NEW SPECTRAL MAPPING THEOREM OF THE TAYLOR SPECTRUM

Muneo Chō and Kôtarô Tanahashi

Received July 14,2020 ; revised October 4,2020
Abstract. We show new spectral mapping theorem of the Taylor spectrum for doubly commuting pairs of p-hyponormal operators and log-hyponormal operators. And we give Putnam inequality for log-hyponormal tuples.

1 Introduction Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. For $T \in B(\mathcal{H})$, let $\sigma(T), \sigma_{p}(T)$ and $\sigma_{a}(T)$ denote the spectrum, the point spectrum and the approximate point spectrum of T, respectively. Let $\lambda \in \mathbb{C}$ belong to the residual spectrum $\sigma_{r}(T)$ of T if there exists $c>0$ such that $\|(T-\lambda) x\| \geq c\|x\|$ for all $x \in \mathcal{H}$ and $(T-\lambda) \mathcal{H} \neq \mathcal{H}$. It is easy to see that if $\lambda \in \sigma_{r}(T)$, then $0 \in \sigma_{p}\left((T-\lambda)^{*}\right)$. It is well known that $\sigma(T)=\sigma_{a}(T) \cup \sigma_{r}(T)$. For an Hermitian operator $A \in B(\mathcal{H})$, we denote $A \geq 0$ if $(A x, x) \geq 0$ for every $x \in \mathcal{H}$ and $A \geq B$ if $A-B \geq 0$. When $(A x, x)>0$ for every non-zero $x \in \mathcal{H}$, then we denote $T>0$. For a given $p>0, T \in B(\mathcal{H})$ is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$. When $p=1 / 2, T$ is said to be semihyponormal. It means that T is semi-hyponormal if and only if $|T| \geq\left|T^{*}\right| . T$ is said to be \log-hyponormal if T is invertible and $\log |T| \geq \log \left|T^{*}\right|$. It is well known that if T is invertible p-hyponormal for some $p>0$, then T is log-hyponormal. If \mathcal{M} is a reducing subspace for a p-hyponormal or \log-hyponormal operator T, then so is $\left.T\right|_{\mathcal{M}}$, respectively.

For a commuting n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}$, we explain the Taylor spectrum $\sigma(\mathbf{T})$ of \mathbf{T} shortly. Let E^{n} be the exterior algebra on n generators, that is, E^{n} is the complex algebra with identity e generated by indeterminates e_{1}, \ldots, e_{n}. Let $E_{k}^{n}(\mathcal{H})=$ $\mathcal{H} \otimes E_{k}^{n}$. Define $d_{k}^{n}: E_{k}^{n}(\mathcal{H}) \longrightarrow E_{k-1}^{n}(\mathcal{H})$ by

$$
d_{k}^{n}\left(x \otimes e_{j_{1}} \wedge \cdots \wedge e_{j_{k}}\right):=\sum_{i=1}^{k}(-1)^{i-1} T_{j_{i}} x \otimes e_{j_{1}} \wedge \cdots \wedge \check{e}_{j_{i}} \wedge \cdots \wedge e_{j_{k}}
$$

where $\check{e}_{j_{i}}$ means deletion. We denote d_{k}^{n} by d_{k} simply. We think Koszul complex $E(\mathbf{T})$ of \mathbf{T} as follows:

$$
E(\mathbf{T}): 0 \longrightarrow E_{n}^{n}(\mathcal{H}) \xrightarrow{d_{n}} E_{n-1}^{n}(\mathcal{H}) \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{2}} E_{1}^{n}(\mathcal{H}) \xrightarrow{d_{1}} E_{0}^{n}(\mathcal{H}) \longrightarrow 0 .
$$

2010 Mathematics Subject Classification. Primary 47B20, Secondary 47A10.
Key words and phrases. Taylor spectrum, Xia spectrum, spectral mapping theorem, p-hyponormal, log-hyponormal.

It is easy to see that $E_{k}^{n}(\mathcal{H}) \cong \overbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}}^{\frac{n!}{(n-k)!k!}}(k=1, \ldots, n)$.

Definition 1.1. A commuting n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}$ is said to be singular if and only if the Koszul complex $E(\mathbf{T})$ of \mathbf{T} is not exact.

Definition 1.2. For a commuting n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}$, the Taylor spectrum $\sigma_{T}(\mathbf{T})$ of \mathbf{T} is the set of all $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ such that $\mathbf{T}-z=\left(T_{1}-z_{1}, \ldots, T_{n}-z_{n}\right)$ is singular.

About the definition of the Taylor spectrum, see details J. L. Taylor [11] and [12].
For a commuting pair $\mathbf{T}=\left(T_{1}, T_{2}\right) \in B(\mathcal{H})^{2}$, it is well known that, for polynomials f_{1}, \ldots, f_{n} of 2 variables, if $f\left(z_{1}, z_{2}\right)=\left(f_{1}\left(z_{1}, z_{2}\right), \ldots, f_{n}\left(z_{1}, z_{2}\right)\right)$, then it holds

$$
\sigma_{T}\left(f\left(T_{1}, T_{2}\right)\right)=f\left(\sigma_{T}\left(T_{1}, T_{2}\right)\right)
$$

where $\sigma_{T}\left(T_{1}, T_{2}\right)$ is the Taylor spectrum of $\mathbf{T}=\left(T_{1}, T_{2}\right)$. See Theorem 4.7 in [12].

In this paper, we study other spectral mapping theorem, that is, let $T_{j}=U_{j}\left|T_{j}\right|(j=$ $1,2)$ be the polar decomposition of T_{j} and $f(t)$ be a continuous function on the nonnegative real line. Let $S_{j}=U_{j} f\left(\left|T_{j}\right|\right)(j=1,2)$ and $\mathbf{S}=\left(S_{1}, S_{2}\right)$. Then under some assumption does it hold

$$
\sigma_{T}(\mathbf{S})=\left\{\left(e^{i \theta_{1}} f\left(r_{1}\right), e^{i \theta_{2}} f\left(r_{2}\right)\right):\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}\right) \in \sigma_{T}(\mathbf{T})\right\} ?
$$

For a single operator, it holds for some classes of operators. For example, if $T=U|T|$ is a p-hyponormal operator or a log-hyponormal operator with $\log |T|>0$ and $f(t)=t^{2 p}$ or $f(t)=\log t$, then

$$
\begin{equation*}
\sigma(U f(|T|))=\left\{e^{i \theta} f(r): r e^{i \theta} \in \sigma(T)\right\} \tag{1}
\end{equation*}
$$

respectively by $[7,10]$.
Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a commuting pair of operators on $\mathcal{H}, \mathbf{z}=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ and let

$$
\alpha(\mathbf{T}-\mathbf{z}):=\left(\begin{array}{cc}
T_{1}-z_{1} & T_{2}-z_{2} \\
-\left(T_{2}-z_{2}\right)^{*} & \left(T_{1}-z_{1}\right)^{*}
\end{array}\right) \quad \text { on } \mathcal{H} \oplus \mathcal{H} .
$$

Then Vasilescu proved the following result.

Proposition 1.3. (Theorem 1.1, Vasilescu [13]) Let $\mathbf{T}=\left(T_{1}, T_{2}\right) \in B(\mathcal{H})^{2}$ be a commuting pair. Then

$$
\mathbf{z}=\left(z_{1}, z_{2}\right) \in \sigma_{T}(\mathbf{T}) \text { if and only if } \alpha(\mathbf{T}-\mathbf{z}) \text { is not invertible. }
$$

Therefore, we have

$$
\mathbf{z}=\left(z_{1}, z_{2}\right) \in \sigma_{T}(\mathbf{T}) \text { if and only if } \quad 0 \in \sigma(\alpha(\mathbf{T}-\mathbf{z})) .
$$

For an n-tuple $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$, the joint point spectrum $\sigma_{j p}(\mathbf{T})$ is the set of all numbers $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ such that there exists a non-zero vector $x \in \mathcal{H}$ which satisfies $T_{j} x=z_{j} x(\forall j=1, \ldots, n)$ and the joint approximate point spectrum $\sigma_{j a}(\mathbf{T})$ is the set of all numbers $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ such that there exists a sequence $\left\{x_{k}\right\}$ of unit vectors of \mathcal{H} which satisfies

$$
\left(T_{j}-z_{j}\right) x_{k} \rightarrow 0 \text { as } k \rightarrow \infty(\forall j=1, \ldots, n)
$$

Following proposition is due to Berberian [1] for a single operator case. It is easy to see a proof for n-tuples. See Berberian [1] and Chō [2].

Proposition 1.4. Let $B(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H}. Then there exist an extension space \mathcal{K} of \mathcal{H} and a faithful *-representation of $B(\mathcal{H})$ into $B(\mathcal{K})$: $T \rightarrow T^{\circ}$ such that

$$
\sigma_{j a}\left(T_{1}, \ldots, T_{n}\right)=\sigma_{j p}\left(T^{\circ}, \ldots, T_{n}^{\circ}\right)=\sigma_{p}\left(T_{1}^{\circ}, \ldots, T_{n}^{\circ}\right)
$$

We have Putnam inequalities of hyponormal tuples, semi-hyponormal tuples, and p hyponormal tuples. See [2], [3], [4], [5], [8]. Finally we give Putnam inequality of loghyponormal tuple.

2 New spectral mapping theorem

Following results are well known.
Proposition 2.1. Let $T=U|T|$ be the polar decomposition of T and f be a continuous function on the non-negative real line which contains $\sigma(|T|)$. For a sequence $\left\{x_{n}\right\}$ of unit vectors, if $\left(T-r e^{i \theta}\right) x_{n} \rightarrow 0$ and $\left(T-r e^{i \theta}\right)^{*} x_{n} \rightarrow 0$, then $\left(U-e^{i \theta}\right) x_{n} \rightarrow 0,(|T|-r) x_{n} \rightarrow 0$ and $(f(|T|)-f(r)) x_{n} \rightarrow 0$.

See Lemma 1.2.4 in [15].
Proposition 2.2. Let T be semi-hyponormal. Then $\sigma(T)=\left\{\bar{z}: z \in \sigma_{a}\left(T^{*}\right)\right\}$.
See Theorem 1.2.6 in [15].
Let $T=U|T| \in B(\mathcal{H})$ be the polar decomposition of T with unitary U and f be a continuous function on the non-negative real line which contains $\sigma(|T|)$. Let \mathcal{K} be Berberian
extension of \mathcal{H} and $\circ: B(\mathcal{H}) \ni T \rightarrow T^{\circ} \in B(\mathcal{K})$ be a faithful $*$-representation. We set the following conditions (2) and (3):
(2) For a sequence $\left\{x_{n}\right\}$ of unit vectors, if $(T-z) x_{n} \rightarrow 0$, then $(T-z)^{*} x_{n} \rightarrow 0$. If a closed subspace \mathcal{M} of \mathcal{K} reduces T° and $r e^{i \theta} \in \sigma\left(\left.T^{\circ}\right|_{\mathcal{M}}\right)$,
then \mathcal{M} reduces $U^{\circ},|T|^{\circ}$ and $e^{-i \theta} f(r) \in \sigma_{p}\left(\left(\left.\left.U^{\circ}\right|_{\mathcal{M}} f(|T|)^{\circ}\right|_{\mathcal{M}}\right)^{*}\right)$.
Remark. If T is p-hyponormal and $f(t)=t^{2 p}$, then (2) holds by Theorem 4 of [5]. If T is \log-hyponormal and $f(t)=\log t$, then (2) holds by Lemma 3 of [10]. About (3), since the mapping o of Berberian method is a faithful *-representation, so is T° if T is p-hyponormal or log-hyponormal, respectively. Let \mathcal{M} be a reducing subspace for T. It is clear that if T is p-hyponormal or log-hyponormal, then so is $\left.T\right|_{\mathcal{M}}$, respectively.
(i) Let T be p-hyponormal and $T=U|T|$ be the polar decomposition of T and $f(t)=t^{2 p}$. Then $S=U|T|^{2 p}$ is semi-hyponormal and $\sigma\left(U|T|^{2 p}\right)=\left\{r^{2 p} e^{i \theta}: r e^{i \theta} \in \sigma(T)\right\}$ by Theorem 3 of [7]. Hence (3) holds by Proposition 2.2.
(ii) Let $T=U|T|$ be \log-hyponormal and $f(t)=\log t$. Then $S=U \log |T|$ is semihyponormal and $\sigma(U \log |T|)=\left\{e^{i \theta} \log r: r e^{i \theta} \in \sigma(T)\right\}$ by Lemma 8 of [10]. Hence (3) holds by Proposition 2.2.
Therefore, if T is p-hyponormal or log-hyponormal and $f(t)=t^{2 p}$ or $f(t)=\log t$, respectively, then T satisfies (2) and (3) for this f.

Theorem 2.3. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a doubly commuting pair of operators and $T_{j}=$ $U_{j}\left|T_{j}\right|(j=1,2)$ be the polar decomposition. Let $f(t)$ be a continuous function on a open interval in the non-negative real line which contains $\sigma\left(\left|T_{1}\right|\right) \cup \sigma\left(\left|T_{2}\right|\right)$. Let $S_{j}=$ $U_{j} f\left(\left|T_{j}\right|\right)(j=1,2)$ and $\mathbf{S}=\left(S_{1}, S_{2}\right)$. Let T_{1}, T_{2} and f satisfy (2) and (3). If $\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}\right) \in$ $\sigma_{T}(\mathbf{T})$, then $\left(e^{i \theta_{1}} f\left(r_{1}\right), e^{i \theta_{2}} f\left(r_{2}\right)\right) \in \sigma_{T}(\mathbf{S})$.

Proof. Let $\mathbf{z}=\left(z_{1}, z_{2}\right)=\left(r_{1} e^{\theta_{1}}, r_{2} e^{i \theta_{2}}\right) \in \sigma_{T}(\mathbf{T})$. Then $0 \in \sigma(\alpha(\mathbf{T}-\mathbf{z}))$ by Proposition 1.1.

Case 1. If $0 \in \sigma_{a}(\alpha(\mathbf{T}-\mathbf{z}))$, then there exists a sequence $\left\{x_{n} \oplus y_{n}\right\}$ of unit vectors of $\mathcal{H} \oplus \mathcal{H}$ such that

$$
\alpha(\mathbf{T}-\mathbf{z})\left(x_{n} \oplus y_{n}\right)=\binom{\left(T_{1}-z_{1}\right) x_{n}+\left(T_{2}-z_{2}\right) y_{n}}{-\left(T_{2}-z_{2}\right)^{*} x_{n}+\left(T_{1}-z_{1}\right)^{*} y_{n}} \rightarrow\binom{0}{0}
$$

Since T_{1}, T_{2} are doubly commuting, we have

$$
\left(T_{1}-z_{1}\right)^{*}\left(T_{1}-z_{1}\right) x_{n}+\left(T_{2}-z_{2}\right)\left(T_{2}-z_{2}\right)^{*} x_{n} \rightarrow 0
$$

and

$$
\left(T_{1}-z_{1}\right)\left(T_{1}-z_{1}\right)^{*} y_{n}+\left(T_{2}-z_{2}\right)^{*}\left(T_{2}-z_{2}\right) y_{n} \rightarrow 0
$$

If $x_{n} \nrightarrow 0$, then $\left(z_{1}, \overline{z_{2}}\right) \in \sigma_{j a}\left(T_{1}, T_{2}^{*}\right)$, and if $y_{n} \nrightarrow 0$, then $\left(\overline{z_{1}}, z_{2}\right) \in \sigma_{j a}\left(T_{1}^{*}, T_{2}\right)$.

Case 2. If $0 \in \sigma_{r}\left(\alpha_{2}(\mathbf{T}-\mathbf{z})\right) \subset \sigma_{p}\left(\alpha(\mathbf{T}-\mathbf{z})^{*}\right)$, then there exists a non-zero vector $x \oplus y$ such that

$$
\alpha(\mathbf{T}-\mathbf{z})^{*}(x \oplus y)=\binom{\left(T_{1}-z_{1}\right)^{*} x-\left(T_{2}-z_{2}\right) y}{\left(T_{2}-z_{2}\right)^{*} x+\left(T_{1}-z_{1}\right) y}=\binom{0}{0} .
$$

Hence, we have

$$
\left(T_{1}-z_{1}\right)\left(T_{1}-z_{1}\right)^{*} x+\left(T_{2}-z_{2}\right)^{*}\left(T_{2}-z_{2}\right) x=0
$$

and

$$
\left(T_{1}-z_{1}\right)^{*}\left(T_{1}-z_{1}\right) y+\left(T_{2}-z_{2}\right)\left(T_{2}-z_{2}\right)^{*} y=0
$$

If $x \neq 0$, then we have $\left(T_{1}-z_{1}\right)^{*} x=\left(T_{2}-z_{2}\right) x=0$ and if $y \neq 0$, then $\left(T_{1}-z_{1}\right) y=$ $\left(T_{2}-z_{2}\right)^{*} y=0$.

Therefore, if necessarily by changing order, we may assume that there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that (the proof of case $\left(T_{1}-z_{1}\right)^{*} x_{n} \rightarrow 0$ and $\left(T_{2}-z_{2}\right) x_{n} \rightarrow 0$ is similar.)

$$
\left(T_{1}-z_{1}\right) x_{n} \rightarrow 0 \text { and }\left(T_{2}-z_{2}\right)^{*} x_{n} \rightarrow 0
$$

Hence

$$
\left(U_{1}-e^{i \theta_{1}}\right) x_{n} \rightarrow 0,\left(\left|T_{1}\right|-r_{1}\right) x_{n} \rightarrow 0,\left(S_{1}-e^{i \theta_{1}} f\left(r_{1}\right)\right) x_{n} \rightarrow 0
$$

by the assumption. Let \mathcal{K} be the Berberian extension of \mathcal{H}. Then there exists $0 \neq x^{\circ} \in \mathcal{K}$ such that

$$
\left(S_{1}^{\circ}-e^{i \theta_{1}} f\left(r_{1}\right)\right) x^{\circ}=\left(T_{2}^{\circ}-z_{2}\right)^{*} x^{\circ}=0
$$

Let $\mathcal{M}=\operatorname{ker}\left(S_{1}^{\circ}-e^{i \theta_{1}} f\left(r_{1}\right)\right)$. Since $\left(S_{1}^{\circ}, T_{2}^{\circ}\right)$ are doubly commuting pair, \mathcal{M} is a reducing subspace for T_{2}°. Since $x^{\circ} \in \mathcal{M}$, we have $z_{2}=r_{2} e^{i \theta_{2}} \in \sigma\left(T_{2}^{\circ} \mid \mathcal{M}\right)$. Let $S_{2}=U_{2} f\left(\left|T_{2}\right|\right)$. Then by the assumption (2), we have $\left.T_{2}^{\circ}\right|_{\mathcal{M}}=\left.\left.U_{2}^{\circ}\right|_{\mathcal{M}}\left|T_{2}\right|^{\circ}\right|_{\mathcal{M}}$ and $e^{-i \theta_{2}} f\left(r_{2}\right) \in \sigma_{p}\left(\left.S_{2}^{\circ *}\right|_{\mathcal{M}}\right)$. Hence there exists non-zero $y^{\circ} \in \mathcal{M}$ such that $\left(S_{2}^{\circ}-e^{i \theta_{2}} f\left(r_{2}\right)\right)^{*} y^{\circ}=0$. Since $y^{\circ} \in \mathcal{M}$, we have $\left(S_{1}^{\circ}-e^{i \theta_{1}} f\left(r_{1}\right)\right) y^{\circ}=0$. Therefor there exists a sequence $\left\{y_{n}\right\}$ of unit vectors such that

$$
\left(S_{1}-e^{i \theta_{1}} f\left(r_{1}\right)\right) y_{n} \rightarrow 0 \text { and }\left(S_{2}-e^{i \theta_{2}} f\left(r_{2}\right)\right)^{*} y_{n} \rightarrow 0 .
$$

Then

$$
\alpha\left(\mathbf{S}-\left(e^{i \theta_{1}} f\left(r_{1}\right), e^{i \theta_{2}} f\left(r_{2}\right)\right)\right)\binom{y_{n}}{0}=\binom{\left(S_{1}-e^{i \theta_{1}} f\left(r_{1}\right)\right) y_{n}}{-\left(S_{2}-e^{i \theta_{2}} f\left(r_{2}\right)\right)^{*} y_{n}} \rightarrow\binom{0}{0} .
$$

Hence $0 \in \sigma\left(\alpha\left(\mathbf{S}-\left(e^{i \theta_{1}} f\left(r_{1}\right), e^{i \theta_{2}} f\left(r_{2}\right)\right)\right)\right)$ and $\left(e^{i \theta_{1}} f\left(r_{1}\right), e^{i \theta_{2}} f\left(r_{2}\right)\right) \in \sigma_{T}(\mathbf{S})$. This completes the proof.

Corollary 2.4. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a doubly commuting pair of p-hyponormal operators $(0<p<1)$. Let U_{j} be unitary for the polar decomposition of $T_{j}=U_{j}\left|T_{j}\right|(j=1,2)$ and $\mathbf{S}=\left(U_{1}\left|T_{1}\right|^{2 p}, U_{2}\left|T_{2}\right|^{2 p}\right)$. Then

$$
\sigma_{T}(\mathbf{S})=\left\{\left(r_{1}^{2 p} e^{i \theta_{1}}, r_{2}^{2 p} e^{i \theta_{2}}\right):\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}\right) \in \sigma_{T}(\mathbf{T})\right\}
$$

Proof. Let $f(t)=t^{2 p}$ on the non-negative real line. Since \mathbf{T} is a doubly commuting pair of p-hyponormal operators and $f(t)=t^{2 p}, T_{1}, T_{2}$ and f satisfy (2) and (3). Hence, by Theorem 2.3 we have

$$
\sigma_{T}(\mathbf{S}) \supset\left\{\left(r_{1}^{2 p} e^{i \theta_{1}}, r_{2}^{2 p} e^{i \theta_{2}}\right):\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}\right) \in \sigma_{T}(\mathbf{T})\right\}
$$

Conversely, put $g(t)=t^{\frac{1}{2 p}}$ on the non-negative real line. Since \mathbf{S} is a doubly commuting pair of semi-hyponormal operators, S_{1}, S_{2} and g satisfy (2) and (3). Then we have the converse inclusion by Theorem 2.3 and similar argument.

Corollary 2.5. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a doubly commuting pair of log-hyponormal operators with $\log \left|T_{j}\right|>0$. Let U_{j} be unitary for the polar decomposition of $T_{j}=U_{j}\left|T_{j}\right|(j=1,2)$ and $\mathbf{S}=\left(U_{1} \log \left|T_{1}\right|, U_{2} \log \left|T_{2}\right|\right)$. Then

$$
\left.\sigma_{T}(\mathbf{S})=\left\{e^{i \theta_{1}} \log r_{1}, e^{i \theta_{2}} \log r_{2}\right):\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}\right) \in \sigma_{T}(\mathbf{T})\right\}
$$

Proof. Let $f(t)=\log t$ on $(0, \infty)$. Since \mathbf{T} is a doubly commuting pair of \log-hyponormal operators and $f(t)=\log t, T_{1}, T_{2}$ and f satisfy (2) and (3). So by Theorem 2.3 we have

$$
\left.\sigma_{T}(\mathbf{S}) \supset\left\{e^{i \theta_{1}} \log r_{1}, e^{i \theta_{2}} \log r_{2}\right):\left(r_{1} e^{i \theta_{1}}, r_{2} e^{i \theta_{2}}\right) \in \sigma_{T}(\mathbf{T})\right\} .
$$

Conversely, let $g(t)=e^{t}$ on the non-negative real line. Since \mathbf{S} is a doubly commuting pair of semi-hyponormal operators, S_{1}, S_{2} and g satisfy (2) and (3). Hence, we have the converse inclusion by similar argument.

3 Putnam inequality

In this section we study for Putnam inequality of log-hyponormal tuples. Let $\mathbf{U}=$ $\left(U_{1}, \ldots, U_{n}\right)$ be an n-tuple of unitary operators. For $T \in B(\mathcal{H})$, an operator $\mathbf{Q}_{j}(j=$ $1, \ldots, n)$ on $B(\mathcal{H})$ is defined by

$$
\mathbf{Q}_{j} T:=T-U_{j} T U_{j}^{*} .
$$

Definition 3.1. Let $\mathbf{U}=\left(U_{1}, \cdots, U_{n}\right)$ be a commuting n-tuple of unitary operators and $A \geq 0$. An $(n+1)$-tuple (\mathbf{U}, A) is said to be a semi-hyponormal tuple if

$$
\mathbf{Q}_{j_{1}} \cdots \mathbf{Q}_{j_{m}} A \geq 0 \text { for all } 1 \leq j_{1}<\cdots<j_{m} \leq n
$$

Definition 3.2. Let $\mathbf{U}=\left(U_{1}, \cdots, U_{n}\right)$ be a commuting n-tuple of unitary operators and $A>0$ with $\log A \geq 0$. An $(n+1)$-tuple (\mathbf{U}, A) is said to be a log-hyponormal tuple if $(\mathbf{U}, \log A)$ is a semi-hyponormal tuple.

Let $\mathbf{U}=\left(U_{1}, \cdots, U_{n}\right)$ be an n-tuple of unitary operators and $T \in B(\mathcal{H})$. If

$$
\mathcal{S}_{j}^{ \pm}(T):=\mathrm{s}-\lim _{n \rightarrow \pm \infty}\left(U_{j}^{-n} T U_{j}^{n}\right)
$$

exist, then the operators $\mathcal{S}_{j}^{ \pm}(T)$ are called the polar symbols of T. If $U_{j}|A|$ is semihyponormal, then the polar symbols $\mathcal{S}_{j}^{ \pm}(T)$ exist.

For $k \in[0,1]$ and $A \geq 0$, we denote

$$
\left(k \mathcal{S}_{j}^{+}+(1-k) \mathcal{S}_{j}^{-}\right) A:=k \mathcal{S}_{j}^{+}(A)+(1-k) \mathcal{S}_{j}^{-}(A)
$$

Let $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \in[0,1]^{n}$ and (\mathbf{U}, A) be a semi-hyponormal tuple. Then the generalized polar symbols $A_{\mathbf{k}}$ of A are defined by

$$
A_{\mathbf{k}}:=\Pi_{j=1}^{n}\left(k_{j} \mathcal{S}_{j}^{+}+\left(1-k_{j}\right) \mathcal{S}_{j}^{-}\right) A
$$

Since $A \geq 0$, then $A_{\mathbf{k}} \geq 0$. Hence it is clear that $\left(\mathbf{U}, A_{\mathbf{k}}\right)$ is a commuting $(n+1)$-tuple of normal operators for every $\mathbf{k} \in[0,1]^{n}$.

Definition 3.3.

(1) Let (\mathbf{U}, A) be a semi-hyponormal tuple. The the Xia spectrum $\sigma_{X}(\mathbf{U}, A)$ is defined by

$$
\sigma_{X}(\mathbf{U}, A):=\bigcup_{\mathbf{k} \in[0,1]^{n}} \sigma_{j a}\left(\mathbf{U}, A_{\mathbf{k}}\right)
$$

(2) Let (\mathbf{U}, A) be a \log-hyponormal tuple. Since $(\mathbf{U}, \log A)$ is a semi-hyponormal tuple, Xia spectrum $\sigma_{X}(\mathbf{U}, A)$ of (\mathbf{U}, A) is defined by

$$
\sigma_{X}(\mathbf{U}, A):=\left\{\left(z_{1}, \ldots, z_{n}, e^{r}\right):\left(z_{1}, \ldots, z_{n}, r\right) \in \sigma_{X}(\mathbf{U}, \log A)\right\}
$$

Proposition 3.4. (Theorem 5, Xia [14]) Let (\mathbf{U}, A) be a semi-hyponormal tuple. Then

$$
\left\|\mathbf{Q}_{1} \cdots \mathbf{Q}_{n} A\right\| \leq \frac{1}{(2 \pi)^{n}} \int \cdots \int_{\sigma_{X}(\mathbf{U}, A)} d \theta_{1} \cdots d \theta_{n} d r
$$

Let (\mathbf{U}, A) be a semi-hyponormal tuple and $\mathbf{k}=\left(k_{1}, \cdots, k_{n}\right) \in[0,1]^{n}$. We define

$$
A_{\log , \mathbf{k}}:=\exp \left\{\Pi_{j=1}^{n}\left(k_{j} \mathcal{S}_{j}^{+}(\log A)+\left(1-k_{j}\right) \mathcal{S}_{j}^{-}(\log A)\right)\right\}
$$

Then $\left(\mathbf{U}, A_{\log , \mathbf{k}}\right)$ is a commuting tuple and $(\mathbf{U}, \log A)$ is a semi-hyponormal tuple. Let

$$
(\log A)_{\mathbf{k}}=\Pi_{j=1}^{n}\left(k_{j} \mathcal{S}_{j}^{+}(\log A)+\left(1-k_{j}\right) \mathcal{S}_{j}^{-}(\log A)\right)
$$

Then $A_{\log , \mathbf{k}}=\exp \left\{(\log A)_{\mathbf{k}}\right\}$ and we have the following lemma.

Lemma 3.5. Let (\mathbf{U}, A) be a log-hyponormal tuple and $\mathbf{k} \in[0,1]^{n}$. Then

$$
\left(z_{1}, \cdots, z_{n}, \log r\right) \in \sigma_{j a}\left(\mathbf{U},(\log A)_{\mathbf{k}}\right) \text { if and only if }\left(z_{1}, \cdots, z_{n}, r\right) \in \sigma_{j a}\left(\mathbf{U}, A_{\log , \mathbf{k}}\right) .
$$

Proof. It is easy from $A_{\log , \mathbf{k}}=\exp \left\{(\log A)_{\mathbf{k}}\right\}$.

Theorem 3.6. Let (\mathbf{U}, A) be a log-hyponormal tuple. Then

$$
\sigma_{X}(\mathbf{U}, A)=\bigcup_{\mathbf{k} \in[0,1]^{n}} \sigma_{j a}\left(\mathbf{U}, A_{\log , \mathbf{k}}\right) .
$$

Proof. Since $\sigma_{X}(\mathbf{U}, A)=\left\{\left(z_{1}, \cdots, z_{n}, e^{r}\right):\left(z_{1}, \cdots, z_{n}, r\right) \in \sigma_{X}(\mathbf{U}, \log A)\right\}$ by the definition 3.3 (2), we have

$$
\sigma_{X}(\mathbf{U}, \log A)=\bigcup_{\mathbf{k} \in[0,1]^{n}} \sigma_{j a}\left(\mathbf{U},(\log A)_{\mathbf{k}}\right)
$$

Hence we have

$$
\sigma_{X}(\mathbf{U}, A)=\bigcup_{\mathbf{k} \in[0,1]^{n}} \sigma_{j a}\left(\mathbf{U}, A_{\log , \mathbf{k}}\right)
$$

by Lemma 3.5.

Theorem 3.7. Let (\mathbf{U}, A) be a log-hyponormal tuple. Then

$$
\left\|\mathbf{Q}_{1} \cdots \mathbf{Q}_{n} \log A\right\| \leq \frac{1}{(2 \pi)^{n}} \int \cdots \int_{\sigma(\mathbf{U}, A)} \frac{1}{r} d \theta_{1} \cdots d \theta_{n} d r
$$

Proof. Since $(\mathbf{U}, \log A)$ is a semi-hyponormal tuple, it holds

$$
\left\|\mathbf{Q}_{1} \cdots \mathbf{Q}_{n} \log A\right\| \leq \frac{1}{(2 \pi)^{n}} \int \ldots \int_{\sigma(\mathbf{U}, \log A)} d \theta_{1} \cdots d \theta_{n} d r
$$

by proposition 3.4. Since

$$
\sigma_{X}(\mathbf{U}, \log A)=\left\{\left(z_{1}, \cdots, z_{n}, \log s\right):\left(z_{1}, \cdots, z_{n}, s\right) \in \sigma_{X}(\mathbf{U}, A)\right\}
$$

by definition, we have

$$
\left(z_{1}, \cdots, z_{n}, r\right) \in \sigma_{X}(\mathbf{U}, \log A) \Longleftrightarrow\left(z_{1}, \cdots, z_{n}, e^{r}\right) \in \sigma_{X}(\mathbf{U}, A)
$$

Let $s=e^{r}$. Then $d s=e^{r} d r$ and $d r=\frac{1}{s} d s$. Hence

$$
\frac{1}{(2 \pi)^{n}} \int \ldots \int_{\sigma(\mathbf{U}, \log A)} d \theta_{1} \cdots d \theta_{n} d r=\frac{1}{(2 \pi)^{n}} \int \ldots \int_{\sigma(\mathbf{U}, A)} \frac{1}{s} d \theta_{1} \cdots d \theta_{n} d s
$$

Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of log-hyponormal operators and $T_{j}=U_{j}\left|T_{j}\right|$ be the polar decomposition of T_{j} with $\log \left|T_{j}\right| \geq 0(j=1, \ldots, n)$. Let $\mathbf{U}=$ $\left(U_{1}, \ldots, U_{n}\right)$ and $A=\exp \left(\log \left|T_{1}\right| \cdots \log \left|T_{n}\right|\right)$. Then \mathbf{U} is a commuting n-tuple of unitary operators and $A \geq 0$. By the definition of the operator \mathbf{Q}_{j}, it is easy to see that

$$
\mathbf{Q}_{j} \log A=\left(\Pi_{k \neq j} \log \left|T_{k}\right|\right)\left(\log \left|T_{j}\right|-\log \left|T_{j}^{*}\right|\right)
$$

for all $j=1, \ldots, n$. Therefore (\mathbf{U}, A) is a log-hyponormal tuple and

$$
\mathbf{Q}_{1} \cdots \mathbf{Q}_{n} \log A=\Pi_{j=1}^{n}\left(\log \left|T_{j}\right|-\log \left|T_{j}^{*}\right|\right) \geq 0
$$

Hence we have the following theorem.

Theorem 3.8. Let $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ be a doubly commuting n-tuple of log-hyponormal operators with $\log \left|T_{j}\right| \geq 0$. Let $T_{j}=U_{j}\left|T_{j}\right|(j=1, \ldots, n)$ be the polar decomposition and $A=\exp \left(\log \left|T_{1}\right| \cdots \log \mid T_{n}\right)$. Then

$$
\left\|\Pi_{j=1}^{n}\left(\log \left|T_{j}\right|-\log \left|T_{j}^{*}\right|\right)\right\| \leq \frac{1}{(2 \pi)^{n}} \int \ldots \int_{\sigma(\mathbf{U}, A)} \frac{1}{r} d \theta_{1} \cdots d \theta_{n} d r .
$$

References

[1] S.K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc., 13 (1962), 111-114.
[2] M. Chō, Relation between the Taylor spectrum and the Xia spectrum, Proc. Amer. Math. Soc., 128 (1999), 2357-2363.
[3] M. Chō, R. Curto, T. Huruya and W. Zelazko, Cartesian form of Putnam's inequality for doubly commuting hyponormal n-tuples, Indiana Univ. Math. J., 49 (2000), 1437-1448.
[4] M. Chō, P.B. Duggal and W.Y. Lee, Putnam's inequality of doubly commuting n-tuples for log-hyponormal operators, Proc. Roy. Irish Acad., 100(2000), 163-169.
[5] M. Chō and T. Huruya, p-Hyponormal operators for $0<p<\frac{1}{2}$, Comment. Math., 33 (1993), 23-29.
[6] M. Chō and T. Huruya, Putnam's inequality for p-hyponormal n-tuples, Glasgow Math. J., 41 (1999), 13-17.
[7] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc., 123 (1995), 2435-2440.
[8] M. Chō, T. Huruya and K. Tanahashi, Xia spectrum for some class of operators, Integr. Equat. Oper. Theory, 61 (2008), 159-165.
[9] R. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc., 266 (1981), 129-159.
[10] K. Tanahashi, Putnam's inequality for log-hyponormal operators, Integr. Equat. Oper. Theory, 48(2004), 103-114.
[11] J.L.Taylor, A joint spectrum for several commuting operators, J. Funct. Anal., 6 (1970), 172-191.
[12] J.L.Taylor, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38.
[13] F.-H. Vasilescu, On pairs of commuting operators, Studia Math., 62 (1978), 203-207.
[14] D. Xia, On the semi-hyponormal n-tuple of operators, Integr. Equat. Oper. Theory, 6(1983), 879-898.
[15] D. Xia, Spectral Theory of Hyponormal operators, Birkhäuser 1983.

Communicated by Masatoshi Fujii
Muneo Chō
15-3-1113, Tsutsui-machi Yahatanishi-ku, Kita-kyushu 806-0032, Japan
e-mail: muneocho0105@gmail.com
Kôtarô Tanahashi
Department of Mathematics, Tohoku Medical and Pharmaceutical University, Sendai 9818558, Japan
e-mail: tanahasi@tohoku-mpu.ac.jp

