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Abstract. On the Fourier series the Gibbs-Wilbraham phenomenon is well known. In
1993, Pinsky, Stanton and Trapa discovered the so called Pinsky phenomenon on the
spherical partial sum for the Fourier series of the indicator function of a d-dimensional
ball with d ≥ 3. In 2010, Kuratsubo discovered the third phenomenon in dimension d ≥
5. Recently, Taylor found that the Pinsky phenomenon arises even in two-dimension.
In this paper we prove that the Kuratsubo phenomenon arises even in four-dimension.

1 Introduction For the Fourier series of piecewise continuous functions, the Gibbs-
Wilbraham phenomenon is well known. For example, let

χa(x) =

{
1, |x| < a,

0, |x| > a,
x ∈ Rd, a > 0.

Let d = 1. Then the partial sums overshoot the jump at x = ±a by approx. 9% of the jump,
while its partial sum Sλ(χa)(x) converges χa(x) as λ → ∞ at x ̸= ±a. This phenomenon can

Figure 1: Gibbs-Wilbraham phenomenon Sλ(χ1/8) (λ = 20, 30) [2]

be seen not only in one dimension but also in higher dimensions (see for example [1, 8, 12]).
In one dimension, it is also well known as the localization property that, if the function

is zero on an interval, then the Fourier series converges to zero there. However, in higher
dimensions this property is no longer valid. In 1993, Pinsky, Stanton and Trapa [10] showed
that, for the Fourier series of the indicator function of a d-dimensional ball with d ≥ 3, the
spherical partial sum diverges at the center of the ball. This phenomenon is called the
Pinsky phenomenon.

In 1996 Kuratsubo [3] conjectured that, if d ≥ 5, then the third phenomenon would arise,
see also [4]. After the numerical calculation by [7] (2006) he proved that his conjecture is
true in [5] (2010). Namely, for the Fourier series of the indicator function of a d-dimensional
ball with d ≥ 5, the spherical partial sum diverges at all rational points, while it converges
almost everywhere, see Figures 3–5. Figure 4 is the expansion of Figure 3 to the direction
of the vertical axis for the interval [0.2, 0.5]. Figure 5 is created using 3D graphics.
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Figure 2: Pinsky phenomenon in 4 dim. Sλ(χ1/8)(x1, x2, 0, 0) (λ = 47) [2]
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Figure 3: Kuratsubo phenomenon in 6 dim. Sλ(χ1/4)(x, 0, 0, 0, 0, 0) (λ = 800) [7]

Recently, Taylor [13, 14] found that the Pinsky phenomenon arises even in two dimen-
sions. He treated the radial function

Ua(x) =

{
1/
√
a2 − |x|2, |x| < a,

0, |x| ≥ a,
x ∈ R2, a > 0.

See Figure 6.
Our aim in this paper is to prove the Kuratsubo phenomenon in four dimensions. We

consider the Fourier series of the function

(1.1) Uβ,a(x) =

{
(a2 − |x|2)β , |x| < a

0, |x| ≥ a,
x ∈ R4, a > 0, β > −1.

If β = 0, then Uβ,a(x) is the same as the indicator function of the ball centered at the origin
and of radius a. If β = −1/2, then Uβ,a(x) is the function considered by Taylor [13, 14].
We consider the case −1 < β < −1/2.
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Figure 4: Kuratsubo phenomenon (expansion of Figure 3) [7]

Figure 5: Kuratsubo phenomenon Sλ(χ1/8)(x1, x2, 0, 0, 0, 0) (λ = 407) [2]

In the next section we give the definitions of the Fourier spherical partial sum and the
Fourier spherical partial integral and state some known results on them. Then we state our
main result in Section 3 and prove it in Section 4.

At the end of this section we note the sources of the figures. Figures 1, 2 and 5 were
made by MATLAB in [2]. Figures 3 and 4 were made by Mathematica in [7]. In this time
we made Figure 6 by Mathematica and Figures 7 and 8 by gnuplot with Java.

2 Definitions and known results By Rd, Zd and Td = Rd/Zd we denote the d-
dimensional Euclidean space, integer lattice and torus, respectively. In this paper, however,
we always identify Td with (−1/2, 1/2]d, that is, x ∈ Td means x ∈ (−1/2, 1/2]d and Td ⊂
Rd. Let Q be the set of all rational numbers, and let Qd = {(x1, . . . , xd) : x1, . . . , xd ∈ Q}.

For an integrable function F (x) on Rd, its Fourier transform F̂ (ξ) and its Fourier spher-
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Figure 6: Pinsky phenomenon in 2 dim, S10(U1/4)

ical partial integral σλ(F )(x) of order λ ≥ 0 are defined by

F̂ (ξ) =

∫
Rd

F (x)e−2πiξx dx, ξ = (ξ1, . . . , ξd) ∈ Rd,(2.1)

σλ(F )(x) =

∫
|ξ|<λ

F̂ (ξ)e2πiξxd ξ, |ξ| =

√√√√ d∑
k=1

ξk
2, x ∈ Rd,(2.2)

respectively, where ξx is the inner product
∑d

k=1 ξkxk. Also, for an integrable function f(x)

on Td, its Fourier coefficients f̂(m) and its Fourier spherical partial sum Sλ(f)(x) of order
λ ≥ 0 are defined by

f̂(m) =

∫
Td

f(x)e−2πimx dx, m = (m1, · · · ,md) ∈ Zd,(2.3)

Sλ(f)(x) =
∑

|m|<λ

f̂(m)e2πimx, |m| =

√√√√ d∑
k=1

mk
2, x ∈ Td,(2.4)

respectively.
For an integrable function F (x) on Rd, we consider its periodization

(2.5) f(x) =
∑
m∈Zd

F (x+m), x ∈ Td.

Note that in (2.5) the series converges with respect to the L1-norm on Td and then f is an
integrable function on Td. Then it is known as the Poisson summation formula that the
equation

(2.6) f̂(m) = F̂ (m), m ∈ Zd

holds, see for example [11, Theorem 2.4 (page 251)]. The left hand side of (2.6) is defined
by (2.3) and the right hand side of (2.6) is defined by (2.1) with ξ = m.

In particular, we denote by uβ,a(x) the periodization of Uβ,a(x). That is,

(2.7) uβ,a(x) =
∑
m∈Zd

Uβ,a(x+m), x ∈ Td.
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In this paper we always assume that 0 < a < 1/2. Then

(2.8) uβ,a(x) = Uβ,a(x), x ∈ Td.

The behavior of σλ(Uβ,a)(x) as λ → ∞ is known by [6]. Let Γ be the Gamma function
and Jν the Bessel function of order ν. Then the following theorem is known:

Theorem 2.1 ([6, Theorem 4.1]). Let d ≥ 1, a > 0 and β > −1. Then

(2.9) σλ(Uβ,a)(x) = 2βΓ(β + 1)a2β
∫ 2πaλ

0

J d
2−1(

|x|
a s)J d

2+β(s)(
|x|
a

) d
2−1

sβ
ds,

for all x ∈ Rd and λ > 0. Moreover, σλ(Uβ,a) has the following properties:

1. At x = 0,

(a) if β > (d− 3)/2, then σλ(Uβ,a)(0) converges to Uβ,a(0) as λ → ∞,

(b) if −1 < β ≤ (d− 3)/2, then σλ(Uβ,a) reveals the Pinsky phenomenon.

2. For near |x| = a,

(a) if β > 0, then σλ(Uβ,a)(x) converges to Uβ,a(x) as λ → ∞,

(b) −1 < β ≤ 0, then σλ(Uβ,a) reveals the Gibbs-Wilbraham phenomenon.

3. If x ̸= 0 and |x| ̸= a, then σλ(Uβ,a)(x) converges to Uβ,a(x) as λ → ∞ and the
convergence is uniform on any compact subset of Rd \ {x ̸= 0, |x| ̸= a}.

The difference between σλ(Uβ,a) and σλ(uβ,a) is also known by [6]. For j = 0, 1, 2, . . . ,
let

Dj(s : x) =
1

Γ(j + 1)

∑
|m|2<s

(s− |m|2)je2πimx, s > 0, x ∈ Rd,

Dj(s : x) =
1

Γ(j + 1)

∫
|ξ|2<s

(s− |ξ|2)je2πixξ dξ, s > 0, x ∈ Rd,

and

(2.10) ∆j(s : x) = Dj(s : x)−Di(s : x), s > 0, x ∈ Rd.

Further, for j = 0, 1, 2, . . . , β > −1 and a > 0, let

(2.11) A
(j)
β,a(s) = (−1)j

Γ(β + 1)

πβ−j
a

d
2+β+j

J d
2+β+j(2πa

√
s)

s
1
2 (

d
2+β+j)

, s > 0,

and let

(2.12) Kβ,a(s : x) =

d♯∑
j=0

(−1)j∆j(s : x)A
(j)
β,a(s),

where d♯ is the integer part of (d+ 1)/2. Then the following theorem is known:
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Theorem 2.2 ([6, Corollary 6.2]). Let d ≥ 1, β > −1 and 0 < a < 1/2. Then

(2.13) Sλ(uβ,a)(x) = σλ(Uβ,a)(x) +Kβ,a(λ
2 : x) +O(λ−β−1) as λ → ∞

for all x ∈ Td.

In the above O is Landau’s symbol, that is, f(s) = O(g(s)) as s → ∞ means that
lim sups→∞ |f(s)|/g(s) < ∞ for the positive valued function g. Similarly, f(s) = o(g(s)) as
s → ∞ means that lims→∞ f(s)/g(s) = 0.

Therefore, to investigate the behavior of Sλ(uβ,a)(x) as λ → ∞ we need to estimate
Kβ,a(λ

2 : x).

3 Main result Recall that

(3.1) uβ,a(x) = Uβ,a(x), x ∈ Td,

under the assumption 0 < a < 1/2. Let

Ea = {x ∈ Td : x ̸= 0, |x| ̸= a}.

Our main result is the following:

Theorem 3.1. Let d = 4 and 0 < a < 1/2. Fix a point x ∈ Ea ∩ Q4 arbitrarily. If
Sλ(uβ,a)(x) converges uβ,a(x) as λ → ∞ for some β ∈ (−1,−1/2), then Sλ(uβ,a)(x) di-
verges for all other β ∈ (−1,−1/2).

This theorem shows that the Kuratsubo phenomenon arises even if d = 4. On the other
hand, it is known by [6, Theorem 1.3] that, if d = 4 and β > −1/10, then Sλ(uβ,a)(x)
converges to uβ,a(x) as λ → ∞ for all x ∈ Ea. Therefore, the case of β ∈ [−1/2,−1/10]
is an open problem. Note also that, if β > −1/2, then Sλ(uβ,a)(x) converges to uβ,a(x) as
λ → ∞ a.e.x ∈ T4, see [6, Theorem 1.5].

Figures 7 and 8 are graphs of Sλ(uβ,a)(x, 0, 0, 0) for β = −9/10 and a = 1/8 in four
dimensions. We can observe the Kuratsubo phenomenon in Figure 8.
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Figure 7: Kuratsubo phenomenon in 4 dim. Sλ(uβ,a)(x, 0, 0, 0) (λ = 400)
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Figure 8: Kuratsubo phenomenon in 4 dim. (expansion of Figure 7)

4 Proof Let x ∈ Ea. By Theorems 2.1, 2.2 and (3.1), we see that Sλ(uβ,a)(x) → uβ,a(x)
if and only if Kβ,a(λ

2 : x) → 0. To estimate

Kβ,a(λ
2 : x) =

d♯∑
j=0

(−1)j∆j(λ
2 : x)A

(j)
β,a(λ

2),

we combine the estimates of ∆j(λ
2 : x) and A

(j)
β,a(λ

2).
Firstly, by the asymptotic behavior of Bessel functions

(4.1) Jν(s) =

√
2

πs
cos

(
s− 2ν + 1

4
π

)
+O(s−3/2) as s → ∞,

we see that

(4.2) A
(j)
β,a(s) = (−1)j

Γ(β + 1)

πβ−j
a

d
2+β+j

J d
2+β+j(2πa

√
s)

s
1
2 (

d
2+β+j)

= (−1)j
Γ(β + 1)

πβ−j+1

a
d
2+β+j− 1

2

s
1
2 (

d
2+β+j+ 1

2 )
cos

(
2πa

√
s− d+ 2β + 2j + 1

4
π

)
+O(s−

1
2 (

d
2+β+j+ 3

2 )) as s → ∞,

which shows

(4.3) A
(j)
β,a(λ

2) = O(λ−( d
2+β+j+ 1

2 )) as λ → ∞.

In the above, for the asymptotic behavior (4.1) of Bessel functions, see [11, Lemma 3.11 on
page 158] for example.

For the terms ∆j(s : x), we use known results related to the lattice point problem.

Lemma 4.1 ([6, Lemma 5.1]). Let d ≥ 1. Then, as s → ∞,

(4.4) ∆α(s : x) =


O(s

d
2−

d
d+1 ), if α = 0,

O(s
d
2−

d
d+1+

α
d+1+ε) for every ε > 0, if 0 < α ≤ d−1

2 ,

O(s
d−1
4 +α

2 ), if α > d−1
2 ,

uniformly with respected to x ∈ Td.



8 K. Ootsubo, S. Fujima, S. Kuratsubo and E. Nakai

For α ≥ 0, let

(4.5) Pα(s : x) = Dα(s : x)−
π

d
2 s

d
2+α

Γ(d2 + α+ 1)
δ(x), x ∈ Rn, s ≥ 0,

where δ(x) is the indicator function of Zd.

Theorem 4.2 (Novák [9]). Let d ≥ 3. Then, for all x ∈ Qd, there exists a positive constant
Kd(x) such that

(4.6)

∫ s

0

|P0(t : x)|2 dt =


Kd(x)s

2 log s+O(s2 log1/2 s), if d = 3,

Kd(x)s
3 +O(s5/2 log s), if d = 4,

Kd(x)s
4 +O(s3 log2 s), if d = 5,

Kd(x)s
d−1 +O(sd−2), if d ≥ 6.

Remark 4.1. In Theorem 4.2 the positive constant Kd(x) is given explicitly for each x ∈ Qd,
see [5].

Remark 4.2. Theorem 4.2 valids for ∆α(s : x) instead of Pα(s : x), if x ∈ Td∩Qd. Actually,

∆α(s : x)− Pα(s : x) =

{
0, if x = 0,

−Dα(s : x) = O(s
d−1
4 +α

2 ), if x ∈ Td \ {0},

see [6, Remark 5.2].

Lemma 4.3. Let d = 4. Then, for all x ∈ Qd and all µ > 0, there exists a positive constant
K(x) and a sequence {λk}k such that λk → ∞ as k → ∞ and

(4.7) |∆0(λk
2, x)| ≥ K(x)λk

2−µ.

Proof. By Theorem 4.2 and Remark 4.2 we have

(4.8)

∫ s

0

|∆0(t, x)|2 dt = K4(x)s
3 +O(s5/2 log s) as s → ∞.

We may assume that 0 < µ < 1. If there exists a positive constant t0 such that, for all
t > t0,

|∆0(t, x)| ≤ K4(x)t
1−µ/2, i.e. |∆0(t

2, x)| ≤ K4(x)t
2−µ,

then ∫ s

0

|∆0(t, x)|2 dt ≤ K4
2(x)s3−µ for large s,

which contradicts (4.8).

Proof of Theorem 3.1. Let d = 4 and 0 < a < 1/2. Then d♯ = 2 and

Kβ,a(λ
2 : x) =

2∑
j=0

(−1)j∆j(λ
2 : x)A

(j)
β,a(λ

2).

By Lemma 4.1 and (4.3) we have
∆0(λ

2, x) = O(λ12/5),

∆1(λ
2, x) = O(λ14/5+ϵ),

∆2(λ
2, x) = O(λ7/2),


A

(0)
β,a(λ

2) = O(λ−β−5/2),

A
(1)
β,a(λ

2) = O(λ−β−7/2),

A
(2)
β,a(λ

2) = O(λ−β−9/2),

as λ → ∞,
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which imply

(4.9)


∆0(λ

2 : x)A
(0)
β,a(λ

2) = O(λ−β−1/10),

∆1(λ
2 : x)A

(1)
β,a(λ

2) = O(λ−β−7/10+ε),

∆2(λ
2 : x)A

(2)
β,a(λ

2) = O(λ−β−1),

as λ → ∞.

It follows that, if β > −1/10, then Kβ,a(λ
2 : x) → 0 as λ → ∞, that is, Sλ(uβ,a)(x) →

uβ,a(x) for all x ∈ Ea, which is a known result as mentioned after Theorem 3.1.

We shall consider the main term ∆0(λ
2 : x)A

(0)
β,a(λ

2) more precisely. From (4.2) it follows
that

(4.10) A
(0)
β,a(λ

2) = C0λ
−β−5/2 cos

(
2πaλ− 2β + 5

4
π

)
+O(λ−β−7/2),

where C0 = Γ(β + 1)a3/2+β/πβ+1. Let x ∈ Ea ∩ Q4. For any small µ > 0, take {λk}k as
in Lemma 4.3. If there exists β0 ∈ (−1,−1/2 − µ) such that Sλ(uβ0,a)(x) → uβ0,a(x) as
λ → ∞, then Kβ0,a(λ

2 : x) → 0 as λ → ∞, which implies

(4.11) lim
k→∞

cos

(
2πaλk − 2β0 + 5

4
π

)
= 0.

Actually, if

lim sup
k→∞

∣∣∣∣cos(2πaλk − 2β0 + 5

4
π

)∣∣∣∣ = 2δ > 0,

then by (4.7) and (4.10) we have

|∆0(λk
2 : x)A

(0)
β0,a

(λk
2)| ≥ C0K(x)λk

−β0−1/2−µδ,

for infinitely many k, which means that Kβ0,a(λk
2 : x) diverges, since the other terms are

smaller, see (4.9).
Now, (4.11) is equivalent to

lim
k→∞

(
2πaλk − 2β0 + 5

4
π

)
=

π

2
mod. π.

In this case, for all β ∈ (−1,−1/2− µ) \ {β0},

lim
k→∞

(
2πaλk − 2β + 5

4
π

)
=

π

2
− (β − β0)π

2
mod. π,

which shows

lim
k→∞

∣∣∣∣cos(2πaλk − 2β + 5

4
π

)∣∣∣∣ > 0.

This means that Kβ,a(λk
2 : x) diverges as seen before. Since µ > 0 is arbitrary, we have

the desired conclusion.

Acknowledgement The authors would like to thank Mr. Akihiro Hayami for giving us
permission to use figures in [2]. The authors would also like to thank the referee for her/his
careful reading and useful comments. This work was supported by JSPS KAKENHI Grant
Numbers JP22540166, JP24540159, JP17K18731.



10 K. Ootsubo, S. Fujima, S. Kuratsubo and E. Nakai

References

[1] L. Colzani and M. Vignati, The Gibbs phenomenon for multiple Fourier integrals, J. Approx-
imation theory. 80 (1995), 119–131.

[2] A. Hayami, Singular phenomena of Fourier series in several variables, Thesis for master’s
degree, 2009.
http://ir.lib.osaka-kyoiku.ac.jp/dspace/handle/123456789/8679

[3] S. Kuratsubo, On pointwise convergence of Fourier series of indicator function ofN dimensional
ball, Sci. Report Hirosaki Univ., 43 (1996), 199–208.

[4] S. Kuratsubo, On pointwise convergence of Fourier series of radial function in several variables,
Proc. Amer. Math. Soc., 127 (1999), 2987–2994.

[5] S. Kuratsubo, On pointwise convergence of Fourier series of the indicator function of d dimen-
sional ball, J. Fourier Anal. Appl., 16 (2010), 52–59.

[6] S. Kuratsubo and E. Nakai, Multiple Fourier series and lattice point problems, preprint.
arXiv:2011.06178v1

[7] S. Kuratsubo, E. Nakai and K. Ootsubo, On the Pinsky phenomenon of Fourier series of the
indicator function in several variables, Mem. Osaka-Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci.,
55 (2006), 1–20.

[8] S. Kuratsubo, E. Nakai and K. Ootsubo, Generalized Hardy identity and relations to Gibbs-
Wilbraham and Pinsky phenomena, J. Funct. Anal., 259 (2010), 315–342.

[9] B. Novák, Mittelwertsätze der Gitterpunktlehre, Chechoslovak Math. J., 19 (1969), 154–180.

[10] M. Pinsky, N. Stanton and P. Trapa, Fourier series of radial function in several variables, J.
Funct. Anal., 116 (1993), 111–132.

[11] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton
Univ. Press, 1971.

[12] M. Taylor, The Gibbs phenomenon, the Pinsky phenomenon, and variants for eigenfunction
expansions, Comm. Partial Differential Equations, 27 (2002), 565–605.

[13] M. Taylor, Double Fourier series with simple singularities–A graphical case study, preprint.
http://www.unc.edu/math/Faculty/met/fourier.html

[14] M. Taylor, Serendipitous Fourier inversion, preprint.
http://www.unc.edu/math/Faculty/met/SERENE.pdf

Communicated by Masatoshi Fujii

Kazuya Ootsubo
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
E-mail: 15nd401a@vc.ibaraki.ac.jp, ootsubo@bon-agency.com

Shoichi Fujima
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
E-mail: shoichi.fujima.sci@vc.ibaraki.ac.jp



Kuratsubo phenomenon in four dimensions 11

Shigehiko Kuratsubo
Department of Mathematical Sciences
Hirosaki University
Hirosaki 036-8561, Japan
E-mail: kuratubo@hirosaki-u.ac.jp

Eiichi Nakai
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310-8512, Japan
E-mail: eiichi.nakai.math@vc.ibaraki.ac.jp


