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Abstract. The least absolute shrinkage and selection operator (LASSO) is a popular
technique for variable selection and estimation in linear regression models. Introduc-
tion of information criteria for LASSO can decrease the computational cost efficiently.
So far the forms of some classic information criteria for LASSO are derived. In fact,
there exists some regression matrix such that the ordinary LASSO may not select the
correct model efficiently even by information criteria. In such situation, [9] introduced
modified LASSO approach. In this paper, we introduce two forms of Akaike infor-
mation criterion (AIC) based on modified LASSO estimation to help find the optimal
tuning parameters for prediction and variable selection purposes respectively. The
properties of those two forms are shown and a simulation study comparing these two
forms is conducted.

1 Introduction The least absolute shrinkage and selection operator (LASSO) is pro-
posed by [7], and is a popular technique for variable selection and estimation in linear
regression models. As we know, the performance of the LASSO relies heavily on the choice
of tuning parameter λ to select the optimal model. For prediction purpose, the prediction
error is estimated by using cross-validation (CV) or by information criteria ([2]). A draw-
back of using information criteria is that the degrees of freedom must be known. [8] showed
that the number of nonzero coefficients is an unbiased estimate for the degree of freedom
of the LASSO, and the unbiased estimator is shown to be asymptotically consistent. For
variable selection purpose, choosing the optimal tuning parameter is more difficult since
the prediction optimal value is inconsistent in the sense of correct selection. [4] shows that
for certain high dimensional cases, generalized information criterion (GIC) on sub-models
decided by LASSO is consistent in the sense of correct selection. In the paper, we consider
a more general linear model, where the ordinary LASSO estimation may not work well. We
consider the following linear model:

Yi = x′iβ
∗ + εi,

where 1 ≤ i ≤ n, β∗ ∈ Rp, and {εi} is independent and identically distributed process
with εi ∼ N(0, σ2). Let xi = (xi1, xi2, . . . , xip)

′ be a known nonrandom function of i. By
X = (x1, . . . ,xn)′, we discuss the estimation of β∗ based on an observed stretch Y =
(Y1, . . . , Yn)′. Let anjk =

∑n
t=1 xtjxtk, and we assume the following conditions on {xi}.

Assumption 1 1. anjj →∞ (n→∞), (j = 1, . . . , p).

2. limn→∞
x2
n+1,j

anjj
= 0, (j = 1, . . . , p).
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3. The limit

lim
n→∞

anjk√
anjja

n
kk

= ρjk

exists for j, k = 1, . . . , p, h ∈ Z.

4. Letting Φ ≡ {ρjk : j, k = 1, . . . , p}, Φ is regular.

The point of item 2 of Assumption 1 is to prevent that the last x2n+1,j from being an
appreciable part of the sum of squares for large n. Item 3 shows that the relations between
regressors for all sufficiently large n are approximately fixed values. Item 4 is for avoidance
of multicollinearity of the model. Obviously, the model includes the case that the norm
of different column in regression matrix may have different order of sequence length n.
For example, letting xij = ij−1, O(

∑n
i=1 x

2
ij) is greater than O(n) when j ≥ 2. In such

condition, the ordinary LASSO estimation, where the estimators for the coefficients β∗ are
obtained by

β̃(λn) = arg min
β

n∑
i=1

(Yi − x′iβ)2 +

p∑
j=1

λn|βj |,

might not work well in the sense of variable selection, where λn is a given tuning parameter.
Correspondingly, it requires the modified LASSO estimation to match the different order
of each column which was introduced by [9] as follows:

β̂(λn) = arg min
β

n∑
i=1

(Yi − x′iβ)2 +

p∑
j=1

λn
√
anjj |βj |.

In the numerical results ([9]), it was shown that the estimation of modified LASSO has
higher probability of correct selection of true model than that of the ordinary LASSO even
by selecting an optimal λn with Akaike information criterion (AIC). In this paper, we
construct two forms of AIC based on modified LASSO for prediction and variable selection
purposes respectively in Section 2. In Section 3, the numerical analysis part, the selection
and prediction performance of the modified LASSO when using the above two forms of AIC
are analysised.

2 Main results We first define some notations. Let µ̂λn be the modified LASSO fit. µ̂i
is the ith component of µ̂. For convenience, we let df(λn) stands for df(µ̂λn), the degrees of
freedom of the modified LASSO. Suppose W is a matrix with p column. Let S be a subset
of the indices set {1, 2, . . . , p}. Denote WS = [· · ·Wj · · · ]j∈S , where Wj is the jth column
of W . Similarly, define βS = (· · ·βj · · · )j∈S for any vector β of length p. Let sgn(·) be
the sign function: sgn(x) = 1 if x > 0; sgn(x) = 0 if x = 0; sgn(x) = −1, if x < 0. Let
S0 = {j : sgn(β∗)j 6= 0} be the active set of β∗, where sgn(β) is the sign vector of β given

by sgn(β)j = sgn(βj). We denote the active set of β̂(λn) as S0(λn) and the corresponding

sign vector sgn(β̂(λn)) as sgn(λn).

2.1 Prediction purpose Prediction accuracy of a model can be assessed by calculating
its prediction error, that is, the error when the model is used to predict a new sample
of observations. Let µ̂ be a model fit decided by Y . The estimation of prediction error,
covariance penalties (Cp) which was first introduced by [5], can be treated as a criterion
to show how well µ̂ will predict a future dataset independently generated by the same
linear regression model. Mallows shows that if µ̂ = MY , where M is an n × n matrix
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not depending on Y , Cp(µ̂) := ‖Y −µ̂‖2
n + 2 trace(M)

n σ2 is an unbiased estimation for the
expectation of prediction error. For a general estimate µ̂ = m(Y ), as in [10], Cp can be
extended to

Cp(µ̂) :=
‖Y − µ̂‖2

n
+

2df(µ̂)

n
σ2,

where df(µ̂) :=
∑n
i=1 cov(µ̂i,Yi)

σ2 . By the connection between Mallows’s Cp ([5]) and AIC
([1]), we know

AIC(µ̂) =
Cp(µ̂)

σ2
.

In the following, we introduce the form of AIC for modified LASSO by following the line of
[8].
From the properties of modified LASSO solution, for a given Y , there is a finite sequence,

λn0 > λn1 > λn2 > · · · > λnK = 0,

such that for all λn > λn0, β̂(λn) = 0, and that for all λn ∈ (λn,m+1, λnm), the active set
S0(λn) and sign vector sgn(λn) are invariant with respect to λn. Thus we write them as
Sm and sgnm for simplicity. Noticing that for any m = 0, . . . ,K − 1, when λn decreases
from the right hand side of λnm, some predictors with zero coefficient at λnm are about
to have nonzero coefficients, we call λnm as a transition point. Correspondingly, for any
λn ∈ [0,∞)− {λnm,m = 0, . . . ,K − 1}, it is called as a non-transition point.

Theorem 1 For any λ0 ≥ 0, the modified LASSO fit µ̂λn(Y ) is uniformly Lipschitz. Fur-
thermore, under the condition that X is full rank, the degree of freedom of µ̂λn(Y ) equals
the expectation of the cardinality of the active set S0(λn), that is,

df(λn) = E| S0(λn)|.

Theorem 1 shows that d̂f(λn) ≡ |S0(λn)| is an unbiased estimate for df(λn). In the follow-

ing, we show that d̂f(λn) is also consistent.

Assumption 2 There exists γ > 0 so that

min
i
anii = O(nγ), for n→∞.

Lemma 1 Assume that Assumptions 1 and 2 hold, and that λn = O(nζ) where 0 < ζ <
γ/2, then,

P (S0(λn) = S0) = 1, for n→∞.

Theorem 2 If λn
nζ
→ λ∗, then d̂f(λn)→ df(λn) in probability.

Proof. From Lemma 1, P (S0(λn) = S0) → 1. Immediately we see d̂f(λn) → S0 in
probability. Then by the dominated convergence theorem, we have

df(λn) = E[d̂f(λn)]→ |S0|.

Thus the theorem holds.

Based on the above discussion, the unbiased estimator for d̂f(λn) suffices to provide an
unbiased estimate to the true prediction error of µ̂λn , as

Cp(µ̂λn) =
‖Y − µ̂λn‖2

n
+

2

n
| S0(λn)|σ2.
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Correspondingly, AIC for the modified LASSO is defined as follows:

AIC(µ̂λn) =
‖Y − µ̂λn‖2

nσ2
+

2

n
| S0(λn)|.

Using AIC to find the optimal modified LASSO model, we introduce the following theorem
to find the optimal λn where AIC(µ̂λn) get its minimum.

Theorem 3 To find optimal λn(optimal), we only need to solve

m∗ = arg min
m∈{0,1,...,K}

AIC(µ̂λnm);

then λn(optimal) = λnm∗ .

2.2 Variable selection porpuse In the least squares fit µ̂(π) for a given subset π ⊂
{1, . . . , p},

AIC(µ̂(π)) =
‖Y −Xβ̂(π)‖2

nσ2
+

2

n
|π|,

where β̂(π) is the lest squares estimate of β∗ where β̂(π){1,...,p}−π ≡ 0, that is

β̂(π) = arg min
β:βj=0forj 6∈π

n∑
i=1

(Yi − x′iβ)2.

Then we define π̂ as

π̂ = arg min
π⊂{1,...,p}

AIC(µ̂(π)).

We say AIC is consistent if P (π̂ = S0) → 1, as n → ∞. Then by setting x∗i = D−1n
√
nxi,

where Dn = diag{
√
an11, . . . ,

√
anpp}, for the original model

Yi = x′iβ
∗ + εi,

it is transferred into

Yi = (x∗i )
′Dnβ

∗/
√
n+ εi.

After the transformation, from Theorem 2 in [4], we can get that AIC(µ̂(π)) is consistent.
However, to find the π̂, O(2n) times computational cost of a single least squares fit is needed.
Define m̂ as

m̂ = arg min
m

AIC(µ̂(Sm)),

where m is the index of the transition point λnm of modified LASSO. Then the following
theorem holds.

Theorem 4 P (Sm̂ = S0) = 1, as n→∞.

Proof. From Lemma 1, among the transition points, the probability that there exists m
such that S0 = Sm converges to 1. Noticing that P (π̂ = S0)→ 1, we get P (Sm̂ = S0)→ 1.

From Theorem 4, the consistency of AIC on sub-models decided by modified LASSO
approach is shown. Considering the computational cost can be reduced, it is reasonable to
use Sm̂ to estimate S0.
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3 Numerical results In this section, the simulation study analyses the selection and
prediction performance of the modified LASSO when using the above two forms of AIC.
We set p = 8 and β = {1, 0, 1, 1, 0, 0, 0, 0} i.e.

Yi = xi1 + xi3 + xi4 + εi,

where the sequence xi1 = 1 for all i ∈ N , xi2 = i, xij = cos πij9 for j = 3, . . . , 8, i ∈ N
and {εi} is generated by identically distributed Gaussian disturbances with length n going
from 50 to 500 and variance σ2 = 0.1, 0.5, 1 respectively. Here we use C1 to stand for the
AIC(µ̂λn), and use C2 to stand for AIC(µ̂(π)) for brevity. 100 replications are performed
for each situation.
From table 1, we compare C1 and C2 by the bias and and mean squared error (MSE) of
their estimators in the sense of parameter estimates. Here the bias and MSE are defined as
follows:

Bias(β̂) =
1

s

s∑
t=1

8∑
j=1

(β̂tj − β∗j );

MSE(β̂) =
1

s

s∑
t=1

8∑
j=1

(β̂tj − β∗j )2,

where s is the amount of replications. It is shown that the prediction performance of
modified LASSO with C1 is better than that of modified LASSO with C2, noticing that
both of absolute value of bias and MSE of C1 are smaller than those of C2. Besides, we can
notice that, with sequence length n increases, the performance of C2 gets worse. It agrees
to the condition of consistency, that the optimal λn increases as n increases. From Table
2, the results from five aspects in the sense of variable selection are shown, which are the
probability of correct selection, the probability of relevant variables included, the probability
of irrelevant variables excluded, average number of included variables and average number
of included irrelevant variables. It is shown that the results by C2 are better than those
by C1 overall. From the probability of true model included, the probabilities by C2 are
greater than those by C1. Besides, by comparing the values as n increases, it is shown that
the the probability of correct selection of the true model increases, which keep consist with
the consistency properties shown in Section 2. From the probability of relevant variables
included, almost all the probabilities by C1 and C2 are 1, which means that by both C1

and C2, the probabilities that relevant variables are excluded are low.

Table 1: Parameter estimates
C1 C2

n 50 100 300 500 50 100 300 500
Bias
N(0.1) -0.1107 -0.0687 -0.0511 -0.0434 -1.4880 -1.4839 -1.5848 -1.6751
N(0.5) -0.2390 -0.1712 -0.1010 -0.0903 -1.4646 -1.5184 -1.5618 -1.5790
N(1) -0.3724 -0.2915 -0.1792 -0.1323 -1.5117 -1.5352 -1.5453 -1.5854
MSE
N(0.1) 0.0221 0.0115 0.0042 0.0024 1.3915 1.3944 1.5361 1.6444
N(0.5) 0.1090 0.0522 0.0180 0.0120 1.2837 1.3877 1.4639 1.5000
N(1) 0.2365 0.1135 0.0412 0.0231 1.3124 1.3421 1.4166 1.4922
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Table 2: Veriable selection
C1 C2

n 50 100 300 500 50 100 300 500
Probability of correct selection
N(0.1) 0.53 0.55 0.55 0.57 0.74 0.73 0.79 0.84
N(0.5) 0.47 0.52 0.48 0.55 0.70 0.74 0.77 0.78
N(1) 0.35 0.41 0.46 0.49 0.68 0.71 0.75 0.78
Probability of relevant variables included
N(0.1) 1 1 1 1 1 1 1 1
N(0.5) 1 1 1 1 1 1 1 1
N(1) 1 1 1 1 0.99 1 1 1
Probability of irrelevant excluded
N(0.1) 0.53 0.55 0.55 0.57 0.74 0.73 0.79 0.84
N(0.5) 0.47 0.52 0.48 0.55 0.70 0.74 0.77 0.78
N(1) 0.35 0.41 0.46 0.49 0.68 0.71 0.75 0.78
Average number of included variables
N(0.1) 3.81 3.80 3.66 3.56 3.33 3.34 3.23 3.16
N(0.5) 3.93 3.83 3.94 3.64 3.35 3.36 3.26 3.25
N(1) 4.11 3.96 3.79 3.75 3.41 3.33 3.25 3.24
Average number of included irrelevant variables
N(0.1) 0.81 0.8 0.66 0.56 0.33 0.34 0.23 0.16
N(0.5) 0.93 0.83 0.94 0.64 0.35 0.36 0.26 0.25
N(1) 1.11 0.96 0.79 0.75 0.41 0.33 0.25 0.24

4 Conclusion In Sections 2 and 3, the prediction performance of C1 is better than C2.
Whereas, the selection performance of the later is better than the former. Since these two
forms of AIC are derived by the ideas of [8] and [4], in fact a more general form of the
criteria can be derived. Besides, noticing that the consistency depends on the consistency
in the sense that the probability of correct selection of the true model converges to 1 as
the sequence length n goes to infinity, the consistency on high dimensions can be discussed
furthermore.
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Appendix A. Proof of Theorem 1 To prove Theorem 1, we introduce the following
lemma. For given Y , there exists a set of transition point, {λnm : m = 0, . . . ,K}. Recall
the definition of notations, Sm = S0(λnm), and sgnm = sgn(λnm).

Lemma 2 Suppose λn ∈ (λn,m+1, λnm). Then we have

β̂(λn)Sm = (X ′SmXSm)−1(X ′SmY −
λn
2
Dnsgnm),

where Dn = diag{
√
an11(0), . . . ,

√
anpp(0)}.

Lemma 3 Consider the transition point λnm, when λn decreases from the right hand side
of λnm to λ−nm, iadd is an index added into Sm, and the order index of iadd is i∗, that
is, iadd = (Sm)i∗ . Denote the kth element of any vector a by (a)k. We can express the
transition point λnm as

λnm =
2((X ′SmXSm)−1X ′SmY )i∗

((X ′SmXSm)−1D−1n sgnm)i∗
.

Lemma 4 For any λn > 0, there exists a null set Nλn which is a finite collection of
hyperplanes in Rn. Let Gλn = Rn−Nλn . Then ∀Y ∈ Gλn , λn is not any of the transition
points for Y .

Lemma 5 ∀λn > 0, β̂(λn) is a continuous function with respect to Y .

Lemma 6 Fix any λn > 0 and consider Y ∈ Gλn as defined in Lemma 4. The active set
S0(λn) and the sign vector sgn(λn) are locally constant with respect to Y .

Lemma 7 Let G0 = Rn. For any λn ≥ 0, on the set Gλn as defined in Lemma 4, the
modified LASSO fit µ̂λn(Y ) is uniformly Lipschitz. Precisely,

‖µ̂λn(Y + ∆Y )− µ̂λn(Y )‖ ≤ ‖∆Y ‖,

for sufficiently small ∆Y . Moreover, we have the divergence formula

∇ · µ̂λn(Y ) = | S0(λ0)|,

where | S0(λn)| stands for the cardinality of S0(λn).

The proofs of Lemma 2 to 7 are similar to those in [8], here we omit the proofs.
Proof of Theorem 1: By Lemma 4-7, µ̂λn(Y ) is differentiable almost every where. Then by
the Stein’s unbiased risk estimation theory ([6]) and Lemma 7,

df(λn) = E∇ · µ̂λn(Y ) = E| S0(λn)|.

Thus Theorem 1 holds.

Appendix B. Proof of Lemma 1
Noticing that {εi} is independent and identically distributed process with εi ∼ N(0, σ2),

then
∑n
i=1 bnijεi satisfies the Bernstein inequality, where bnij =

xji√
anii(0)

for j = 1, . . . , p.

Thus, Lemma 1 is a special case of Theorems 4 and 5 in [9], which implies it holds.
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Appendix C. Proof of Theorem 3
From the forms of AIC, we know that

λn(optimal) = arg min
λn

AIC(µ̂λn) = arg min
λn

‖Y − µ̂λn‖2

nσ2
+

2

n
| S0(λn)|.

From Lemma 2, for λn ∈ (λn,m+1, λnm), we have

‖Y − µ̂λn‖2 = Y ′(I −XSm(X ′SmXSm)−1X ′Sm)Y +
λ2n
4

sgn′mDn(X ′SmXSm)−1Dnsgnm,

where I is the n× n identity matrix. Thus we conclude that in the interval (λn,m+1, λnm),
‖Y − µ̂λn‖2 is strictly increasing with respect to λn. On the other hand, note that
| S0(λnm)| ≥ | S0(λn,m+1)|. Therefore, the optimal choice of λn in [λn,m+1, λnm) is λn,m+1,
which means λn(optimal) ∈ {λnm : m+ 0, . . . ,K}. Thus Theorem 3 holds.
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