, x, y /∈ Z, which means that the number of walks from b0 to bj
is 0. When j is odd, the number of walks from b0 to bj obtained as follows:(

x+ y

x

)
=

(
2k−1 − 1

x

)
(8)

is odd by the lemma 2.2. Therefore, when we obtain the entry (i, j)th entry aij
of Adj(C2k)

2k−1−1, aij = 0 if i− j is even, otherwise aij = 1.
If

∑2k−1−1
i=0 b

(0)
2i and

∑2k−1−1
i=0 b

(0)
2i+1 are even, its initial configuration B(0)

becomes Bnull with a time period of t, t ≤ 2k − 1. The compliment of the set of
the initial configurations is a set which we want to obtain.

Next, a set of initial configurations which become Bnull with a time period
of t, t ≤ 2k−2 is considered with the similar technique of Theorem 3.1.

Theorem 3.2. If |i − j| = 2k−1 and b
(0)
i + b

(0)
j is even for any i, j, then an

initial configuration B(0) becomes Bnull with a time period of t, t ≤ 2k−2.

Proof. This proof is obtained with a similar manner as the proof of Theorem
3.1.

We believe that we can obtain the statement that an initial configuration
becomes Bnull with a time period of t, t ≤ 2k−3 with the similar manner and
some modifications.
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Figure 1: An initial configuration with thirteen “live” cells at {0, 10, 20, …,
120}.

(a) (b)

Figure 2: (a) An initial configuration with two “live” cells at {0, 127}. (b) An
initial configuration with two “live” cells at {32, 96}.

4 Experiments
To confirm our theorems, we prepare a cycle model C27 = C128 and review our
theorems with some initial configurations B(0). In Figure 1, 2, and 3, the ith
column represents B(i) and the jth row represents bj . Therefore, the value at
ith column and jth row represents b

(i)
j . A white cell b(i)j represents “live” or 1,

and a black cell represents “dead” or 0.
At first, we prepare an initial configuration B(0) following Theorem 3.1,
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(a) (b)

Figure 3: (a) An initial configuration with four “live” cells at {10, 50, 80, 101}.
(b) An initial configuration with four “live” cells at {16, 48, 80, 112}.

which is B(0) with thirteen “live” cells; b(0)j = 1, j ∈ {0, 10, . . . , 120}, otherwise
b
(0)
j = 0. Since

∑2k−1−1
i=0 b

(0)
2i = 13 (odd), we estimate the initial configuration

B(0) becomes Bnull with a time period of exactly 27−1 = 64 (see Figure 1). We
also prepare an initial configuration B(0) following the Theorem 3.1. B(0) with
two “live” cells b

(0)
j = 1, j ∈ {0, 127}, otherwise b

(0)
j = 0. Since

∑2k−1−1
i=0 b

(0)
2i = 1

and
∑2k−1−1

i=0 b
(0)
2i+1 = 1, we also estimate the initial configuration becomes the

null configuration with a time period of exactly 64 (see Figure 2(a)).
In Figure 2, we prepare two initial configurations with two “live” cells, which

have different time periods until the null configuration. We prepare an initial
configuration B(0) following the Theorem 3.2. B(0) with two “live” cells; b(0)j =

1, j ∈ {32, 96}, otherwise b
(0)
j = 0. Since b

(0)
32 + b

(0)
96 = 2 and the rest of b(0)i +

b
(0)
j = 0, where |i − j| = 2k−1 = 64, the initial configuration becomes the null

configuration with a time period of t, t ≤ 27−2 = 32 (see Figure 2(b)).
In Figure 3, we prepare two initial configurations with four “live” cells, which

have different time periods until the null configuration. We prepare an initial
configuration B(0); b(0)j = 1, j ∈ {10, 50, 80, 101}, otherwise b

(0)
j = 0 (see Figure

3(a)). We prepare another initial configuration B(0) with four “live” cells; b(0)j =

1, j ∈ {16, 48, 80, 112}, otherwise b(0)j = 0. Its initial configuration becomes Bnull

with a time period of 27−3 = 16 (see Figure 3(b)). Although we have the two
similar initial configurations, we can see that the evolution of one configuration
differs from that of the other due to the position of “live” cells.
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5 Conclusion
In this manuscript, we study the cellular automata (rule 90) in the cycle graphs
with 2k, k > 1 cells. First, we show that any initial configuration becomes the
null configuration with a time period of exactly 2k−1 combinatorically. Next,
we investigate the condition for a set of initial configurations with a time period
of t, t ≤ 2k−2. With some modifications, we believe that we can obtain a set
of initial configurations with a time period of 2m, where m < k. According
to simulations with some instances, we confirmed our theorems hold and the
position of “live” and “dead” cells matters for the time period. For each ini-
tial configuration, we can estimate the time period until the null configuration
without any simulations. We really hope this study gives some contribution for
epidemic diseases in real applications.
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Appendix A Matrix Representations

Table 2: Cellular automaton rule 150

state 111 110 101 100 011 010 001 000
future state 1 0 0 1 0 1 1 0

With a given cycle graph Cn, we prepare a matrix A with an identity matrix
I with size n× n such as A = Adj(Cn) + I. We can express rule 150 in Table 2
by using the matrix A. We obtain B(t+1) by matrix multiplication as follows;

B(t+1)T = AB(t)T . (9)
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By some modifications of the matrix A , we can express rule 60 and rule 102 by 
matrix multiplication of A.
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