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GROUPOID FACTORIZATIONS IN THE SEMIGROUP OF BINARY

SYSTEMS

HIBA F. FAYOUMI

Abstract. Let (X, •) be a groupoid (binary algebra) and Bin(X )̇ denote the collection

of all groupoids defined on X. We introduce two methods of factorization for this

binary system under the binary groupoid product “�” in the semigroup (Bin (X) , �).
We conclude that a strong non-idempotent groupoid can be represented as a product

of its similar- and signature- derived factors. Moreover, we show that a groupoid with

the orientation property is a product of its orient- and skew- factors. These unique
factorizations can be useful for various applications in other areas of study. Application

to algebras such as B/BCH/BCI/BCK/BH/BI/d-algebra are widely given throughout
this paper.

1. Introduction

Algebraic structures play a vital role in mathematical applications such as information
science, network engineering, computer science, cell biology, etc. This encourages sufficient
motivation to study abstract algebraic concepts and review previously obtained results. One
such concept of interest to many mathematicians over the past two decades or so is that of
a simple yet very interesting notion of a single set with one binary operation, historically
known as magma and more recently referred to as groupoid. Bruck [8] published the book,“A
Survey of Binary Systems” in which the theory of groupoids, loops, quasigroups, and several
algebraic structures were discussed. Boru̇vka in [7] explained the foundations for the theory
of groupoids, set decompositions and their application to binary systems.

Given a binary operation “•” on a non-empty set X, the groupoid (X, •) is a gener-
alization of the very well-known structure of a group. H. S. Kim and J. Neggers in [33]
investigated the structure (Bin (X) , �) where Bin (X) is the collection of all binary sys-
tems (groupoids or algebras) defined on a non-empty set X along with an associative binary
product (X, ∗) � (X, ◦) = (X, •) such that x • y = (x ∗ y) ◦ (y ∗ x) for all x, y ∈ X. They
recognized that the left-zero-semigroup serves as the identity of this semigroup. The present
author in [11] introduced the notion of the center ZBin(X) in the semigroup (Bin (X) , �),
and proved that (X, •) ∈ ZBin(X), if and only if (X, •) is locally-zero. Han and Kim in
[13] introduced the notion of hypergroupoids HBin(X), and showed that (HBin(X), �) is
a supersemigroup of the semigroup (Bin(X), �) via the identification x ←→ {x}. They
proved that (HBin∗(X),	, [∅]) is a BCK-algebra.

In this paper, we investigate the following problems:

Main Problem: Consider the semigroup (Bin (X) , �). Let the left-zero-semigroup
be denoted as idBin(X). Given a groupoid (binary system) (X, •) ∈ Bin(X), is it
possible to find two groupoid factors (X, ∗) and (X, ◦) such that

(X, •) = (X, ∗) � (X, ◦)?
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If so,

Problem 1 (Uniqueness). Are the corresponding groupoid factors:

(1) Distinct, i.e., (X, ∗) 6= (X, ◦)?
(2) Unique, i.e., if (X, •) = (X, ∗) � (X, ◦), is it possible for (X, •) = (X,C) �

(X,B) such that (X, ∗) 6= (X,C) and (X, ◦) 6= (X,B)?
(3) Different from (X, •), i.e., (X, ∗) 6= (X, •) and (X, ◦) 6= (X, •)?
(4) Different from the left-zero-semigroup, i.e., (X, ∗) 6= idBin(X) and (X, ◦) 6=

idBin(X)?

Problem 2 (Derivation). How do we find the groupoid-factors? Are they:

(1) Derived (related to, based off of, dependent on) from: the parent groupoid
(X, •)?

(2) Derived from the identity idBin(X)?

Problem 3 (Factorization). If we use a certain method to find the two groupoid-
factors, what is the nature of this factorization?

(1) Is it unique?
(2) When is it commutative?

We begin answering these questions by introducing two methods for factoring a random

groupoid in Bin(X )̇ using the product “�”. We will show that both methods result in
unique factorizations (Problem 3.1) of a given groupoid and hence we answer Problem 1.2
with a definite yes! Section two provides some definitions and preliminary ideas which are
necessary in this context. We also present a summarized table of “logic” algebras for a
clear view. Section three describes AU - and UA-factorizations, which comprises the first
method (method-1) of factoring. In fact, method-1 factors a groupoid (X, •) by obtaining
two derived factors from it (Problem 2.1) and from the left-zero-semigroup (Problem 2.2),
the signature- and similar-factors, respectively. We prove that a strong groupoid has a
commutative method-1 factorization (Problem 3.2). The possibility of this first method is
shown to be feasible and produces non-trivial decompositions (Problem 1.4), however, it is
restricted to non-idempotent groupoids only. Hence, section four introduces an OJ- and a
JO-factorization, which constitutes our second method (method-2). We will demonstrate
that the latter method is sufficient for idempotent as well as non-idempotent groupoids. In
addition, an interesting outcome of method-2 is that one of the factors is not derived from
the parent groupoid (Problems 2.1 and 2.2) while the other factor is; we name them orient-
and skew-factors, respectively. We show that a given groupoid (X, •) with x • y ∈ {x, y},
for all x, y in X, has a commutative method-2 factorization (Problem 3.2). Section five
briefly applies our two methods to some of the algebras listed in section two; and discusses
a promising relationship to graph theory.

Finally, in our last section we generalize and summarize our findings that certain groupoids/algebras
decompose into distinct groupoids via (1) an operation on the parent groupoid and the left-
zero-semigroup simultaneously, which is a generalization of our first method; or (2) an
operation which acts on the parent-groupoid and the left-zero-semigroup separately, hence
resulting in a generalization of our second method.

Notions of “method”-composite, “method”-normal, “factor”-prime and “partially”-left/right-
prime are used to classify and analyze various groupoids as well as other familiar algebras.
For simplicity, the left-zero-semigroup will be denoted as idBin(X).



GROUPOID FACTORIZATIONS IN THE SEMIGROUP OF BINARY SYSTEMS 3

2. Preliminaries

A groupoid [8] (X, •) consists of a non-empty set X together with a binary operation
• : X ×X → X where x • y ∈ X for all x, y ∈ X.

A groupoid (X, •) is strong [33] if and only if for all x, y ∈ X,

(2.1) x • y = y • x implies x = y.

A groupoid (X, •) is idempotent if x • x = x for all x ∈ X.

Example 2.1 [12] Let X = [0,∞) and let x • y = max{0, x − y} for any x, y ∈ X. Then
(X, •) is a strong groupoid. To visualize this, let’s consider the associated Cayley product
table for “•”. For simplicity, its partial table is displayed below which shows that x • y = 0
for all x ≤ y and x • y 6= 0 for all x > y:

• 0 1 2 3 4 · · ·
0 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 2 1 0 0 0 · · ·
3 3 2 1 0 0 · · ·
4 4 3 2 1 0 · · ·
...

...
...

...
...

...
. . .

Hence, the strong or anti-commutative property holds for all x, y ∈ X.

Example 2.2 [12] Let X = R be the set of all real numbers and let x, y, e ∈ R. If we define
a binary operation “•” on X by x • y = (x− y)(x− e) + e,
then the groupoid (X, •, e) is not strong, since x = e + α, y = e − α, α 6= ±e implies
x • y = y • x, but x 6= y.

A groupoid (X, •) is a left-zero-semigroup if x • y = x for all x, y ∈ X. Similarly, (X, •)
is a right-zero-semigroup if x•y = y for all x, y ∈ X. For the theory of semigroups, we refer
to [10, 30].

A groupoid (X, •) is locally-zero [11] if
(i) x • x = x for all x ∈ X; and
(ii) for any x 6= y inX, ({x, y}, •) is either a left-zero-semigroup or a right-zero-semigroup.

Example 2.3 Given a set X = {0, 1, 2}, let the binary operation “•” be defined by the
following Cayley product table:

• 0 1 2
0 0 0 2
1 1 1 1
2 0 2 2

Then the binary system (X, •) is locally-zero and has the following subtables:

• 0 1
0 0 0
1 1 1

• 1 2
1 1 1
2 2 2

• 0 2
0 0 2
2 0 2

where ({0, 1} , •) is a left-zero-semigroup; ({1, 2} , •) is also a left-zero-semigroup; and
({0, 2} , •) is a right-zero-semigroup.

The notion of the semigroup (Bin(X), �) was introduced by J. Neggers and H.S. Kim in
[33]. Given a non-empty set X, let Bin(X) denote the collection of all groupoids (X, •),



4 HIBA F. FAYOUMI

where • : X × X → X is a map. Given elements (X, ∗) and (X, ◦) of Bin (X), define a
binary product “�” on these groupoids as follows:

(2.2) (X, ∗) � (X, ◦) = (X, •)

where

(2.3) x • y = (x ∗ y) ◦ (y ∗ x)

for all x, y ∈ X. This turns (Bin(X), �) into a semigroup with identity, the left-zero-
semigroup, and an analog of negative one in the right-zero-semigroup.

The present author [11] showed that a groupoid (X, •) commutes, relative to the product
“�”, if and only if any 2-element subset of (X, •) is a subgroupoid that is either a left-zero-
semigroup or a right-zero-semigroup. Thus, (X, •) is an element of the center ZBin(X) of
the semigroup (Bin(X), �), defined as follows:

ZBin (X) = {(X, •) ∈ Bin (X) | (X, •) � (X, ∗) = (X, ∗) � (X, •), ∀(X, ∗) ∈ Bin(X)}.

In turn, several properties were obtained.

Theorem 2.4 [33] The collection (Bin(X), �) of all binary systems (groupoids or algebras)
defined on X is a semigroup, i.e., the operation “�” as defined in general is associative.
Furthermore, the left-zero-semigroup is an identity for this operation.

Proposition 2.5 [33] Let (X, •) be the right-zero-semigroup on X. Then (X, •) ∈ Str(X),
the collection of all strong groupoids on X.

Proposition 2.6 [11] The left-zero semigroup and right-zero semigroup on X are both in
ZBin(X).

Corollary 2.7. [11] The collection of all locally-zero groupoids on X forms a subsemigroup
of (Bin(X), �).

Proposition 2.8 [11] Let (X, •) be a locally-zero groupoid. Then (X, •)�(X, •) = idBin(X),
the left-zero-semigroup on X.

Let (X, •) be an element of the semigroup (Bin(X), �), we say that (X, •) is a unit if
and only if there exists an element (X, ∗) ∈ Bin (X) such that

(2.4) (X, •) � (X, ∗) = idBin(X) = (X, ∗) � (X, •).

Subsequently, by Proposition 2.8, a locally-zero-groupoid is a unit in Bin (X).
The logic-based BCK/BCI-algebras were introduced by Iséki and Imai in [15] as propo-

sitional calculus, but later in [16] developed into the present notion of BCK/BCI which
have since then been investigated thoroughly by numerous researchers. J. Neggers and H.
S. Kim generalized a BCK-algebra [26] by introducing the notion of a d-algebra in [32].
They also introduced B-algebras in [2]. C. B. Kim and H. S. Kim generalized a B-algebra
by defining a BG-algebra in [21].

An algebra (X, •, 0) of type (2, 0) is a B-algebra [2] if for all x, y, z ∈ X, it satisfies the
following axioms:

B1: x • x = 0,
B2: x • 0 = x, and
B: (x • y) • z = x • [z • (0 • y)].

An algebra (X, •, 0) of type (2, 0) is a BG-algebra [21] if for all x, y, z ∈ X, it satisfies
B1, B2, and

BG: x = (x • y) • (0 • y).
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An algebra (X, •, 0) of type (2, 0) is a BCI-algebra [36] if for all x, y, z ∈ X, it satisfies
B2, I: ((x • y) • (x • z)) • (z • y) = 0, and BH: x • y = 0 and y • x = 0 implies x = y.

Example 2.9 [36] Let X = {0, 1, a, b}. Define a binary operation “•” on X by the following
product table:

• 0 1 a b
0 0 0 a a
1 1 0 a a
a a a 0 0
b b a 1 0

Then (X, •, 0) is a BCI-algebra.

A BCI-algebra (X, •, 0) is a BCK-algebra [26] if it satisfies the next additional axiom:

K: 0 • x = 0 for all x ∈ X.

An algebra (X, •, 0) of type (2, 0) is a d-algebra provided that for all x, y ∈ X, it satisfies
(B1), (K) and (BH).

A d-algebra is strong if for all x, y ∈ X:

d-3′: x • y = y • x implies x = y.

Otherwise we consider the d-algebra to be exceptional. For more information on d-
algebras we refer to [5, 6, 32, 31].

Example 2.10 [32] Let (X, •) = (Z5, •) where “•” is defined by the following Cayley table:

• 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0

Then (Z5, •, 0) is a d-algebra which is not a BCK-algebra. For details on BCK-algebras,
see [14, 26, 36].

Y. B. Jun, E. H. Roh and H. S. Kim in [18] introduced the notion of a BH-algebra which
is a generalization of BCK/BCI/BCH-algebras. There are many other generalizations of
similar algebras. We summarize several properties which are used as axioms to define each
algebraic structure . Let (X, •, 0) be an algebra of type (2, 0), for any x, y, z ∈ X:

B1: x • x = 0,
B2: x • 0 = x,
B: (x • y) • z = x • (z • (0 • y)),
BG: x = (x • y) • (0 • y),
BM: (z • x) • (z • y) = y • x,
BH: x • y = 0 and y • x = 0⇒ x = y,
BF: 0 • (x • y) = y • x,
BN: (x • y) • z = (0 • z) • (y • x),
BO: x • (y • z) = (x • y) • (0 • z),
BP1: x • (x • y) = y,
BP2: (x • z) • (y • z) = x • y,
Q: (x • y) • z = (x • z) • y,
CO: (x • y) • z = x • (y • z),
BZ: ((x • z) • (y • z)) • (x • y) = 0,
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K: 0 • x = 0,
I: ((x • y) • (x • z)) • (z • y) = 0,
BI: x • (y • x) = x.

Figure 1. Comparison of Algebras

An algebra (X, •, 0) of type (2, 0) is classified according to a combination of axioms B1
through BI as noted in “Figure 1” above. For instance, (X, •, 0) is a BN -algebra [19] if it
satisfies B1, B2 and BN. For detailed information on each, please see [2-6, 14-26, 31, 32,
34, 36].

3. Similar-Signature Factorization

In this section, we present a unique factorization of a given groupoid by “deriving” two
factors from it and from the left-zero-semigroup simultaneously.

Let (X, •) be a groupoid of finite order, i.e., |X| = n. Then d• is the diagonal function
of (X, •) such that d• : N −→ X where d•(i) = xi • xi, i = 1, 2, ..., n for all xi ∈ X.
Example 3.1 Let (X, •, 0) and (X, ∗) be a d-algebra and an idempotent algebra, respec-
tively. Then x • x = 0 and x ∗ x = x; or d• = 0 and d∗ = x for all x ∈ X.

Two binary systems (X, ∗) and (X, •) are said to be similar if they have the same diagonal
function, that is, d∗ = d•.

Two binary systems (X, ∗) and (X, •) are said to be signature if
(i) x ∗ y = x • y when x 6= y; and
(ii) x ∗ x 6= x • x for all x ∈ X.
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Let (X, •) be a groupoid. Derive groupoids (X, ∗) and (X, ◦) from (X, •) and idBin(X),
simultaneously, such that for all x, y ∈ X,

(3.1) x ∗ y =

{
x if x = y,

x • y otherwise.
and x ◦ y =

{
x • x if x = y,

x otherwise.

The groupoids (X, ∗) and (X, ◦) are said to be the signature- and the similar-factors of
(X, •), respectively, denoted by U (X, •) and A(X, •). The product “�” is associative but
not commutative. Hence, for (X, •) ∈ Bin (X), we may have a UA-factorization such that

(3.2) (X, •) = U (X, •) �A (X, •)

or an AU -factorization such that

(3.3) (X, •) = A (X, •) � U (X, •) .

By the equations in 3.1, it follows that for any given groupoid (X, •),
(1) U (X, •) is similar to idBin(X) while A (X, •) is similar to (X, •); and
(2) U (X, •) is signature with (X, •) while A (X, •) is signature with idBin(X).

Proposition 3.2 The similar-factor of a groupoid is strong.
Proof. Given (X, •) ∈ Bin (X), let (X, ◦) = A (X, •).

(i) If x = y, then x ◦ y = x ◦ x = x • x = y • y = y ◦ y = y ◦ x.
(ii) If x 6= y and x ◦ y = y ◦ x for any x, y ∈ X. Then x ◦ y = x and y ◦ x = y. Thus,

x = y, a contradiction.

Therefore, (X, ◦) is strong.

�

Example 3.3 Let (X, •, 0) be the BCI-algebra defined in Example 2.9. In accordance with
equation 3.1, derive its signature- and similar- factors U(X, •, 0) and A(X, •, 0), respectively.
Let groupoids (X, ∗, 0) := U(X, •, 0) and (X, ◦, 0) := A (X, •, 0) be given. We obtain:

∗ 0 1 a b
0 0 0 a a
1 1 1 a a
a a a a 0
b b a 1 b

and

◦ 0 1 a b
0 0 0 0 0
1 1 0 1 1
a a a 0 a
b b b b 0

It remains to verify that (X, •, 0) = (X, ∗, 0)�(X, ◦, 0) and/or (X, •, 0) = (X, ◦, 0)�(X, ∗, 0).
This will be discussed in more detail in the next section. However, there is a very interesting
fact in this example: the two factors are distinct from each other, their parent groupoid,
and the left-zero-semigroup. In summary:

(1) (X, ∗, 0) 6= (X, ◦, 0); (Problem 1.1)
(2) (X, ∗, 0) 6= (X, •, 0) 6= (X, ◦, 0); (Problem 1.3)
(3) (X, ∗, 0) 6= idBin(X) 6= (X, ◦, 0). (Problem 1.4)

This is important since it is not always the case that all three distinctions hold as the
following example demonstrates.

Example 3.4 Let (X, •) = (Z3, •) where “•” is defined by the following Cayley table:

• 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0
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Then (X, •, 0) is a BI-algebra. Derive its signature- and similar-factors U(X, •, 0) and
A(X, •, 0), respectively, in accordance to the equations in 3.1. Let (X, ∗, 0) := U (X, •, 0)
and (X, ◦, 0) := A (X, •, 0), hence:

∗ 0 1 2
0 0 0 0
1 1 1 1
2 2 2 2

and

◦ 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

Here we observe immediately that the similar -factor (X, ◦, 0) is equal to (X, •, 0) and the
signature-factor (X, ∗, 0) is equal to idBin(X). Thus this decomposition is basically a trivial
factorization, i.e.,

(X, •, 0) = (X, ∗, 0) � (X, ◦, 0) = idBin(X) � (X, •, 0)

and

(X, •, 0) = (X, ◦, 0) � (X, ∗, 0) = (X, •, 0) � idBin(X).

3.1. UA-Factorization. In this subsection, we explore a UA-factorization of a given groupoid
(X, •) in Bin (X). In the next subsection, a AU -factorization is considered, where the order
of the product of the two factors is “reversed”. We emphasize that such factorization is
unique and not necessarily reversible. Then, we classify a given groupoid as UA- and/or
AU -composite, u-composite or u-normal; and as signature- or similar-prime.

Example 3.1.1 Let X = Z be the set of all integers and let “−” be the usual subtraction
on Z. Then (Z,−) is a BH-algebra since it satisfies axioms B1, B2 and BH as seen from
its partial table below:

− · · · -2 -1 0 1 2 3 4 · · ·
...

. . .
...

...
...

...
...

...
... · · ·

-2 1 0 -1 -2 -3 -4 -5 -6 · · ·
-1 2 1 0 -1 -2 -3 -4 -5 · · ·
0 3 2 1 0 -1 -2 -3 -4 · · ·
1 4 3 2 1 0 -1 -2 -3 · · ·
2 5 4 3 2 1 0 -1 -2 · · ·
3 6 5 4 3 2 1 0 -1 · · ·
4 7 6 5 4 3 2 1 0 · · ·
...

...
...

...
...

...
...

...
...

. . .

Define two binary operations “∗” and “◦” on Z such that for all x, y ∈ Z,

x ∗ y =

{
x if x = y,

x− y otherwise.
and x ◦ y =

{
0 if x = y,

x otherwise.

Then it is easy to check that (Z,−) = (Z, ∗) � (Z, ◦) and (Z, ∗) = U(Z,−) and (Z, ◦) =
A(Z,−). Thus we have a UA-factorization of (Z,−) .

A groupoid (X, •) is said to be signature-prime if U (X, •) = idBin(X), and is said to
be similar-prime if A (X, •) = idBin(X). Alternatively, if (X, •) is neither signature- nor
similar -prime, then (X, •) is said to be

(1) UA-composite if (X, •) = U (X, •) �A (X, •);
(2) AU -composite if (X, •) = A (X, •) � U (X, •).

Consequently, (X, •) is said to be u-composite if both (1) and (2) hold.
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Example 3.1.2 Let (X, •) = (Z5, •) where the product “•” is defined by the following
Cayley table:

• 0 1 2 3 4
0 3 2 2 1 1
1 1 3 3 2 3
2 3 3 0 3 0
3 1 0 1 1 2
4 1 1 2 4 2

If we derive its signature- and similar- factors (Z5, ∗) = U(Z5, •) and A(Z5, •) = (Z5, ◦) as
in (3.1), then we have their � product as follows:

∗ 0 1 2 3 4
0 0 2 2 1 1
1 1 1 3 2 3
2 3 3 2 3 0
3 1 0 1 3 2
4 1 1 2 4 4

�

◦ 0 1 2 3 4
0 3 0 0 0 0
1 1 3 1 1 1
2 2 2 0 2 2
3 3 3 3 1 3
4 4 4 4 4 2

=

∇ 0 1 2 3 4
0 3 2 2 3 3
1 1 3 1 2 3
2 3 1 0 3 0
3 3 0 1 1 2
4 3 1 2 4 2

We can clearly conclude that U(Z5, •) � A(Z5, •) 6= (Z5, •) since (Z5, •) 6= (Z5,∇) and
hence such a groupoid does not have a UA-factorization. Moreover, (Z5, •) is not a strong
groupoid since 0 • 4 = 4 • 0. In turn, we have the next theorem.

Theorem 3.1.3 A strong groupoid has a UA-factorization.

Proof. Let (X, •) ∈ Str (X), the collection of all strong groupoids defined on X, and let
(X,�) = (X, ∗) �(X, ◦) where (X, ∗) = U(X, •) and (X, ◦) = A(X, •). Then x � y =
(x ∗ y) ◦ (y ∗ x) for all x, y ∈ X. It follows that x ∗ x = x, x ∗ y = x • y when x 6= y; and
x ◦ x = x • x, x ◦ y = x when x 6= y.
Next, we show that (X, •) = (X,�). Given x, y ∈ X, if x = y, then x�x = (x∗x)◦(x∗x) =
x ◦ x = x • x. Assume x 6= y, we claim that x ∗ y = y ∗ x is not possible:

(i) If x ∗ y = y ∗ x, then x • y = x ∗ y = y ∗ x = y • x. Since (X, •) is strong, we obtain
x = y, a contradiction.

(ii) If x ∗ y 6= y ∗ x, then x ∗ y = x • y, y ∗ x = y • x, since x 6= y.
Therefore x� y = (x ∗ y) ◦ (y ∗ x) = (x • y) ◦ (y • x) = x • y, since x • y 6= y • x. This proves
that (X,�) = (X, •).

�

Corollary 3.1.4 The factorization in Theorem 3.1.3 is unique.

Proof. Let (X, •) be a strong groupoid with a UA-factorization such that (X, •) = (X, ∗)
�(X, ◦) where (X, ∗) = U(X, •) and (X, ◦) = A(X, •). Let (X, •) = (X,5) �(X,4) where
(X,5) = U(X, •) and (X,4) = A(X, •). For any x ∈ X, we have x ∗ x = x = x 5 x,
and x ∗ y = x 5 y when x 6= y. Hence (X, ∗) = (X,5). Similarly, if x ∈ X, then
x◦x = x•x = x4x. When x 6= y, we have x◦y = x = x4y, proving that (X, ◦) = (X,4).

�

Example 3.1.5 [32] Consider the d-algebra (X, •, 0) from Example 2.10. Observe that
(X, •, 0) is a strong d-algebra. Let (X, ∗, 0) := U(X, •, 0) and (X, ◦, 0) := A (X, •, 0), such
that U(X, •, 0) and A(X, •, 0) are its derived signature- and similar-factors, respectively, as
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in (3.1). Next, verify that (X, ∗, 0) � (X, ◦, 0) = (X, •, 0):

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 1 1 0 1
2 2 2 2 3 0
3 3 3 2 3 3
4 4 4 1 1 4

�

◦ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

=

• 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0

Indeed we can see that x • y = (x ∗ y) ◦ (y ∗ x) for any x, y ∈ X. For instance:

(1 ∗ 0) ◦ (0 ∗ 1) = 1 ◦ 0 = 1 = 1 • 0,

(3 ∗ 4) ◦ (4 ∗ 3) = 3 ◦ 4 = 3 = 3 • 4.

Moreover, since U (X, •, 0) 6= idBin(X) and A (X, •, 0) 6= idBin(X), then (X, •, 0) is UA-
composite.

3.2. AU-Factorization. In this subsection we reverse the order of the signature- and sim-
ilar -factors of any groupoid (X, •) in Bin (X). We conclude that an arbitrary groupoid
(X, •) will always have an AU -factorization. However, this factorization might be trivial
and hence the groupoid is either noted as signature- or similar-prime. Otherwise, if the
decomposition is not trivial, we say the groupoid is AU -composite.

Example 3.2.1 Let (X, •, 0) be the strong d-algebra defined in Examples 2.10 and 3.1.5 in
which we determined that (X, •, 0) is UA-composite. Similarly, we can take the product of
A (X, •, 0) and U (X, •, 0) as follows:

◦ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

�

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 1 1 0 1
2 2 2 2 3 0
3 3 3 2 3 3
4 4 4 1 1 4

=

• 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0

By routine checking of (x ◦ y) ∗ (y ◦ x) = x • y for any x, y ∈ X, we conclude that (X, •, 0)
has an AU -factorization. Moreover, we can see that this particular groupoid has both, a
non-trivial UA- and AU -factorization. Therefore, (X, •, 0) is u-composite.

Remark 3.2.2 Note that A(X, •) �U(X, •) = U(X, •) �A(X, •) does not imply that (X, •)
is u-composite. It simply implies that the factors of (X, •) commute. This motivates the
next definition.

A groupoid (X, •) is said to be u-normal if it admits a UA- and an AU -factorization,
i.e., if

(i) (X, •) = U (X, •) �A (X, •), and
(ii) (X, •) = A (X, •) � U (X, •).

Theorem 3.2.3 Any given groupoid has an AU -factorization, i.e., if (X, •) ∈ Bin(X),
then

(X, •) = A(X, •) � U(X, •).
Proof. Let (X, •) ∈ Bin (X) and let (X,�) = (X, ◦) �(X, ∗) where (X, ∗) = U(X, •) and

(X, ◦) = A(X, •). Then x� y = (x ◦ y) ∗ (y ◦ x) for all x, y ∈ X. It follows that x ∗ x = x,
x ∗ y = x • y when x 6= y, and x ◦ x = x • x, x ◦ y = x when x 6= y. Given x, y ∈ X,
if x = y, then x � x = (x ◦ x) ∗ (x ◦ x) = (x • x) ∗ (x • x) = x • x. Assume x 6= y, then
x� y = (x ◦ y) ∗ (y ◦ x) = x ∗ y = x • y. This proves that (X,�) = (X, •).
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�

Corollary 3.2.4 The factorization in Theorem 3.2.3 is unique.

Proof. The proof is similar to that of Corollary 3.1.4.

�

Corollary 3.2.5 A strong groupoid is u-normal.

Proof. The proof follows directly from Theorems 3.1.3, 3.2.3 and the definition.

�

Example 3.2.6 Let (X, •) = ({0, 1, 2} ,+) be the cyclic group of order 3. Observe
that ({0, 1, 2} ,+) has an AU -factorization but fails to have a UA-factorization. Take
({0, 1, 2} , ∗) = U ({0, 1, 2} ,+) and ({0, 1, 2} , ◦) = A ({0, 1, 2} ,+) such that:

x ◦ y =

{
(x+ x) mod 3 if x = y,

x otherwise.
and x ∗ y =

{
x; if x = y,

(x+ y) mod 3 otherwise.

Routine checking of the product A ({0, 1, 2} ,+) � U ({0, 1, 2} ,+) gives ({0, 1, 2} ,+):

◦ 0 1 2
0 0 0 0
1 1 2 1
2 2 2 1

�

∗ 0 1 2
0 0 1 2
1 1 1 0
2 2 0 2

=

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

But, the product U ({0, 1, 2} ,+) �A ({0, 1, 2} ,+) does not give ({0, 1, 2} ,+):

∗ 0 1 2
0 0 1 2
1 1 1 0
2 2 0 2

�

◦ 0 1 2
0 0 0 0
1 1 2 1
2 2 2 1

=

∇ 0 1 2
0 0 2 1
1 2 2 0
2 1 0 1

Therefore, ({0, 1, 2} ,+) is not u-normal, it is simply AU -composite.

Proposition 3.2.7 Any signature- or similar-prime groupoid is u-normal.

Proof. The proof is straightforward and we omit it.

�

Proposition 3.2.8 The right-zero-semigroup on X is similar-prime.

Proof. Let (X, •) be the right-zero-semigroup on X. Then x • y = y for all x, y ∈ X. Let
(X, ∗) = U (X, •) and (X, ◦) = A (X, •), thus

x ∗ y =

{
x if x = y,

x • y = y otherwise
and x ◦ y =

{
x • x = x if x = y

x ◦ y = x otherwise

Hence for all x, y ∈ X, (X, •) = (X, •) � idBin(X).

�

Example 3.2.9 Let (X, •) = ({a, b, c}, •) be the right-zero-semigroup on {a, b, c}. Its
Cayley table together with its associated signature-similar -product tables, respectively,
are:

• a b c
a a b c
b a b c
c a b c
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∗ a b c
a a b c
b a b c
c a b c

�

◦ a b c
a a a a
b b b b
c c c c

=

• a b c
a a b c
b a b c
c a b c

Therefore, the right-zero-semigroup of order 3 is similar -prime since its similar -factor
A({a, b, c}, •) is idBin(X), i.e., the left-zero-semigroup for {a, b, c}.
Proposition 3.2.10 A non-locally-zero strong groupoid is u-composite.

Proof. Let (X, •) ∈ Bin(X) − ZBin (X), then x • y 6= {x, y} for any x, y ∈ X. Meaning,
(X, •) cannot be the left- nor the right-zero-semigroup on X. By Proposition 3.2.5, (X, •)
is u-normal. Let (X, ∗) = U (X, •) and (X, ◦) = A (X, •), then

x ∗ y =

{
x if x = y,

x • y otherwise
and x ◦ y =

{
x • x if x = y

x ◦ y = x otherwise

Hence, for all x, y ∈ X, (X, ∗) 6= (X, •) 6= (X, ◦) and (X, ∗) 6= idBin(X) 6= (X, ◦). Therefore,
(X, •) is u-composite.

3.3. Factoring U (X, •) and A (X, •). Let Str (X) be the collection of all strong groupoids
on a non-empty set X. Consider a groupoid (X, •) ∈ Str (X), we classify the signature-
and similar -factors of (X, •) as UA-composite, signature- or similar -prime. We conclude
that U (X, •) and A (X, •) are similar - and signature-prime, respectively.

Theorem 3.3.1 The signature-factor of a strong groupoid is similar-prime, and the similar-
factor is signature-prime.

Proof. Let (X, •) ∈ Str (X). Suppose that (X, ∗) = U (X, •) and (X, ◦) = A (X, •). Let
(X,~) = U (X, ∗) and (X,�) = A (X, ∗), then “~” and “�” are defined as:

x~ y =

{
x; if x = y,

x ∗ y = x • y otherwise
and x� y =

{
x ∗ x = x if x = y,

x; otherwise.

Hence A (X, ∗) = idBin(X), and therefore U (X, •) is similar -prime. Similarly, if we let
(X,�) = U (X, ◦) and (X,�) = A (X, ◦), then “�” and “�” are defined as:

x� y =

{
x if x = y,

x ◦ y = x otherwise
and x� y =

{
x ◦ x = x • x if x = y,

x; otherwise.

Therefore, U (X, ◦) = idBin(X), and hence A (X, •) is signature-prime.

�

Corollary 3.3.2. Let (X, •) be any groupoid and let (X, ∗) = U (X, •) and (X, ◦) =
A (X, •). If (X, •) has a UA-factorization, i.e., if (X, •) = (X, ∗) � (X, ◦) , then

(X, •) = U (X, ∗) �A (X, ◦) .
Proof. This follows immediately from the previous theorem. In fact, suppose (X, •) has a
UA-factorization, then

(X, •) = (X, ∗) � (X, ◦)
= (U (X, ∗) �A (X, ∗)) � (U (X, ◦) �A (X, ◦))
= (U (X, ∗) � idBin(X)) �

(
idBin(X) �A (X, ◦)

)
= U (X, ∗) �A (X, ◦) .

�
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Corollary 3.3.3. Let (X, •) be a groupoid and let (X, ∗) = U (X, •) and (X, ◦) = A (X, •).
If (X, •) has a AU -factorization then

(X, •) = A (X, ◦) � U (X, ∗) .
Proof. The proof is very similar to that of the previous Corollary.

�

Corollary 3.3.4. Let (X, •) be a strong groupoid and let (X, ∗) = U (X, •) and (X, ◦) =
A (X, •), then

(X, •) = A (X, ◦) � U (X, ∗) = U (X, ∗) �A (X, ◦) .

Proof. This is a direct result of Theorem 3.1.3 and the previous two Corollaries.

�

As a final observation, a groupoid is similar -prime if it is similar to the left-zero-
semigroup or a locally-zero-groupoid, in other words, if it is idempotent. Hence, we need
another method of factorization for idempotent groupoids.

4. Orient-Skew Factorization

We say a groupoid (X, ∗) has the orientation property OP [33] if x ∗ y ∈ {x, y} for all
x, y ∈ X. Moreover, (X, ∗) has the twisted orientation property TOP if x ∗ y = x implies
y ∗ x = x for all x, y ∈ X. In this section, we introduce a unique factorization which can
be applied to groupoids with OP. This type of groupoids has proven to be useful in graph
theory, where in a directed graph x∗y = x can mean there is a path from vertex x to vertex
y, i.e. x→ y; while x ∗ y = y can mean there is no path from x to y, i.e. x9 y. In fact, if
Γ(X,∗) is the directed graph on vertex set X and (X, ∗) ∈ TOP (X), then Γ(X,∗) is a simple
graph [1]. For more details on groupoids associated with directed and simple graphs we
refer to [1, 35].

Example 4.1 Let X = {0, 1} and (X,≤) be a linearly ordered set. Define a binary
operation “•” on X such that:

x • y =

{
0 if x ≤ y,
1 otherwise.

Then the binary system (X, •) has the orientation property.

Example 4.2 Let X = {a, b, c}. Define a binary operation “•” on X by the following table:

• a b c
a a b c
b b b c
c c b c

Then (X, •) has the twisted orientation property.

We consider three functions to represent operations on the main diagonal and on the
anti-diagonal of the associated Cayley table of a binary operation on a finite set.

Let (X, ∗) be a groupoid of finite order n and binary operation “∗”, i.e., |X| = n and
∗ : X2 −→ X. Then for all xi, xj ∈ X, i, j = 1, 2, ..., n, and i+ j = n+ 1, we call:

diag-1: d∗ the anti-diagonal function of (X, ∗) such that d∗ : N −→ X, defined by d∗

(i) = xi ∗ xj .
diag-2: d̂∗ the reverse-diagonal function of (X, ∗) such that d̂∗ : N −→ X, defined by

d̂∗ (i) = xj ∗ xj .
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diag-3: d̃∗ the skew-diagonal function of (X, ∗) such that d̃∗ : N −→ X, defined by

d̃∗ (i) = d̂∗(i) = xj ∗ xi.

Example 4.3 Consider the groupoid ({0, 1, 2, 3} , ∗) where “∗” is given by the following
table:

∗ 0 1 2 3
0 0 1 0 3
1 1 1 1 0
2 2 2 2 3
3 0 3 2 3

Observe that n = 4 and the main diagonal d∗ = {0, 1, 2, 3}. For instance, d∗(2) = 2 ∗ 2 = 2.
Also, the anti-diagonal d∗ = {3, 1, 2, 0}. For example, d∗ (1) = x1∗x4 = 0∗3 = 3. Moreover,

the reverse of the diagonal is d̂∗ = {3, 2, 1, 0}. For instance, d̂∗ (4) = x1 ∗x1 = 0 ∗ 0 = 0. So

the skew-diagonal defined here is the reverse of the anti-diagonal, hence, d̃∗ = {0, 2, 1, 3}.
For example, d̃∗ (3) = d̂∗(3) = x2 ∗ x3 = 1 ∗ 2 = 1.

Given these definitions, we can derive the orient-factor of a groupoid from idBin(X),
such that all its elements are the same as those of the left-zero-semigroup except elements
belonging to the anti-diagonal, which we construct from the skew-diagonal of idBin(X).
Similarly, the skew -factor is derived from the parent groupoid by letting its anti-diagonal
be that of the skew-diagonal of the parent groupoid, otherwise all other elements are kept
the same as the parent groupoid.

Let (X, •) be a groupoid. Let D� denote the main diagonal of idBin(X). Derive groupoids
(X, ∗) and (X, ◦) from idBin(X) and (X, •), respectively, as follows:
For all x, y ∈ X,

(4.1)
(i) d∗ = D̃�, and (i) d◦ = d̃•,
(ii) x ∗ y = x; otherwise. (ii) x ◦ y = x • y; otherwise.

Groupoids (X, ∗) and (X, ◦) are said to be the orient- and skew-factor of (X, •), respec-
tively, denoted by O (X, •) and J (X, •). As previously mentioned, the product “�” is not
commutative. Hence, for (X, •) ∈ Bin (X), we may have an OJ-factorization such that

(4.2) (X, •) = O (X, •) � J (X, •)

or a JO-factorization such that

(4.3) (X, •) = J (X, •) �O (X, •) .

Proposition 4.4 The orient-factor of a given groupoid is locally-zero.

Proof. Given (X, •) ∈ Bin (X), let (X, ∗) = O (X, •). Then, d∗ = D�, i.e. x ∗ x = x, and
x ∗ y = x for all x, y ∈ X except when x, y ∈ d∗. In fact, for any x 6= y in X, ({x, y}, •)
is either a left-zero-semigroup or a right-zero-semigroup. Moreover, x • x = x for all x ∈ X
which implies that O (X, •) is locally-zero.

�

Corollary 4.5 The orient-factor of a given groupoid is a unit in Bin (X).

Proof. This follows immediately from Propositions 2.8 and 4.4.

�
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Example 4.6 Let X = {e, a, b, c}. Define a binary operation “•” by the following table:

• e a b c
e e a b c
a a e c b
b b c a e
c c b e a

Then, clearly (X, •, e) is a group. Derive its orient-factor (X, ∗, e) = U(X, •, e) as in 4.1 to
obtain:

∗ e a b c
e e e e c
a a a b a
b b a b b
c e c c c

Hence, (X, ∗, e) is locally-zero.

4.1. OJ-Factorization. In this subsection, we explore an OJ-factorization of any groupoid
(X, •) in Bin (X), i.e., into its orient- and skew -factors, respectively. The next subsection
discusses a JO-factorization where the product of the two factors is “reversed”. Then, we
classify (X, •) as OJ- and/or JO-composite, j-composite or j-normal; and as orient- or
skew-prime.

A groupoid (X, •) is bi-diagonal if its anti-diagonal is symmetric, meaning if d• = d̃•.

Example 4.1.1. Let (Z, <) be a linearly ordered set. Consider groupoid (Z, •) where
x • y = max {x, y} for all x, y ∈ Z. Define two binary operations on Z such that:

x ∗ y =

{
x if x < y,

y otherwise.
and x ◦ y =

{
x if x ≤ y,

y otherwise.

Then clearly (X, ∗) � (X, ◦) is an OJ-factorization of (X, •), where (X, ∗) = O(X, •) and
(X, ◦) = J(X, •). Moreover, (Z, •) is bi-diagonal.

A groupoid (X, •) is said to be orient-prime if O (X, •) = idBin(X), and is said to be
skew-prime if J (X, •) = idBin(X). Alternatively, if (X, •) is neither orient- nor skew -prime,
then (X, •) is said to be

(1) OJ-composite if (X, •) = O (X, •) � J (X, •);
(2) JO-composite if (X, •) = J (X, •) �O (X, •).

Consequently, (X, •) is said to be j-composite if both (1) and (2) hold.

Just as with UA-factorization, not every groupoid will have a JO-factorization. But it
is possible to derive an OJ-factorization of any given groupoid.

Theorem 4.1.2 Any given groupoid has an OJ-factorization, i.e., if (X, •) ∈ Bin(X), then

(X, •) = O(X, •) � J(X, •).
Proof. Let (X, •) ∈ Bin (X) such that O(X, •) and J(X, •) are defined as in 4.1. Let
(X,�) = (X, ∗) �(X, ◦) where (X, ∗) = O(X, •) and (X, ◦) = J(X, •). Then x � y =
(x ∗ y) ◦ (y ∗ x) for all x, y ∈ X. It follows that

(i) If x = y, x ∗ x = x and x ◦ x = x • x.

(ii) If x 6= y, then if x∗y ∈ d∗, x∗y ∈ D̃�, and for x◦y ∈ d◦, then x◦y ∈ d̃•. Otherwise,
x ∗ y = x, and x ◦ y = x • y.

Next, we show that (X, •) = (X,�). Given x, y ∈ X,

(i) If x = y, x� x = (x ◦ x) ∗ (x ◦ x) = x ◦ x = x • x.
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(ii) If x 6= y, then if x ∗ y = y ∗ x, then x � y = (x ∗ y) ◦ (y ∗ x) = x ◦ y = x • y and
y�x = (y ∗x)◦ (x∗y) = y ◦x = x•y. If x∗y 6= y ∗x, then x�y = (x∗y)◦ (y ∗x) =
(x ∗ y) • (y ∗ x) ∈ {x • y, y • x}.

Thus, x� y = x • y for all x, y ∈ X. This proves that (X,�) = (X, •).
�

Corollary 4.1.3 The factorization in Theorem 4.1.2 is unique.

Proof. Let (X, •) ∈ Bin (X) with an OJ-factorization such that (X, •) = (X, ∗) �(X, ◦)
where (X, ∗) = O(X, •) and (X, ◦) = J(X, •). Let (X, •) = (X,5) �(X,4) where (X,5) =
O(X, •) and (X,4) = J(X, •). For any x ∈ X, we have x∗x = x = x5x, and x∗y = x5y
when x 6= y. Hence (X, ∗) = (X,5). Similarly, if x ∈ X, then x ◦ x = x • x = x4 x. When
x 6= y, we have x ◦ y = x • y = x4 y, proving that (X, ◦) = (X,4).

�

Example 4.1.4 [32] Consider the groupoid (X, •) = ({1, 2, 3, 4} , •) where “•” is defined
by the following Cayley table:

• 1 2 3 4
1 1 1 3 1
2 2 2 3 2
3 1 2 3 4
4 4 4 3 4

By deriving its orient- and skew -factors O (X, •) and J (X, •), respectively, and by letting
(X, ∗) = O (X, •) and (X, ◦) = J (X, •) shows that (X, ∗) � (X, ◦) = (X, •).
Indeed, (X, •) has an OJ-factorization:

∗ 1 2 3 4
1 1 1 1 4
2 2 2 3 2
3 3 2 3 3
4 1 4 4 4

�

◦ 1 2 3 4
1 1 1 3 4
2 2 2 2 2
3 1 3 3 4
4 1 4 3 4

=

• 1 2 3 4
1 1 1 3 1
2 2 2 3 2
3 1 2 3 4
4 4 4 3 4

Also, since O (X, •) 6= idBin(X) 6= J (X, •), then (X, •) is OJ-composite.

4.2. JO-Factorization. In this subsection, we reverse the product of the orient- and skew -
factors of a given groupoid (X, •) ∈ Bin (X). We find that an arbitrary groupoid admits a
JO-factorization if it has the orientation property.

Example 4.2.1 Consider the groupoid (X, •) = ({1, 2, 3, 4} , •) defined as in Example 4.1.4:

• 1 2 3 4
1 1 1 3 1
2 2 2 3 2
3 1 2 3 4
4 4 4 3 4

Through routine calculations, we find that (X, •) admits a JO-factorization since J (X, •)�
O (X, •) = (X, ◦) � (X, ∗) = (X, •) . In addition, (X, •) ∈ OP (X).

A groupoid (X, •) is said to be j-normal if it admits an OJ- and a JO-factorization, i.e.,
if

(i) (X, •) = O (X, •) � J (X, •) and
(ii) (X, •) = J (X, •) �O (X, •).

Theorem 4.2.3 A groupoid (X, •) with the orientation property has a JO-factorization.
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Proof. Let (X, •) ∈ OP (X). Define (X,�) = (X, ∗) �(X, ◦) where (X, ∗) = O(X, •) and
(X, ◦) = J(X, •). Then x� y = (x ∗ y) ◦ (y ∗ x) for all x, y ∈ X. It follows that

(i) If x = y, then x ∗ x = x and x ◦ x = x • x.
(ii) If x 6= y, the two cases arise: if x∗y ∈ d∗ and x◦y ∈ d◦, then x∗y ∈ D̃� and x◦y ∈

d̃• which also ∈ {x, y}. Otherwise, x ∗ y = x,and x ◦ y = x • y.
Next, we show that (X, •) = (X,�). Given x, y ∈ X,

(i) If x = y, then x� x = (x ◦ x) ∗ (x ◦ x) = x ∗ x = x • x.
(ii) If x 6= y, then x�y = (x◦y)∗ (y ◦x). If x◦y = y ◦x, then x�y = (x◦y)∗ (x◦y) =

x ◦ y = x • y. If x ◦ y 6= y ◦ x, then x� y = (x ∗ y) • (y ∗ x) ∈ {x • y, y • x}.
Thus x� y = x • y for all x, y ∈ X. This proves that (X,�) = (X, •).

�

Corollary 4.2.4 The factorization in Theorem 4.2.3 is unique.

Proof. The proof is very similar to that of Corollary 4.1.3 so we omit it.

�

Proposition 4.2.5 A groupoid with the orientation property is j-normal.

Proof. The result follows from Theorems 4.1.2, 4.2.3 and the definition.

�

Example 4.2.6 Let (X, •) be defined as in Example 4.2.1 where we determined that (X, •)
admits an OJ-factorization. It can be verified that J (X, •)�O (X, •) = (X, •), which shows
that (X, •) admits a JO-factorization as well. Therefore, (X, •) is j-normal in (Bin (X) , �).
Additionally, J (X, •) 6= idBin(X) 6= O (X, •) implies that (X, •) is j-composite.

4.3. Factoring O (X, •) and J (X, •). In this subsection, the orient- and skew -factors
of (X, •) ∈ OP (X) are factored to deduce that O (X, •) is skew -prime while J (X, •) is
binary-equivalent to (X, •).

Let (X, •) and (X, ◦) be groupoids in Bin (X). We say that (X, ◦) is binary-equivalent
to (X, •) if there exists (X, ∗) ∈ Bin (X) such that

(i) (X, •) = (X, ∗) � (X, ◦); and
(ii) (X, ◦) = (X, ∗) � (X, •).

Theorem 4.3.1 Given a groupoid (X, •) with the orientation property. Its orient-factor is
skew-prime, and its skew-factor is binary-equivalent to (X, •).
Proof. Let (X, •) ∈ OP (X). Suppose that (X, ∗) = O (X, •) and (X, ◦) = J (X, •). Then
by Theorem 4.1.2 (X, •) = O(X, •) � J(X, •) = (X, ∗) � (X, ◦). Let (X,~) = O (X, ∗) and

(X,�) = J (X, ∗) , then for ~: (i) d~ = D̃�, (ii) x ~ y = x, otherwise; and for �: (i)

d� = d̃∗ = D�, (ii) x� y = x ∗ y = x, otherwise. Hence,

(X, ∗) = (X, ∗) � idBin(X)

and O (X, •) is skew -prime. Similarly, if we let (X,�) = O (X, ◦) and (X,�) = J (X, ◦),
then for �: (i) d� = D̃�, (ii) x � y = x, otherwise; and for �: (i) d� = d̃◦ = d•, (ii)
x� y = x ◦ y = x • y, otherwise. Thus,

(X, ◦) = (X, ∗) � (X, •)

and the final result follows.

�
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Example 4.3.2 Consider the locally-zero groupoid (X, •) = ({0, 1, 2, 3, 4, 5} , •) where “•”
is defined by the following Cayley table:

• 0 1 2 3 4 5
0 0 1 0 0 4 0
1 0 1 2 3 1 5
2 2 1 2 3 4 2
3 3 1 2 3 3 3
4 0 4 2 4 4 4
5 5 1 5 5 5 5

Since (X, •) has the orientation property, then (X, •) is j-normal by Proposition 4.2.5.
Factoring its orient- and skew-factors (X, ∗) = O (X, •) and (X, ◦) = J (X, •) into their
respective orient- and skew -factors, O (X, ∗), J (X, ∗) and O (X, ◦), J (X, ◦), is observed
through their respective product tables:

∗ 0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 1 1 1 4 1
2 2 2 2 3 2 2
3 3 3 2 3 3 3
4 4 1 4 4 4 4
5 0 5 5 5 5 5

=

∗ 0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 1 1 1 4 1
2 2 2 2 3 2 2
3 3 3 2 3 3 3
4 4 1 4 4 4 4
5 0 5 5 5 5 5

�

� 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5

◦ 0 1 2 3 4 5
0 0 1 0 0 4 5
1 0 1 2 3 4 5
2 2 1 2 2 4 2
3 3 1 3 3 3 3
4 0 1 2 4 4 4
5 0 1 5 5 5 5

=

∗ 0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 1 1 1 4 1
2 2 2 2 3 2 2
3 3 3 2 3 3 3
4 4 1 4 4 4 4
5 0 5 5 5 5 5

�

• 0 1 2 3 4 5
0 0 1 0 0 4 0
1 0 1 2 3 1 5
2 2 1 2 3 4 2
3 3 1 2 3 3 3
4 0 4 2 4 4 4
5 5 1 5 5 5 5

Indeed, (X, ∗) = O (X, ∗) � J (X, ∗) = (X, ∗) � idBin(X) and (X, ◦) = O (X, ◦) � J (X, ◦) =
(X, ∗) � (X, •). This clearly shows the results of Theorem 4.3.1.

Theorem 4.3.3 The right-zero-semigroup on X is j-composite.

Proof. Let (X, •) be the right-zero-semigroup on X. Suppose that (X, ∗) = O (X, •) and
(X, ◦) = J (X, •). By applying Proposition 4.2.5, (X, •) is j-normal. Thus, (X, •) =

(X, ∗) � (X, ◦) = (X, ◦) � (X, ∗). Consider (X, ∗): (i) d∗ = D̃�, (ii) x ∗ y = x, otherwise; and

for (X, ◦): (i) d◦ = d̃•, (ii) x ◦ y = x • y = y, otherwise. Since neither one of the factors is
the left-zero-semigroup for Bin (X), (X, •) is j-composite.

�

Example 4.3.4 Let (X, •) be the right-zero-semigroup as in Example 3.2.9 where X =
{a, b, c}. Let (X, ∗) = O (X, •) and (X, ◦) = J (X, •), we can check that (X, •) is in fact
OJ- and JO-composite. Hence, (X, •) is j-composite:

∗ a b c
a a a c
b b b b
c a c c

�

◦ a b c
a a b a
b a b c
c c b c

=

• a b c
a a b c
b a b c
c a b c
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Moreover, its orient-factor (X, ∗) has the following subtables:

∗ a b
a a a
b b b

∗ a c
a a c
c a c

∗ b c
b b b
c c c

which implies that (X, ∗) is locally-zero.

Given two distinct groupoids (X, .) and (X, /) in Bin (X). Suppose that (X, .) 6=
idBin(X) and (X, /) 6= idBin(X). Let (X, •) be a groupoid such that (X, .) 6= (X, •) 6= (X, /).
Then (X, •) is said to be:

(i) partially-right-prime, ∂r-prime, if (X, •) = (X, •) � (X, .);
(ii) partially-left-prime, ∂l-prime, if (X, •) = (X, /) � (X, •).

Whence (X, .) and (X, /) behave like right- and left-identities respectively. Here, (X, .)
and (X, /) could be either O (X, •), J (X, •), U (X, •), A (X, •) or any other factor of (X, •).
The next proposition demonstrates one such case.

Proposition 4.3.5 A bi-diagonal groupoid is partially-left-prime.

Proof. Given a bi-diagonal groupoid (X, •), then its skew -factor J(X, •) = (X, •) since

d◦ = d̃• = d• and x ◦ y = x • y otherwise. Meanwhile, its orient-factor O(X, •) is not
affected by the bi-diagonal property. By Theorem 4.1.2, (X, •) has an OJ-factorization,

(X, •) = O(X, •) � J(X, •)
= O(X, •) � (X, •).

Therefore, O(X, •) is a left-identity in (Bin (X) , �) and the result follows.

�

Example 4.3.6 Consider the group (X, •, e) as defined in Example 4.5. Then clearly
(X, •, e) is bi-diagonal. Recall its orient-factor (X, ∗, e) = O(X, •, e) and derive its skew -
factor (X, ◦, e) = J(X, •, e) to obtain:

∗ e a b c
e e e e c
a a a b a
b b a b b
c e c c c

and

◦ e a b c
e e a b c
a a e c b
b b c a e
c c b e a

Then (X, •, e) = O(X, •, e) � (X, •, e) and therefore the group (X, •, e) is ∂l-prime.

5. Application

Recall some of the algebras described in “Figure 1” of Section 2.

We shall say an algebra (X, •, 0) of type (2, 0) is a strong B1-algebra if it satisfies (B1)
and equation 2.1. Meaning, if for all x, y ∈ X,

(i) x • x = 0,
(ii) x • y = y • x implies x = y.

A groupoid (X, •, 0) is semi-neutral if for all x, y ∈ X,
(i) x • x = 0,
(ii) x • y = x.

A B1-algebra (X, •, 0) is semi-neutral if for x 6= y, x • y = x for all x, y ∈ X.
A normal/composite groupoid is semi-normal (resp., semi-composite) if only one of its

factors is semi-neutral.
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Proposition 5.1 A semi-neutral groupoid is signature-prime and OJ-composite.

Proof. Let (X, •, 0) be the semi-neutral groupoid on X. Then x • y = x for all x, y ∈ X
and x • x = 0. Let (X, ∗, 0) = U (X, •, 0) and (X, ◦, 0) = A (X, •, 0), its signature- and
similar -factors, respectively. Deriving them according to 3.1 gives:

x ∗ y =

{
x if x = y,

x • y = x otherwise.
and x ◦ y =

{
x • x = 0 if x = y,

x otherwise.

Hence for all x, y ∈ X, (X, •, 0) = idBin(X) � (X, •, 0).
By Theorem 4.1.2, (X, •, 0) has an OJ-factorization. Let (X,~, 0) = O (X, •, 0) and
(X,�, 0) = J (X, •, 0), its orient- and skew -factors, respectively. Deriving them accord-

ing to 4.1 gives: for ~: (i) d~ = D̃�, (ii) x~y = x, otherwise; and for �: (i) d� = d̃• 6= D�,
(ii) x�y = x•y, otherwise. Thus, (X, ∗, 0) 6= idBin(X) 6= (X, ◦, 0) and (X, ∗, 0) 6= (X, •, 0) 6=
(X, ◦, 0).

�

Corollary 5.2 A semi-neutral groupoid is semi-normal.

Proof. This is a direct result of Proposition 5.1 and the definition of a semi-normal groupoid.

�

Proposition 5.3 The product of semi-neutral groupoids is semi-neutral.

Proof. Consider semi-neutral groupoids (X, ∗, 0) and (X, ◦, 0). Let (X, ∗, 0) � (X, ◦, 0) =
(X, •, 0) such that x • y = (x ∗ y) ◦ (y ∗ x). Then, x • x = (x ∗ x) ◦ (x ∗ x) = 0. If x 6=
y,.x • y = x ◦ y. It follows that (X, •, 0) = (X, ◦, 0) and therefore is semi-neutral.

�

Proposition 5.4 The similar-factor of a B1-algebra is semi-neutral.

Proof. Let (X, •, 0) be a B1-algebra. Consider the AU -factorization (X, •, 0) = A (X, •, 0)�
U (X, •, 0). Let (X, ∗, 0) := U (X, •, 0) and (X, ◦, 0) := A (X, •, 0), its signature- and simi-
lar -factors, respectively. Deriving them according to 3.1 gives:

x ∗ y =

{
x if x = y,

x • y otherwise.
and x ◦ y =

{
x • x = 0 if x = y,

x otherwise.

Clearly, (X, ◦, 0) is semi-neutral.

�

Corollary 5.5 A strong B1-algebra is semi-normal.

Proof. This is a direct result of Corollary 3.2.5, Proposition 5.4 and the definition of a
semi-normal algebra.

�

Corollary 5.6 A strong B1-algebra (X, •, 0) is semi-composite if it is not semi-neutral,
i.e., if x • y 6= x for all x, y ∈ X.

Proof. Let (X, •, 0) be a strong B1-algebra. Let (X, ∗, 0) := U (X, •, 0) and (X, ◦, 0) :=
A (X, •, 0), its signature- and similar -factors respectively. Deriving them according to 3.1.
Assume that x•y = x. Then x∗y = x for all x, y ∈ X. Thus, (X, •, 0) = idBin(X) � (X, •, 0)
which makes it signature-prime and not u-composite.

�

Example 5.7 Let (X, •, 0) = ({0, 1, 2} , •) be a strong BCK-algebra of order 3 where “•”
is defined by the following Cayley table:
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• 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

Let ({0, 1, 2} , ∗) = U ({0, 1, 2} , •) and ({0, 1, 2} , ◦) = A ({0, 1, 2} , •). Its UA.-factorization
is:

∗ 0 1 2
0 0 0 0
1 1 1 1
2 2 2 2

�

◦ 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

=

• 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

Therefore, ({0, 1, 2} , •) is signature-prime and u-normal. Moreover, ({0, 1, 2} , •) as defined
is semi-neutral. Next, derive its orient- and skew -factors O (X, •, 0) and J (X, •, o), re-
spectively. Let (X,~, 0) = O (X, •, 0) and (X,�, 0) = J (X, •, 0). We have the following
product:

∗ 0 1 2
0 0 0 2
1 1 1 1
2 0 2 2

�

◦ 0 1 2
0 0 0 2
1 1 0 1
2 0 2 0

=

• 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

Hence, O (X, •, 0) 6= idBin(X) 6= J (X, •, 0) implies that (X, •, 0) is OJ-composite.

Example 5.8 Let (X, •, 0) = {(0, 1, 2), •} be a strong Q-algebra of order 3 where “•” is
given by the following Cayley table:

• 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Let ({0, 1, 2} , ∗) = U ({0, 1, 2} , •) and ({0, 1, 2} , ◦) = A ({0, 1, 2} , •). Its UA.-factorization
is:

∗ 0 1 2
0 0 2 1
1 1 1 2
2 2 1 2

�

◦ 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

=

• 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Since ({0, 1, 2} , ∗, 0) 6= IdBin(X) and ({0, 1, 2} , ◦, 0) is semi-neutral, we can conclude that
({0, 1, 2} , •, 0) is semi-composite.

P.J. Allen, H.S. Kim and Neggers in [4] introduced the notion of Smarandache disjointness
in algebras. Two groupoids (algebras) (X, •) and (X, ∗) are said to be Smarandache disjoint
if we add some axioms of an algebra (X, •) to an algebra (X, ∗), then the algebra (X, ∗)
becomes a trivial algebra, i.e., |X| = 1.

Proposition 5.9 The class of abelian groupoids and the class of u-normal groupoids are
Smarandache disjoint.

Proof. Let (X, •) ∈ Ab(X), the collection of all abelian groupoids defined on X. Suppose
that (X, ◦) = A(X, •) and (X, ∗) = U (X, •). By Theorem 3.2.3, (X•) admits an AU -
factorization. Consider (X, ∗) � (X, ◦), then for x = y,

x � x = (x ∗ x) ◦ (x ∗ x)

= x ◦ x
= x • x.
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If x 6= y,

x � y = (x ∗ y) ◦ (y ∗ x)

= (x • y) ◦ (y • x)

= (x • y) • (x • y) .

Hence, (X•) admits a UA-factorization only if (x • y) • (x • y) = x • y. This means that
(X, •) is u-normal if it is either the left- or right-zero-semigroup. Since both such groupoids
are not abelian, then X must only have one element and the conclusion follows.

�

Suppose that in Bin(X) we consider all those groupoids (X, ∗) with the orientation
property. Thus, x ∗ x = x as a consequence. If (X, ∗) and (X, ◦) both have the orientation
property, then for x � y = (x ∗ y) ◦ (y ∗ x) we have the possibilities: x ∗ x = x, y ∗ y =
y, x ∗ y ∈ {x, y} and y ∗ x ∈ {x, y}, so that x � y ∈ {x, y}. It follows that if OP (X) denotes
this collection of groupoids, then (OP (X), �) is a subsemigroup [33] of (Bin(X), �).

In a sequence of papers Nebeský ([27], [28], [29]) associated with graphs (V,E) groupoids
(V, ∗) with various properties and conversely. He defined a travel groupoid (X, ∗) as a
groupoid satisfying the axioms: (u ∗ v) ∗ u = u and (u ∗ v) ∗ v = u implies u = v. If one
adds these two laws to the orientation property, then (X, ∗) is an OP-travel-groupoid. In
this case u ∗ v = v implies v ∗ u = u, i.e., uv ∈ E implies vu ∈ E, i.e., the digraph (X,E)
is a (simple) graph if uu 6∈ E, with u ∗ u = u. Also, if u 6= v, then u ∗ v = u implies
(u ∗ v) ∗ v = u ∗ v = u is impossible, whence u ∗ v = v and uv ∈ E, so that (X,E) is a
complete (simple) graph.

In a recent paper, Ahn, Kim and Neggers [1] related graphs with binary systems in the
center of Bin (X). Given an element of ZBin(X), say (X, •) , they constructed a graph,
ΓX by letting V (ΓX) = X and (x, y) ∈ E(ΓX), the edge set of ΓX , such that x 6= y,
y • x = y and x • y = x. Thus, if (x, y) ∈ E(ΓX), then (y, x) ∈ E(ΓX) as well and they
identify (x, y) = (y, x) as an undirected edge of ΓX . Then they concluded that if (X, •)
is the left-zero-semigroup, then ΓX is the complete graph on X. Also, if (X, •) is the
right-zero-semigroup, then ΓX is the null graph on X, since E(ΓX) = ∅.

Example 5.10 Let X = {a, b, c, d} and consider the simple graph on X:

a

b c

d

Then the associated groupoid table with binary operation “•” is:

• a b c d
a a a c d
b b b b b
c a c c d
d a d c d

By applying Proposition 4.2.5 to (X, •), we have the product of O (X, •) and J (X, •) given
by their respective tables:
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∗ a b c d
a a a a d
b b b c b
c c b c c
d a d d d

�

◦ a b c d
a a a c a
b b b c b
c a b c d
d d d c d

=

• a b c d
a a a c d
b b b b b
c a c c d
d a d c d

We can visualize this product with the associated graphs of groupoids (X, ∗) and (X, ◦):

a

b c

d

�

a

b c

d

=

a

b c

d

Thus, any simple graph constructed in this manner can be decomposed into two or more
other factors with the binary product “�”. This fact is further illustrated in the next
example.

Example 5.11 Let (X, •) = ({0, 1, 2, 3, 4, 5} , •) be the locally-zero groupoid defined as in
Example 4.3.2. Then its associated graph decomposes into its factors (X, ∗) and (X, ◦):

0

1

2 3

4

5

=

0

1

2 3

4

5

�

0

1

2 3

4

5

6. Generalization and Summary

In this final note, we discuss two generalizations which can serve as grounds for future
exploration of groupoid factorizations or algebra decompositions via the groupoid product
“�”.

6.1. Ψ-type-Factorization. Let Ψ be a groupoid operation that interchanges elements
of any two given groupoids and produces two other (possibly identical) groupoids. Given
groupoid (X, •) ∈ Bin (X) and the left-zero-semigroup as idBin(X), define Ψ : Bin (X) ×
Bin (X) → Bin (X) × Bin (X). A Ψ-type-factorization of (X, •) gives a pair of groupoid
factors as follows:

Ψ((X, •) , idBin(X)) = ((X, •)L , (X, •)R)

where (X, •)L = Ψα((X, •) , idBin(X)) and (X, •)R = Ψα(idBin(X), (X, •)), the left- and
right-Ψ-factors of (X, •), respectively, such that the maps Ψα and α are defined as Ψα :
Bin (X)×Bin (X)→ Bin (X) and α : Bin (X)→ Bin (X).
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Let (X, ∗) := (X, •)L and (X, ◦) := (X, •)R, then (X, •) can be represented as a product
of the groupoid pair, i.e.,

(X, •) = (X, ∗) � (X, ◦) and/or

(X, •) = (X, ◦) � (X, ∗)
thus rendering (X, •) as:

(i) Ψ-prime, if (X, •)L = idBin(X) or (X, •)R = idBin(X); or
(ii) Ψ-normal if (X, ∗) � (X, ◦) = (X, ◦) � (X, ∗); or
(iii) Ψ-composite if (X, •) is Ψ-normal but not Ψ-prime.

An example of this Ψ-type-factorization is our first method of similar -signature-factorization
where

Ψd((X, •) , idBin(X)) = {(X, •) |d (X, •) = d
(
idBin(X)

)
}

and
Ψd(idBin(X), (X, •)) = {idBin(X)|d

(
idBin(X)

)
= d (X, •)}

The Ψ in that case switched the diagonal d of the parent groupoid (X, •) with that of the
left-zero-semigroup, idBin(X), to obtain the signature- and similar -factors (X, ◦) and (X, ∗),
respectively. Hence, the signature- and similar -factors of a groupoid are Ψ-type-factors.

6.2. τ-type-Factorization. Let τ be a groupoid operation that manipulates elements of
any given pair of groupoid in the same fashion. Given groupoid (X, •) ∈ Bin (X) and the
left-zero-semigroup as idBin(X), define τ : Bin (X) × Bin (X) → Bin (X) × Bin (X). A
τ -type-factorization of (X, •) is given as follows:

τ
(
(X, •) , idBin(X)

)
= ((X, •)L , (X, •)R)

where (X, •)L = θ(idBin(X)) and and (X, •)R = θ (X, •) such that the map θ : Bin (X) →
Bin (X), the left- and right-τ -factors of (X, •), respectively. Let (X, ∗) := (X, •)L and
(X, ◦) := (X, •)R, then (X, •) could factor into a product of the groupoid pair, i.e.,

(X, •) = (X, ∗) � (X, ◦) and/or

(X, •) = (X, ◦) � (X, ∗) .

Once again rendering (X, •) as:
(i) τ -prime, if (X, •)L = idBin(X) or (X, •)R = idBin(X); or
(ii) τ -normal if (X, ∗) � (X, ◦) = (X, ◦) � (X, ∗); or
(iii) τ -composite if (X, •) is τ -normal but not τ -prime.

An example of this τ -type-factorization is our second method of orient-skew-factorization
where O (X, •) := (X, •)L and J (X, •) := (X, •)R. The τ (indeed, θ) in that scenario
reversed the anti-diagonal of a given groupoid. Hence, applying τ to the left-zero-semigroup
idBin(X) and to the parent groupoid (X, •) results in the orient- and skew -factors (X, ∗)
and (X, ◦), respectively. In conclusion, the orient- and skew -factors of a groupoid are
τ -type-factors.

6.3. Summary. The goal of this paper was to gain more insight about the dynamics of
binary systems, namely groupoids or algebras equipped with a single binary operation.
We have shown that a strong groupoid can be represented as a “composite” groupoid
of its similar- and signature- derived factors. Moreover, we concluded that an idempotent
groupoid with the orientation property, can be decomposed into a product of its orient- and
skew- factors. An application into the fields of logic-algebras and graph theory were briefly
introduced. We found that a semi -neutral B1-algebra is signature-prime, OJ-composite
and semi -normal. Meanwhile, a strong B1-algebra is then semi -composite if it is not semi -
neutral. We finished our note with generalizations of our two methods in hopes that other
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factorizations can be discovered in the near future. It may be interesting to find other
conditions for a groupoid to have such decompositions. As a final reminder, factorization
can be useful in various applications such as algebraic cryptography and DNA code theory.
We intend to extend our investigation in the future to hypergroupoid, semigroups as well
as determine other factorizations and explore their applications.
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